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1. Introduction

Non-uniqueness of active slip systems selection in the rate-independent theory of single crystal

plasticity represents a well-known difficulty, and different methods have been proposed in the litera-

ture to overcome it. The method used in this paper is based on the energy criterion of path stability.

The main concept is that a stable deformation path corresponds to step-by-step minimization of the

incremental energy supply under prescribed kinematic constraints and under certain symmetry restric-

tions imposed on the constitutive law. A novel feature of the present approach is that the minimization

is simultaneously performed with respect to shear increments on all slip systems and to the deforma-

tion gradient components that are left unconstrained. In particular, if only the overall deformation

gradient is prescribed, either fully or partially, then the energetically preferable deformation pattern

in a crystal can be nonuniform and lead to deformation banding and microstructure formation. A

respective computational algorithm for large elastoplastic deformations of metal single crystals has

been developed and used to simulate typical tests like uniaxial tension and channel-die compression.

2. Minimization of incremental energy supply

A general description of the incremental energy minimization approach can be found in [1].

The following minimization problem is examined

(1) ∆E → min subject to kinematical constraints

where ∆E is the increment in energy to be supplied from external sources to the mechanical sys-

tem, consisting of the deformed body and the loading device, in order to produce quasi-statically a

deformation increment. In this paper we consider either kinematic control or zero external loads, so

that ∆E reduces to the increment of deformation work ∆W split into the sum of the increments in

the Helmholtz free energy and virtual dissipation. For each slip system the Schmid yield condition

τk = τ c

k
is adopted, where τk is the resolved stress (projection of Kirchhoff stress τ on k-th slip-system

dyad sk) and τ c

k
is its current critical value. It is shown that the symmetry restriction imposed by in-

trinsic consistency between minimization (1) performed with accuracy to the first- and second-order

terms [1] is reduced to the requirement gkj = gjk examined below.

3. The hardening moduli and symmetry restriction

The evolution equations for critical shear stresses τ c

k
and yield functions fk = τk − τ c

k
are

(2) τ̇ c

k
=

∑

j

h∗

kj
γ̇j , ḟk = Λk · Ḟ −

∑

j

gkj γ̇j ,

where γ̇j ≥ 0 is the shear-rate on j-th slip-system, h∗

kj
are slip-system hardening moduli, gkj are

slip-system interaction moduli at prescribed strain-rate, F is the deformation gradient, and Λk is a

tensor orthogonal to the yield surface fk = 0 in F-space. Taking into account the plastic flow of the

material relative to the crystallographic lattice, it is shown that

(3) gkj − gjk = h∗

kj
− h∗

jk
+ τ · (sksj − sjsk) .
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Different ways of ensuring the required symmetry gkj = gjk by reducing to zero the right-hand

expression in (3) are considered, and their quantitative effect on the material behaviour is studied.

4. Example

As an example, the channel-die compression of an Al-alloy single crystal is considered. Ideal-

ized geometry of the specimen before and after deformation is shown in Fig. 1, the latter determined

for two different initial orientations of the crystal. Compressive stress-strain diagrams calculated for

five different crystal orientations are shown in Fig. 2a which can be compared to respective experi-

mental data taken from reference [2] and shown in Fig. 2b. The effect of formation of deformation

bands is also investigated.

(a) (b) (c)

Figure 1. Initial configuration of a sigle crystal in a channel die (a) and calculated configurations after com-

pression to εln = 1.25 for Cube (b) and Copper (c) initial crystallographic orientations.
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Figure 2. Compressive stress-strain diagrams for channel-die compression of a single crystal of five different

crystallographic orientations: calculated curves (a) and experimental results from ref. [2] (b).
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