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Thesis 

Despite the fact that the x-ray spectra of the self assembled cubic phases 

have been known since 1968 there are no simple theoretical tools for their 

analysis. The theoretical analysis have been hampered by the mathematical 

and structural complexity of the unit cells of the cubic structures. For one, 

a single cubic cell contains hundreds of thousands of complex molecules and 

a basic mathematical motive in a unit cell is a periodic surface of complex 

shape. 

We will prove that the scattering amplitudes of the self assembled cu-

bic phases in amphiphilic mixtures can be very well approximated by the 

following relation: 

A(q, p(~), u) = F 9 [ 2 f ~p(~) cos(q Cthkl ~)] exp [ -~(q ahkl u)2
] 

where q = (27r fa)[h, k, l] is the scattering wave vector, a is the cubic cell 

parameter, { is a coordinate along the normal to the base periodic surface, 

p(e) is a density distribution in the direction normal to the surface and u is 

a parameter proportional to the fluctuations amplitude of the structure. All 

of the data (structure factors F5 (q) and correction parameters ahkl) needed 

to evaluate this expression for any density distribution and fluctuations have 

been determined numerically for the P, D, G, C(D), C(P), F-RD and 1-WP 

triply periodic surface based cubic phases. 

For a preliminary analysis of the experimental scattering patterns we 

propose a simplified model based on the assumption of an uniform density 
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distribution with constant density Po inside the layer of width L and neglect-

ing the fluctuations: 

s 2Po . ( L) A(q, L) = F --Sin ahkl q -2 O!hkl q 

This model have been applied to the analysis of several scattering patterns of 

the following systems: DLPE, DEPE, DOPE, DDAB lipids in water; GMO 

amphiphilic molecules with polaxamer P407 in water; .RfEE02 fluorinated 

surfactants in aqueous solutions and polimerized system formed in the CTAC 

with TEOS additives. The method presented in this dissertation provides a 

valuable tool which yields information on the micro- and meso-scopic struc-

ture of the cubic phases, on the phase coexistence, phase structural relation-

ships and finally on the mechanisms of the phase transition kinetics. 
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1 Introduction 

The small-angle x-ray and neutron scattering experiments are widely used 

to determine the symmetry and structure of self assembling systems. Still, 

in the case of the structures formed by a surfactant surface in binary (with 

water) and ternary (with oil and water) mixtures, it is often hard to exactly 

determine the topology of the phase formed in the system. The pioneering 

work in this field was done in 1968 by Vittorio Luzzati et al [1, 2, 3, 4]. 

They showed that the mesoscopic structure of surfactant aggregates could be 

more complex than spheres (micelles in microemulsion), cylinders (hexagonal 

phases) or planes (lamellar phases). In particular th~observed a formation 

of periodic bicontinuous phases in amphiphilic systems (see chapter 1.2). 

Scriven (5] was the first one to propose triply periodic minimal sur-

faces (TPMS) as a possible realization of the bicontinuous structures in these 

mixtures. 

Since then the scattering techniques were often used to monitor the struc-

tural phase transitions, for example (6,10,7,8,9,10]. All these works indicate 

that the SAXS and SANS are powerful tools which in principle provide infor-

mation on the symmetry and structure of the phases present in the system. 

Yet, the x-ray diffraction data are not always conclusive: due to the gener-

ally small number of reflections, an accurate reconstruction of an electronic 

map of the cubic cell is often impossible. Even once the space group is 

rigorously established, there is still the question as to the identity 

of the minimal surface and thus the topology of the structure. For 

1 
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example, the first report on the observation of a periodic surface in block 

copolymers was done in 1986 by Thomas et al [11). They identified the sur-

face dividing A monomer rich and B monomer rich domains as the Schwartz 

minimal surface D. It took nine years until Hajduk et al [12] in 1995 gave 

the correct identification of this structure as the G gyroid minimal surface. 

It proves, that even for structures of different space symmetry groups, exact 

determination of them may be very difficult. 

