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The computational model of geometricall y non-linear elastic beam is frequently used for 
analysis of dynamics of one-dimensional distributed systems on unilateral elastic foundation. The 
problems of forced vibrations of deformable solids under unilateral constraints are nonlinear 
problems with conditions expressed in the form of inequaliti es. Besides, in most cases it is 
necessary to take into account the dissipation of energy that is caused by external viscous resistance. 

As a rule, capabiliti es of analytical methods for solving this type of problems are limited to 
discrete systems with a small  number of freedoms. That's why the principal role in solving forced 
vibrations of deformable solids under unilateral constraints belongs to numerical methods. A 
stabili zation method for computational modeling of geometricall y non-linear forced vibrations of 
elastic beams on unilateral Winkler foundation is presented. This method was used earlier for 
computational modeling of forced vibrations of viscoelastic solids under unilateral contact [1] and 
geometricall y non-linear forced vibrations of elastic beams without unilateral constraints [2]. 

It is well  known, that if damping is present in a system then initial conditions have 
considerable effect on forced vibrations of the deformable solids only during a limited period of 
time after which the system moves to a steady-motion state. Therefore, the main idea of this 
approach is that the T-periodical solution of the original problem can be found as a solution of the 
Cauchy problem when damping is present in the system. In this case initial conditions can be 
chosen arbitraril y. 

Beam deformation is described by the Timoshenko model. It is proposed that a value of 
resistance forces is proportional to velocity. Geometricall y nonlinear equations of motion for 
Timoshenko beam on unilateral Winkler foundation are as follows 
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where w  is the transverse displacement; γ  is the angle of rotation of the normal relatively to the 
axis of the beam; u  is the longitudinal displacement; M  is the bending moment; Q  is the shear 
force; N  is the normal force; ρ  is the mass per unit of length; F  is the area of the cross section; J  
is the moment of inertia of the cross section; q  is T-periodic transversal distributed load; c  is the 
foundation stiffness; φ  is the clearance between the beam and the foundation; )(H ⋅  is Hevyside 
function; ε  is the viscous damping coeff icient per unit of length. 

The forces Q , N  and the bending moment M  are related to the displacements w , u  and the 
angle of rotation γ  by the constitutive relations 
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where E  is Young’s modulus of the beam material; G  is the shearing modulus; 652 /k =  for a 
rectangular cross section. 

For definiteness the boundary conditions have the following form: 

00 == )l(w)(w ;     00 == )l(M)(M ;     00 == )l(u)(u . 

Through a standard variational procedure, we obtain the following variational equation: 

( ) ( ) ( ) ( ) +












−

∂
∂+−

∂
∂+−

∂
∂+−

∂
∂

∫ dxww~
t

w
uu~

t

u
F~

t
Jww~

t

w
F

l

0
2

2

2

2

2

2

εργγγρρ  

+
















∂
∂−

∂
∂

∂
∂+









∂
∂−

∂
∂

∂
∂+







 −
∂
∂−+

∂
∂








 +
∂
∂+ ∫ dx

x

u

x

u~

x

u
EF

xx

~

x
EJ

x

w~
x

w~

x

w
GFk

l

0

2 γγγγγγ  

−








∂
∂−

∂
∂










∂
∂+









∂
∂−

∂
∂

∂
∂






















∂
∂+

∂
∂+ ∫∫ dx

x

u

x

u~

x

w
EFdx

x

w

x

w~

x

w

x

w

x

u
EF

ll

0

2

0

2

2

1

2

1  

( ) ( ) 0
00

=∫ −−⋅−⋅+∫ −−
l

dxww~)w()w(Hcdx
l

ww~q φφ ,   ( ) Ku~,~,w~ ∈∀ γ . 

where K is the set of the kinematicall y admissible beam displacements. 
This equation expresses the principle of admissible displacements for the elastic beam on 

unilateral Winkler foundation and includes only fi rst spatial derivatives of the displacements. 
The finite diff erence method is used for time semi-discretization of the variational equation. 

The second and the fi rst time derivatives are approximated with three-point central diff erences. As a 
result an explicit three-layer scheme is used for numerical time integration. The minimization 
problem which is equivalent to the obtained variational problem on each time step is derived. 

The finite element method is used for the spatial discretization of the minimization problem. 
Two-nodal and three-nodal Lagrange finite elements are used. 

A software package based on the described computational algorithm was developed. 
Numerical solutions of a number of problems were obtained and convergence of the computational 
algorithms was investigated. The influence of foundation compliance on the solution behavior was 
investigated. Specifi cs of amplitude-frequency dependencies of stresses and displacements were 
researched. It is known that an amplitude-frequency dependency for the elastic beam is not unique 
due to geometrical nonlinearity, i.e. a few values of the amplitude can correspond to the one value 
of the frequency near a resonance. It is a diffi culty for numerical solving. In this study the 
continuation method is used to derive the amplitude-frequency curves. The frequency of forced 
vibrations is chosen as a continuation parameter. The calculation was performed in two stages. On 
the fi rst stage the frequency of forced vibrations was increased in the range under investigation. On 
the second stage the frequency was decreased from the maximum to the minimum values. The 
solution for the previous value of the frequency was used for the initial condition. 

Performed computational experiments confi rmed effectiveness of suggested methods for 
solving problems of geometricall y non-linear forced vibrations of elastic beams on unilateral 
Winkler foundation. 
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