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1. Introduction  

The most frequently used form for the stress at atomic level is based upon the Clausius virial 
theorem, which determines the stress field applied to the surface of a fixed volume containing 
interacting particles (atoms). The virial stress includes the mass and velocity of atoms, which 
describes the fact that mass transfer causes mechanical stress to be applied on the surfaces external 
to an atomic system, as well as it includes pair-wise interatomic forces and atomic positions. It has 
been shown that the virial stress cannot be directly related to the classical Cauchy stress and several 
modifications have been proposed [1, 2]. It is essential to recognize that the stress at the location of 
an atom depends on the details of the interatomic interactions and the positions of interacting 
neighbours. Hence, the atomic stress is a non-local function of the state of the matter at all points in 
some vicinity of the reference atom, in contrast to the local stress field used in classical continuum 
theories. 

It seems that the relationship between local displacements of atoms and the strain tensor is not 
as ambiguous as the concept of atomic stress. Position of atoms is readily available from almost all 
molecular simulation algorithms and the atom displacement can be easily assessed. Strain measure 
is a relative quantity and one need two configurations, the reference and the present, in order to 
define the local atomic strain. The atomic strain should provide detailed local information about 
kinematics of the atom in relation to its neighbours and the true test of the atomic strain concept is 
how well it approximates total strain of the simulation cell by summing local atomic strains over all 
atoms present in the system. In the best case this sum should be equal or very close to the total 
strain calculated from boundary conditions of the simulation cell. The atomic strain tensor was 
calculated in [3] to better understand changes in local structure. However, it has not been 
determined whether or not the sum of local atomic strains corresponds to the total deformation of 
the simulation cell when loaded by external forces.  

In this work we describe an atomic strain measure related to the transformation matrix 
between two deformation states. This measure is further modified in order to take into account 
nonaffine deformations taking place in molecular disordered systems. Localized areas of nonaffine 
deformations indicate non-elastic response which evolves during loading [4].  

2. Atomic strain measure and analysis 

The atomic strain will be defined in terms of Voronoi tessellation. The atoms are assumed to 
be in their equilibrium positions, and thermal vibrations are averaged. The Voronoi polyhedron 
around central atom is composed of a set of sub-polyhedrons (interaction cells) whose number is 
determined by a number of neighbours to the central atom. During motion, the Voronoi polyhedron 
associated with the atom changes its shape. The interaction cell is defined for each pair consisted of 
a central atom and its neighbors. It is a part of Voronoi polyhedron that contains points situated 
closer to this pair of points than to any other. It is build of two sub-polyhedrons (parts of 
polyhedron surrounding a central point and a neighboring point) having common face. This is a 
unique region for which it can be assumed that it is influenced only by these points. 

The atomic strain is defined through the deformation gradient that is calculated by minimizing 
the sum of squared separation distances between neighbouring atoms and subsequently weighted by 
corresponding polyhedra [5]. 

http://rcin.org.pl



36th Solid Mechanics Conference, Gdańsk, Sept. 9–12, 2008 229

As an example, molecular modeling and strain calculations has been performed on CNT-
polypropylene nanocomposite. At first, the system is constructed and subject to energy 
minimization using Polak-Ribiere conjugate gradient method. Molecular dynamics simulation is 
performed next using NTP ensemble in order to obtain an equilibrium state, which simultaneously 
serves as a reference state. The nanocomposite has been subject to uniaxial tension along the 
nanotube axis and the analysis has been performed for nine deformation steps with equilibration 
runs after each step. The total atomic strain of the system resembles very closely the strain of the 
simulation cell calculated from boundary conditions. For instance, the strain from boundary 
conditions is 0.0185 at third loading step whereas atomic strain gives 0.0179. 
 

 
Figure 1. Voronoi tessellation of CNT at third step of deformation and evolution of the total CNT 

strain as compared to the total nanocomposite strain. 
 

Figure 1 shows Voronoi tessellation only for atoms belonging to carbon nanotube at third 
loading step and the evolution of CNT total strain during loading history. The nanotube strain 
follows the strain of nanocomposite to a certain loading level and then lags after it as loading of the 
nanocomposite increases. This is clear evidence that we need to deal with an interfacial sliding. A 
detailed analysis atom by atom would be necessary to disclose and characterize an atomic nature of 
interfacial debonding. 

3. Conclusion 

The most important conclusion to emerge from present investigation is that atomic strain 
concept based on the construction of Voronoi cells provides means to bridge molecular and 
continuum length scales. This concept will be illustrated further with other examples comprising 
slippage of functional nanowires at interfaces in polymer based nanocomposites and cohesive 
fracture phenomena at interfaces. 
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