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1. General introduction 

At the early stage on developing the analysis of inclusion problems, the bonding condition 
between the inclusion and the matrix is always considered perfectly bonded. However in the most real 
situation, the inclusion interfaces are not perfectly bonded at all especially as the temperature of the 
composite is in relatively higher level. This study provides the interfacial thermal stress analysis for 
the problems of an elliptical inclusion embedded in an anisotropic plane with imperfect interface. The 
thermal load we consider here is that the inclusion is subjected to a uniform temperature change. The 
analytical results which give the distributions of interfacial stresses are derived base on Stroh 
formalism [1] in conjunction with the techniques of using mapping functions. As to the imperfect 
interface, a spring-type model with vanishing thickness is applied such that we consider the 
interfacial tractions are continuous and the displacement jumps across the interface layer are in 
proportion to the traction components in their respective direction [2]. The non-negative interfacial 
parameter hj, n, t or z, which is the ratio of the interfacial stress and the interfacial displacement jump 
in the normal, tangential or anti-plane direction, varies from zero to infinite value. The limiting value 
of interfacial parameters, i.e. hj=0 or hj=f, imply a particular case which represents a completely 
debonded interface or a perfectly bonded interface, respectively. Therefore, our results can be applied 
to the most problems of all possible kinds of interfaces. Among the derivations of this study, due to 
the fact that the interfacial displacement jumps proportionally relate to the corresponding interfacial 
stresses, only using analytical continuation could lead to an unsolvable situation with expanding the 
solution on the inclusion domain into a complex Fourier series. To overcome this awkward situation, 
an idea of semi-inverse manipulation is introduced by virtue of applying the exact expression for a 
Fourier series, which is the multiplication of two different Fourier series [3]. According to the 
obtained distribution curves for the interfacial thermal stresses of an elliptical inclusion problem with 
an imperfect interface, the results of this research indicate that the extreme values and distributions of 
the interfacial stresses strongly depend on the values of interfacial parameters. 

2. Basic formulations 

In a coordinate system xi, i=1, 2, 3, the temperature, displacement vector u = [u1, u2, u3]
T and 

stress function vector I = [I1, I2, I3]
T on an anisotropic plane can be expressed as follows [1]  
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where A and B are Stroh matrices, c and d are heat eigenvectors, and g(zW) and f(zD) are arbitrary 
functions of their arguments. According to the assumptions for a spring-type model for an imperfect 
interface, the interfacial conditions at the elliptical interface are given by 
(4)                  ,0),( 0  TV ani  

(5)                  .,,, );),((),( *
00 ztnjiuauha iijij  � TTV  

http://rcin.org.pl



36th Solid Mechanics Conference, Gdańsk, Sept. 9–12, 2008 157

where the notation 12 )()( �   denotes for the function value jump across the interface layer and 

 represents the displacements in direction i associated with the eigenstrain. The subscript indices 
“1” and “2” stand for the associate quantities on the matrix and the inclusion domains, respectively. 
The values of the three non-negative interfacial parameters h

*
iu

n, ht, hz, in Eq. (5) can represent the 
bonding condition at the interface. By using Eqs. (1)a(3) Eqs. (4) and (5) lead to a set of simultaneous 
equations in terms of f1(zD) and f2(zD) pertaining to the exact solutions on the domains of  matrix and 
inclusion, respectively. After mapping the elliptical interface into a unit circle and then expanding 
f2(zD) into a Laurent series, the exact forms are successfully solved by virtue of introducing a 
semi-inverse approach  in conjunction with the analytical continuation method. 

3. Numerical results 

        The results of this research are presented by the interfacial shear stress curve for an orthotropic 
inclusion problem. Consider a temperature change of 100qC on the inclusion and the half length of the 
axes a=1.5, b=1 and that the material properties of the composite system are as 
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Figure 1 shows the comparison of the interfacial shear stress distribution curves for two different 
cases: the perfectly bonded interface and the frictional sliding interface. It is obvious that the 
interfacial shear stress distribution can change evidently and the extreme value of shear stress notably 
magnifies as the interface changes from perfectly bonded to frictional sliding. 
 

 
 
 
 
 
 
 
 
 
 
      

 
 
 

Fig. 1. The distribution curves of the interfacial shear stress along the elliptical interface. 
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