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1. General

Coupled damage-plasticity models are relatively simple if isotropy is assumed, while they have

all features necessary for the numerical modelling of composites: void or crack growth, irreversible

deformations and stiffness degradation can be represented. However, if applied in localized failure

simulations, the models require regularization which can be performed as a non-local enhancement,

having either a gradient or integral form.

The aim of the paper is to present a damage-plasticity model at large strain, based on a free

energy and dissipation potentials decomposed into elasto-damage and plastic parts. The model in-

corporates a gradient-type averaging equation for the strain energy which is a driving force of elastic

damage coupled to irreversible deformations. The paper is based on the concepts presented in the

paper by Liebe and Steinmann [4], extending the theory with a coupling to plasticity. An implemen-

tation in the FEAP finite element package is performed. Numerical simulations contain one-element

tests and the one-dimensional tensile bar benchmark.

2. Local model

The model is based on the multiplicative split of the deformation gradient F into elastic and

plastic parts. We adopt the Helmholtz free energy in the form, cf. [7, 1]:

Ψ = (1 − D)Ψe(be) + Ψp(κp),(1)

where D is the scalar damage parameter growing from 0 for the intact material to 1 for complete

damage, be = F eF eT the elastic left Cauchy-Green tensor and κp the internal variable (plastic strain

measure).

The elastic part of the Helmholtz potential is the strain energy composed of the volumetric and

deviatoric parts, respectively:

Ψe = W = Ψ′′e(J) + Ψ′e(b′e)(2)

where J = det(F ) and b′e = J−2/3be is the isochoric elastic left Cauchy-Green tensor. When the

Kirchhoff stress τ is derived from Ψ in a usual manner, the effective Kirchhoff stress tensor τ̂ occurs:

τ = (1 − D)τ̂(3)

The definitions of Ψ′e and Ψ′′e are based on [7] and lead to a relation between the Hencky strains

(logarithmic stretches) and principal effective Kirchhoff stresses which resembles the classical linear

Hooke’s law. The plastic part of the Helmholtz potential is standard.

Further, the dissipation potential is postulated in a decoupled form

Φ(τ , q, Y ; D) = Φp(τ̂ , q) + Φd(Y )(4)

In the associative case the first part is equal to the yield function Φp ≤ 0 that depends on the effective

Kirchhoff stress τ̂ , while parameter q represents the yield strength with isotropic hardening. In the
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simplest case linear hardening q = σy +hκp and the Huber-Mises yield function are used. The second

part of the dissipation potential is the damage loading function Φd = Y − κd ≤ 0, in which Y is the

thermodynamic force conjugated to damage, equal to the strain energy W . Both the yield and damage

conditions are subject to respective Kuhn-Tucker conditions. The damage parameter is computed as

a function of the current damage history parameter κd:

D = fd(κd), κd = max
−∞<s<t

(Y (s), κd

0
)

with the initial damage threshold κd

0
. This function can for instance be exponential [4] or based on

the model of Lemaitre [7].

To integrate the nonlinear problem in time, we follow the approach pioneered by Simo in order

to preserve the convenient small-strain structure of return mapping algorithm, see [2].

3. Gradient-enhancement

The introduction of gradient-enhancement requires the selection of a non-local parameter and

the formulation of a corresponding averaging equation. Within elastic damage models there is an

energy gradient formulation with a non-local stored energy W̄ serving as an independent variable,

and a damage gradient formulation with damage parameter D serving as an independent variable and

its gradient D entering the free energy function [4]. There are also gradient enhanced theories with

non-local damage parameter D̄ [1]. In the case of ductile damage models, a kinematic non-local

variable z̄ is introduced, having its local kinematic counterpart, e.g. the equivalent plastic strain [3].

Here the first option is adopted, called in [4] the Energy Gradient Formulation. The damage

driving force W is substituted by its non-local counterpart W̄ in the damage condition, cf. [6]:

W̄ = W − DivW → Φd = W̄ − κd ≤ 0, κd = max
−∞<s<t

(W̄ (s), κd

0
)(5)

where a damage flux W is introduced. If the damage flux is derived from the non-local energy

by W = −c∇XW̄ with c related to the square of an internal length scale, an implicit formulation

ensues which resembles the computationally convenient concept of averaging [5]. It remains to decide

whether the averaging should be performed in the initial configuration as above (Lagrange averaging,

cf. [6]) or in the current configuration (Euler averaging, cf. [3]). This issue is discussed and the

results of one-dimensional tensile bar benchmark are presented.
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