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1. Theoretical considerations

In this work, a weighted residual relationship involving both the displacements and a field of

multipliers is proposed as the weak form of the large deformation contact problem with Coulomb

friction in quasi-statics. It is shown that (i) the proposed weak form is equivalent to the strong form

of the contact problem and (ii) the multipliers are equal to the contact tractions.

Consider two bodies, indexed by superscripts 1 and 2, undergoing motions φ(1) and φ(2) in the

three-dimensional space during some time interval [O, T ]. Let us assume that the bodies may come

into contact with each other and formulate the contact problem using a Lagrangian description. The

notations, rather standard, are summarized as follows. The reference configuration of the two bodies

are represented by the regions Ω
(1)

o and Ω
(2)

o . The prescribed body force per unit mass in body i is

denoted f(i). The boundary S
(i)

o of body i is partitioned into three parts denoted S
(i)

oU
, S

(i)

oT
and S

(i)

oc ,

where S
(i)

oU
and S

(i)

oT
are the parts where displacements and tractions are prescribed, respectively, and

S
(i)

oc is the part where contact potentially takes place. The stress state in body i is defined by the first

Piola-Kirchhoff stress tensor Π
(i). The nominal traction vector at any point in S

(i)

o with normal vector

N(i) is denoted T(i) = Π
(i).N(i). The spatial counterparts of surface S

(i)

o is denoted S(i).

Given a point x ∈ S
(1)

c one defines a contact point y ∈ S
(2)

c as the closest point to x via

y = arg min
x(2)

∈S
(2)

c

‖x − x(2)‖, and the proximity as g = −ν(x − y) where ν is the outward normal

at point y. One also defines the point X ∈ S
(1)

oc related to point x in question by x = φ(1)(X) and

Y(X) ∈ S
(2)

oc related to point y by y = φ(2)(Y). The tangential kinematics is characterized by the slip

velocity VT = η̇αaα which is resolved in terms of the local spatial basis (a1, a2) at point y ∈ S
(2)

c .

Likewise, the nominal traction vector at any point X ∈ S
(1)

oc is resolved as T = TNν − TT . The

coefficient of friction is µ.

The weak form proposed here is stated as a mixed relationship which involves both the dis-

placement fields U(i), i ∈ {1, 2}, defined in Ω
(i)

o and the multiplier fields λN and λT defined on S
(1)

oc .

Accordingly, the weighting functions are the virtual displacements U(1)∗, U(2)∗, and the virtual mul-

tipliers λ∗

N
, λ∗

T
. All the functions involved in the weak form are assumed to be regular enough for

the integrations and differentiations to make sense. Two positive constants ǫN , ǫT being chosen, the

weighted residual relationship is given in the following proposition.

PROPOSITION 1. ∀t ∈ [O, T ],∀U(1)∗,∀U(2)∗,∀λ∗

N
,∀λ∗

T
,

(1)

∑

2

i=1

{

−
∫

Ω
(i)

o

Π
(i)T : ∇X(i)U(i)∗dΩo +

∫

Ω
(i)

o

f(i)U(i)∗dΩo +
∫

S
(i)

oU
∪S

(i)

oT

T(i)U(i)∗dSo

}

+
∫

S
(1)

oc

[

〈λN + ǫNg〉ν −
(

1 − 〈1 −
µ〈λN+ǫNg〉

‖λT +ǫT VT ‖

〉
)

(λT + ǫT VT )
]

(

U(1)∗(X) − U(2)∗(Y(X))
)

dSo +
∫

S
(1)

oc

{

(λN − 〈λN + ǫNg〉)
λ
∗

N

ǫN

+
[

λT −
(

1 − 〈1 −
µ〈λN+ǫNg〉

‖λT +ǫT VT ‖

〉
)

(λT + ǫT VT )
]

λ
∗

T

ǫT

}

dSo = 0

where ∇X(i)U(i)∗ is the gradient tensor of U(i)∗ with respect to variables X(i) ∈ Ω
(i)

o , 〈.〉 is the Macauley
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bracket: 〈a〉 = a if a ≥ 0, = 0 if a < 0, and 〈1 −
µ〈λN+ǫNg〉

‖λT +ǫT VT ‖

〉 must be replaced by 0 at any point on

S
(1)

oc where λT + ǫT VT = 0.

One can readily prove the following statement which means that the strong form implies the

weak one: the solution fields of the strong problem - namely (U(1), U(2)) in Ω
(1)

o , Ω
(2)

o and (TN , TT , VT )

on S
(1)

oc - satisfy (1), provided that one makes in that relationship λN = TN and λT = TT . Conversely,

the following proposition shows that the weak form implies the strong one.

PROPOSITION 2. By making some smoothness assumptions, which are not specified in this

abstract, it can be shown that (1) implies at any time t ∈ [O, T ] the following local equations:

(a) The momentum balance equation for the two bodies 1 and 2.

(b) The following relation on the boundary portion S
(i)

o \S
(i)

oc = S
(i)

oT
∪ S

(i)

oU
: Π

(i)N(i) = T(i).

(c) The equalities between the components of the nominal traction vectors and the multipliers

on the contactor surface S
(1)

oc : ∀X ∈ S
(1)

oc , T(1) = Π
(1)N(1) = λNν − λT . ⇔ TN = λN and TT = λT .

(d) The normal and tangential contact laws: ∀X ∈ S
(1)

oc , g(X) ≤ 0 where

. if g < 0, then TN = 0, TT = 0

. if g = 0, then TN ≥ 0, ‖TT‖ ≤ µTN

{

.if ‖TT‖ ≤ µTN , then VT = 0 (stick)

.if ‖TT‖ = µTN , then VT ∧ TT = 0, VT .TT ≥ 0 (slip)
(e) The following relationship which expresses the equilibrium of the traction vectors at the con-

tact interface: ∀X ∈ S
(1)

oc ,∀Y(X) ∈ S
(2)

oc , T(2)(Y)dS
(2)

oc = −T(1)(X)dS
(1)

oc , where dS
(1)

oc is a differential

reference area in S
(1)

oc and dS
(2)

oc its counterpart in S
(2)

oc .

2. Numerical examples

The weak form (1) has been discretized by means of the finite element method and the contact

tangent stiffness obtained by appropriately linearizing the contact terms. Several numerical examples

have been investigated on solid or membrane structures subjected to dead or following loads, with

hyperelastic or finite elastoplastic material models. A typical example is shown here, concerning the

contact between two hyperelastic beams, one of which being subjected at one tip to a follower force.
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Figure 1. Contact between two beams. (a) Reference configuration, 3D view of the mesh and in-plane view.

(b) Deformed shape and contact tractions at the last step in the frictionless case (c) Friction case with µ = 0.3.
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