Inspite of quite a long history of the studies of the triply periodic cubic 

phases in amphiphilic mixtures (see chapter 1.3) there is still an evident 

lack of simple models for the scattering amplitudes. This is probably due to 

the mathematical and geometrical complexity of the triply periodic surfaces 

(TPS). Yet as the cubic phases based on these surfaces are discovered in wider 

and wider span of systems and enter the realm of technology (see chapter 

1.1) the theoretical analysis of these systems is more than needed. 

In the introduction we will first introduce the concept of triply periodic 

surfaces (chapter 1.1) then the system of our interest is described (1.2) and 

finally a brief historical survey of the experimental scattering stu~ies is pre-

sented {1.3). 

1.1 Triply Periodic 

The periodic surface is the surface that moves onto itself under a unit trans-

lation in one, two or three coordinate directions similarly as in the periodic 

arrangement of atoms in regular crystals. The most interesting are triply 

2 
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periodic surfaces which are periodic in all three directions forming struc-

tures which have various crystallographic symmetries. In this work we will 

concentrate on smooth surfaces with cu hie symmetry. 

The paradigm structures for all periodic surfaces are minimal periodic 

surfaces. Such surfaces have zero mean curvature at every point of the surface 

as was shown by Meusnier (13] and Laplace in XVIII century. The simple 

patch of the minimal surface can be visualized in a simple experiment of 

Plateau (Belgian physicist XIX century): use a soap solution and dip a metal 

frame (not necessarily planar) in it. The film that· forms on the frame will 

adopt the shape such as to minimize the surface free energy i.e. as to minimize 

the area of the surface (hence the name minimal surface). 

The first periodic (in one direction only) minimal surface discovered in 

1776 (14] was a helicoid: the surface swept out by the horizontal line rotating 

at the constant rate as it moves at a constant speed up a vertical axis. The 

next example (periodic in two directions) was discovered in 1830 by Herman 

Scherk. The first triply periodic minimal surface was discovered by Herman 

Schwarz in 1865. The revival of interest in periodic surfaces was due to the 

observation (Luzzati et al [1, 2, 3, 4]) that bilayers of lipids in water solutions 

form at suitable thermodynamic conditions triply periodic surfaces and the 

discovery of new triply periodic minimal surfaces by mathematician Schoen 

[15]. If we draw a surface through the middle of the triply periodic lipid 

bilayer it follows from the geometrical constraints that it must be a triply 

periodic minimal surface (16]. 

The self-assembled structures formed by lipids or surfactants in water 

3 
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solutions are used nowadays as templates for the three dimensional polimer-

ization reaction leading to the mesoporous sieves (17), contact lenses (18) or 

bulk catalysts and this adds a technological dimension to the study of peri-

odic surfaces. The formation of periodic surfaces in etioplast in plants and 

the usage of periodic surfaces for the crystallization of high molecular weight 

membrane proteins (19] shows that these surfaces are related to biological 

problems. After the discovery of various structures formed by carbon, i.e. 

wires, fullerens it has been also shown theoretically that the carbon atoms 

can be arranged to form triply periodic surfaces 21). In ionic crystals 

the points at which the electrostatic potential is constant, form the periodic 

surface; its symmetry can be determined by the symmetry adapted distribu-

tion of charges (22]. It is also shown that there is a very strong connection 

between chemical structures and periodic surfaces (23, 24). 

1.1.1 Types of periodic surfaces 

Triply periodic surfaces can be nodal ((25, 26, 27), [28]), equipotential sur-

faces ([29], (30]) and minimal surfaces. In this work we are interested only 

in minimal and nodal surfaces. They are briefly described below in terms of 

their geometrical properties and generating equations. 

Surfaces are characterized locally by the mean H and Gaussian K cur-

vature. K and H can be calculated according to H = 1/2(1/ R1 + 1/ R2}, 

K = 1/(R1R2}, where R1 and R2 are principal radii of curvature (see Figure 

1}. 

