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A new approach is proposed for formulating a triangular finite-element of the Kirchhoff-Love 
thin elastic shells undergoing arbitraril y large displacements and rotations. The starting point of the 
approach is to represent the strain energy of the shell  as a function of the invariants of the strain and 
curvature-change tensors of the shell  middle surface. Given elongations and curvature changes of 
any three fibers lying on the middle surface along three independent directions, one can readily 
calculate these invariants. For a triangular element, it is a natural choice to take the element sides as 
these fibers. Thus, the strain energy is written as (summation over m=1,2,3) 
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where E, ν, and h are Young’s modulus, Poisson’s ratio, and wall  thickness of the shell , 
respectively, εI and εεI  ( κI and κκI ) are the first and second invariants of the strain (curvature-

change) tensor of the middle surface, respectively, F is the area of the middle surface of the finite 
element, and ml , mε , and mκ  are the length, strain, and curvature change of the mth element side, 

respectively. 
Since the normal components mε  and mκ  have clear physical meaning of normal elongation 

and normal curvature change, respectively, they can be approximated without using shape functions 
for the displacement fields over the element. Namely, the strain and curvature-change fields are 
obtained by superposing approximations of mε  and mκ  for three independent directions. For this 

purpose, combinations of the beam solutions can be used. 
The use of the invariants allows one to avoid constructing of the local coordinate systems 

related to finite elements, calculate the stiffness matrix of the finite element straightforwardly for 
the lengths of the element sides, simpli fy the formulation of the shell  finite-element model, and 
reduce the computational work. 

For the shell  element presented, the question of description of finite rotations is solved by 
associating the element with a certain geometrical object called the kinematic group [1,2] that 
consists of the nodal position vectors and normal vectors to the shell  middle surface and possesses 
the property of geometrical variabilit y. The finite element–kinematic group association implies that 
the strains and curvature changes of an element are related to strain parameters that characterize 
changes in the kinematic group configuration.  

An attempt is undertaken to improve nonlinear bending capabiliti es of the finite element by 
taking into account finite curvature changes within the element. To this end, the following 
assumptions are used: 
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(a) each side of the triangular element is a plane nearly circular curve which remains plane 
and nearly circular during the deformation; 

(b) for each element side, the normal vector to the middle surface of the shell  does not deviate 
from the curvature plane of this side; 

(c) the strains of the element sides are constant. 
It should be noted that the assumption (a) imposes no restriction on the magnitude of the 

curvature changes of the triangle sides. The assumption (c) implies that the strain-tensor 
components are constant within the element. It follows that the membrane behavior of the element 
is modeled in a simple manner and similar to that of the constant-strain triangle. 

A three-node curved triangular element with five degrees of freedom per node (three 
translations of the node and two rotations of the normal vector to the middle surface) is developed. 
The accuracy of the shell  element is studied using typical geometricall y nonlinear benchmark 
problems of thin elastic plates and shells [3]. Numerical results obtained show that the finite 
element provides high accuracy and convergence rate with respect to the number of finite elements 
thus supporting the validity of underlying assumptions. The solutions presented are in good 
agreement with numerical data available in the literature. Namely, the element performs very well  
under pure bending loading conditions: it can be rolled up so that the mutual rotation of the normal 
vectors within the element can be as large as 90°. 
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