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1. Introduction and statement of the problem 

      Originall y, Gurson obtained a yield surface for porous plastic materials under some particular 
conditions. Here we give a generalised form of the Gurson yield surface (A), viz 
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where σ  denotes the Cauchy stress tensor, Mσ  the flow yield strength, q=3/2 and x is a function of 
the void volume fraction v. An essential fact is the presence of the hydrostatic stress [1]. 
      Close relations exist between stress levels in the matrix material, viewed as the effective 
material, and the porous material, viewed as the damaged material. By example, in CDM, the 
respective stress tensors ( σσ ,r ) are connected by some relation [2] 
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where y(x) is an unknown decreasing scalar operator. But the introduction of the matrix material by 
means of (2) leads to the explicit use of the von Mises yield surface fr=0 (B) on the matrix material. 
 
2. The yield sur faces fr and f 
 

      As Gurson, we suppose that the matrix material is rigid-plastic. The void-function x(v )is taken 
as a damage variable and the equivalent plastic strain Mε  as an internal variable. The yield surface 

(B) is given as a function of the state ( Mr ,εσ ) of the matrix material. But this state ( Mr ,εσ ) is 

connected to the state ( M,x, εσ ) of the damaged material by the formula (2); so it is equivalent to 

express this yield surface in function of the parameters ( M,x, εσ ), obtaining 
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Note that (3) is not a yield surface for the damaged material (except in particular cases). 
      Now if  a mechanical process occurs in the damaged body, then from (1) we have 0f ≤ . But 

the matrix material undergoes some accompanying process and from (3) we have 0f r ≤ . So the 

region 0f ≤  must be restricted by the region 0f r ≤ . This is not surprising since the Gurson 
surface is a necessary condition only, satisfied by the damaged material under the hypothesis fr=0. 
If we suppose that reversible processes are possible (leaving the rigidity hypothesis), then the 
domains 0f r ≤  and 0f ≤  generally intersect [2]. The particular case of the strict inclusion 

“ 0f ≤  implies 0f r ≤ ”  is possible, but not the reverse one. This last result is due to the fact that it 
is not possible to give an a priori evolution of the matrix material since the presence of micro-voids 
restricts the deformations of the matrix material. Naturall y the domains 0f ≤  and 0f r ≤  may 
coincide. 
      Due to rigidity hypothesis, it is easy to show that a damage-plasticity effect arises only when the 
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condition y(x)<y0(x)=(1-qx) is satisfied. Fig 1 describes the two yield curves f=0 and fr=0. 
 
 
 
 
 
 
 
 
 
 
      Along AMB, the matrix is plasticall y strained whereas the micro-voids do not suffer irreversible 
opening. Along BNC, due to very small  elastic strains (rigidity hypothesis) of the matrix, micro-
voids suffer opening. Finall y, if  the stress point rests on the intersection point B, then damage-
plasticity arises.  
 
3. Constitutive model and conclusion 
 
      We quote below the equations of damage-plasticity process only (arising in B, Eq (4)): 
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Eq (5), for the plastic strain rate dp, is an associative evolution law at the non-smooth point B with 
two multipliers ( λλ ,r ) (σ(  is the deviator of σ ). Eq (6) are evolution laws of Mε and v [3,4], where  
the dot designs time-derivative, an is a material constant and A a classical Laplace-Gauss function 
(to be specifi ed). In the evolution law of the void volume fraction v, the fi rst part represents the 
geometric growth vg and the second part the contribution of the void nucleation vn. 
     The relations (6) give Mε&  and v&  through linear function of dp, then as linear functions of the two 

multipliers by using (5). But the two consistency conditions give Mε&  and v&  through linear functions 
of the stress rate (σ& ), so that the two multipliers may be written as linear functions of (σ& ). Finall y 
we obtained an expression of dp in function of the stress rate (σ& ). Simple examples show the abilit y 
of the actual scheme and so, in this work, as a new result, attention was given to the necessity of 
using simultaneously yield conditions of both the damaged and virgin materials. 
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Figure 1. The three parts of the 
resultant yield curve: AMB,B,BNC 
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