From the point of view of physics especially important are the ones of 

4 
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Figure 1: A piece of surface with non-positive Gaussian curvature. The 

two principal radii of curvature are shown. A minimal surface satisfies the 

condition R1 = - R2 at every point on the surface. 

constant mean curvature since they are widespread in nature. A soap film 

spanned on a wire frame is a surface with zero mean curvature and a soap 

bubble is a surface of constant mean curvature. The curvature of the surface 

is related to thermodynamic quantities by the Poisson-La place equation H = 
!l.P /2a, where H is the mean curvature at the interface of two homogeneous 

media, tiP is the pressure difference across the interface, and is the surface 

tension. 

Every triply-periodic surface can be characterized by the genus, an integer 

number which describes the number of holes or handles in the surface. The 

5 
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Figure 2: The unit cell of the P triply periodic minimal surface. 

genus of a surface is related to its local properties by the Gauss-Bonnet 

theorem: 

I dSK = 27TX = 47r(l- g) (1.1) 

where K is the Gaussian curvature, x the Euler-Poincare characteristic, and 

g is the genus. It is possible that different surfaces have the same genus. The 

genera for the best known triply-periodic surfaces, reported for a translational 

unit cell are: 3 for Schwarz P, 5 for Schoen G, 9 for Schwarz D surface (2 for 

a smaller unit cell preserving the surface symmetry only). The cubic cells of 

these minimal surfaces are shown on Figures 2-4. 

Periodic surfaces can also be characterized by a distribution of normal 

vectors. In the case of polimerized surfactant membranes such distribution 

6 
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Figure 3: The unit cell of the D - double diamond TPMS. 

is accessible experimentally via 2 H NMR technique ([31], [32]) . 

1.1.2 Minimal and constant mean curvature surfaces 

Triply-periodic minimal surfaces (TPMS) are surfaces of constant mean cur-

vature equal zero. The name "minimal" comes from the fact that the surface 

spanned on an sufficiently small frame has the lowest, "minimal" surface area 

if it is the surface of zero mean curvature. TPMS are infinite and are not 

bounded by a frame, but the mean curvature for these surfaces is zero at 

every point on the surface. That is why they are called "minimal" . The 

condition of zero mean curvature implies that the Gaussian curvature is non-

positive at every point. The points where the Gaussian curvature is zero are 

7 
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Figure 4: The unit cell of the G - gyroid TPMS. 

called the flat points. These points are isolated. 

Most of the TPMS divide the volume into two equal subvolumes (bal-

anced surfaces - P,D,G are the most prominent examples). There are also 

TPMS which divide volume into unequal subvolumes (unbalanced surfaces-

for example I-WP surface (Figure 5)). 

TPMS are described locally by the Enneper-Weierstrass equations ([15], 

[33]): 

(1.2) 

8 
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Figure 5: The unit cell of the 1-WP TPS. 

where Re denotes the real part of the complex integral and integration is car-

ried on an arbitrary path from w0 to w1 in the complex plane. The Enneper-

Weierstrass equations guarantee that the surface is minimal but not neces-

sarily embedded i.e. free of self-intersections. R(w) is called the Weierstrass 

function and is characteristic for a given minimal surface. The parameter T 

sets the length scale. The angle 0 is called the Bonnet angle. The transforma-

tion which results from the change of (J is called the Bonnet transformation. 

The surfaces related by Bonnet transformation are called associate. The Bon-

net transformation is isometric and conformal, all the lengths and angles are 

preserved. The surface is only bent without stretching. The surfaces related 

by Bonnet angle equal to 90° are called adjoint or conjugate surfaces, since 

9 
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Figure 6: The unit cell of the F-RD TPS. 

they are described by adjoined (conjugate) complex function. D, P, G are 

associate surfaces with the Weierstrass function R(w) = (1-14w4 +w8)- 112 . 

The Bonnet angle is respectively 0 = 0°,90°,38.015° [15]. Thus P and D 

are adjoint surfaces. The properties of the TPMS follow uniquely from the 

Weierstrass function R(w) yet the R(w) function is known only for few TPMS 

of simple topology. 

