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The intrinsic formulation of the geometrically non-linear theory of thin elastic shells, 
proposed in [1], allows one to find strains DEJ  and bendings DEN  of the shell midsurface. Then the 

position vector y  of the midsurface of the deformed shell can be found from known DEJ and DEN  by 

one of two methods proposed in [2]. 
In this report we develop an alternative novel method of determining the vector y  from 

prescribed DEJ and DEN . The present approach uses the right polar decomposition of the midsurface 

deformation gradient , where  is the surface right stretch tensor and  is the 3D rotation 
tensor. Applying the method developed here the vector 

 R RU U R
y  is calculated in three consecutive steps 

described briefly below. 
Let ( )DT x x , D  ��� , be the position vector of the shell midsurface M  in the reference 

(undeformed) configuration. At each point x M�  we define the natural base vectors 

/ D ,D DT w w {a x x , the unit normal vector 1

1

a
2 un a a , the covariant components aDE D E a a<  

of the surface metric tensor a  with det ( )a aDE , and the covariant components ,abDE E �a n<  of 

the curvature tensor . In the deformed configuration the shell midsurface b M  is parameterized by 
the convected coordinates DT  so that its geometry is described by the same symbols with a bar 
above them: , , , , ,eE D .a a b tcD D Ea n  Then the deformation state of the shell midsurface is described by 

the covariant components 
1

( )
2

a aDE DE DJ  � E  and (b b )DE DE DN  � � E  of the surface strain  and 

bending  tensors, respectively. 

�

�

Introducing the midsurface deformation gradient , D
D �F y a , by the theorem of Tissot we 

can justify the right polar decomposition  F RU . Then the field ( )DT y y  can be found in the 
three steps described below. 
 
a)  From known DEJ  the stretch field ( )DT U U  is found by pure algebra through the explicit 

formula 
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b)  From known  and U DEN  the rotation field ( )DT R R  is calculated by solving the system of two 

linear PDE’s 
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where DEH  and ONH  are components of the surface permutation tensor , and � |(.)D  denotes the 

surface covariant derivative in the metric aDE . The integrability conditions  of the 

system (2)1 are proved to be equivalent to the compatibility conditions of the non-linear theory of 
thin shells. 

,DE
DEH  R 0

Using the theorem of Frobenius – Dieudonné it has been shown that the solutions to the 
problem (2)1 can be converted into an infinite set of systems of ODE’s along curves , 
parameterized by the length coordinate s  and covering densely the entire domain of 

C M�
M : 
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where I  is the identity tensor of the 3D vector space. 
Solution to the initial value problem (3)1 may be obtained with any of the well known 

techniques, numerical techniques inclusive. In particular, applying the method of successive 
approximations the solution to (3)1 can be given in the form 
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0where  is the rotation tensor at 0 ( )s R R 0s s . 

 
c)  With  and  already known the system R U ,D D y Fa  can be integrated by quadrature 

(5)               
0

0 0, (
x

x

d xD
D T �  ³y y RUa y y 0) .

The equation (3)1 is identical with the one describing spherical motion of a rigid body about a 
fixed point. Thus, one can point out a number of special cases when the equation has the solution in 
closed form. This indicates that the novel method presented here might in some cases be more 
efficient in applications than those proposed in [2]. 

Details of the method will be published in [3]. 
A similar approach has recently been successfully applied to analyse the classical problem of 

differential geometry: recovery of the surface from components of its two fundamental forms. 
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