Another method of obtaining the TPMS have been shown by Gozdz and 

Holyst [34, 35]. The minimization of the Landau-Ginzburg potential in real 

space led to the discovery of many new TPS of the mean curvature close to 

zero. 

TPMS belong to the broader class of periodic surfaces of non-zero con-

10 
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Figure 7: The unit cell of the C(P) TPS. 

stant mean curvature (CMC). The existence of periodic CMC was proven in 

1970 [36] for two doubly-periodic surfaces of hexagonal and square symme-

try. First triply-periodic CMC surfaces were calculated numerically for P, D, 

I-WP, F-RD (Figure 6), C(P) (Figure 7), and S'-S" surfaces [37]. It is com-

monly assumed [38, 39] that the surfaces inclosing the lipid bilayers in cubic 

phases are a compromise between the CMC surfaces and so called parallel 

surfaces. This last class contains surfaces laying at a constant distance away 

from the minimal surface. 

11 
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Figure 8: The unit cell of the C(D) TPS. 

1.1.3 Nodal surfaces 

The nodal surfaces are defined by \ll(r) = 0, for \ll(r) given by the following 

Fourier series ([25], [23]) 

w(r) = LF(k)cos[27rk · r- a(k)] (1.3) 
k 

where k describes the reciprocal lattice vectors for a given lattice, a(k) is a 

phase shift , and F(k) is an amplitude associated with a given k-vector. 

Periodic surfaces can be approximated in terms of nodal surfaces. The 

quality of approximation depends on the number of terms in the Fourier 

series. The topology of a surface is in some simple cases already well repro-

duced by a series containing only the first terms in the expansion. Several 

12 
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such surfaces have been tabulated ((28] or (40]). For example the simplest 

approximations for P, D,and G surfaces based on Eq(1.3) are, respectively: 

cos(X) + cos(Y) + cos(Z) = 0 {1.4) 

cos(X) cos(Y) cos(Z) + sin(X) sin(Y) sin(Z) = 0 {1.5) 

sin(X) cos(Y) + sin{Y) cos(Z) +cos( X) sin(Z) = 0 {1.6) 

where X = 21rx, Y = 21ry, Z = 2?rz. The nodal approximations for other 

four surfaces explored in this work are given in appendix 1. 

Although the nodal surfaces are neither minimal nor constant mean cur-

vature they can be used as an ansatz for such surfaces (41]. The huge advan-

tage of the nodal surfaces is that they are described by simple mathematical 

equations. Equations generating the C(P), C{D) (Figure 8), F-RD and 1-WP 

surfaces are given in Appendix 1. 

1.2 Amphiphilic mixtures 

The systems of our interest are the mixtures of water and surfactants - surface 

active agents. These are called binary mixtures. The models presented in 

this work apply also to ternary mixtures which consist of water, surfactant 

and additional hydrocarbons. 

The mechanisms governing the self assembly of surfactant molecules and 

thus resulting in the fascinating wealth of phase behavior originate from two 

phenomena. is the behavior of water itself the second being the complex 

construction of a surfactant molecule. 

13 
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The unusual properties of water are well explained by the existence of 

the so called hydrogen bonds. The nature of a hydrogen bond is mainly 

electrostatic [42]. The bond is directional and forms along the covalent bond 

between the electro negative atom (the oxygen or nitrogen) and hydrogen. In 

a solid state the water molecules adopt a lattice where each oxygen is tetra-

hedrally coordinated to four other oxygens, with each hydrogen atom lying in 

the line joining two oxygen atoms forming linear sequence of a covalent and 

hydrogen bond (O-H·· ·0). Even though the structure of the liquid water is 

disordered the tendency to retain the ice-like tetrahedral network remains. 

When a molecule which cannot form the hydrogen bonds is inserted water 

molecules try to rearrange themselves around this foreign molecule in such a 

way as to preserve as many hydrogen bonds between water molecules as pos-

sible. If the nonpolar solute molecule is not too large, it is even possible for 

water molecules to pack around it without giving up any of their hydrogen 

bonds. Yet this reorientation is entropically very unfavourable because it im-

poses a new, more ordered structure on the surrounding water molecules. As 

a result the nonpolar hydrocarbon chains are very weakly solvable in water 

and hence their name- hydrophobic (water hating). On the other hand the 

polar corn pounds easily take part in creating the hydrogen bonds and water 

is a good solvant for them. That is why they are frequently referred to as 

hydrophilic (water loving) molecules. 

The amphiphilic (loving both) molecule is composed of two covalently 

bound parts- a hydrophilic polar head and a hydrophobic hydrocarbon tail 

(see Figure 9). This complex construction of surfactant molecule induces a 

14 
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hydro 
+- philic 

head 
hydro 
phobic 
tail 

Figure 9: The amphiphilic molecule of a popular soap - sodium dodecyl 

sulfate (SDS). 

rich phase behavior in mixtures with water. Namely the surfactant molecules 

will self arrange themselves into various structures preventing the contact be-

tween water and hydrocarbon chains. When also oil is added to the mixture, 

the amphiphilic molecules will create a surface boundary between water and 

oil rich regions. The simplest structure is a sack-like aggregate commonly 

called a micelle in which the polar heads cover the surface shielding 

carbon tails and molecules from contact with water. Another possibility is a 

surfactant bilayer. In this case the amphiphilic molecules form two palisades 

with the heads pointed outside towards water and the tails hidden behind 

them. 

Depending on the thermodynamic and structural parameters of the sys-

tem, such as temperature, composition, or length of an aliphatic chain in 

a surfactant molecule many different structures can be formed. The basic 

structures forming at low concentrations of surfactants are the spherical mi-

celles, cylinders and plane surfaces. At higher concentrations these structures 

15 
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Figure 10: The phase diagram of a C12E06/water mixture. Adopted from 

reference [45]. 

can order: micelles on the cubic lattice, cylinders on the 2D hexagonal lattice 

and plane membranes in lamellar phases. In a thin range of parameters the 

amphiphilic molecules arrange in the cubic liquid crystal phases. 

The first phase diagram of a surfactant-water mixture was published by 

McBain in 1922 [43] (after [44]). Since then countless works on various surfac-

tant and lipid systems were reported. A typical phase diagram of a binary 

mixture is shown on Figure 10. (C12E06/water system [45]). Apart from 

the fluid isotropic phases the ordered ones appear. A lamellar phase ex-

hibits a one dimensional order. It consists of plane sheets of water separated 

by surfactant bilayers (Figure 11a). At smaller surfactant concentrations a 

hexagonal phase is formed. It is made up of elongated cylinders with the 

16 
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b) 

Figure 11: The lamellar (a), hexagonal (b) and cubic phases (P TPMS based 

(c) and D TPMS based (d)). 

polar heads covering their surface. The cylinders are arranged in two di-

mensional hexagonal lattice (Figure 11 b). It is quite common phenomenon 

that between the regions of hexagonal and lamellar phases a cu hie phase do-

main is placed. The cubic bicontinuous phases {Figures 11c and d) consist of 

the surfactant bilayers which divide the volume into two mutually interwo-

ven continuous but separate channels. Until now the existence of only three 

different continuous cubic phases have been confirmed. They are based on 

the P, D and G triply periodic surfaces. The nature and mechanisms of the 

phase transitions between the hexagonal and cubic and between the cubic 

and lamellar phases 

http://rcin.org.pl



triply periodic surfaces - potential templates for bicontinuous cubic phases in 

amphiphilic mixtures - is almost infinitely rich. These facts call for a detailed 

analysis of the structure of the cubic phases. Such analysis is needed also for 

determining the details of the cu hie structures. 

Another interesting subject is the cross sectional density distribution of a 

surfactant bilayer. There have been many extensive works conducted in this 

area. They deal with the hydrocarbon chain distribution within the layer 

(for example [46]) and the overall density distribution [47]. As was shown 

by Harper et al [39] the density profile of the bilayer can be determined also 

by an analysis of the x-ray spectra. A simple tool for such an analysis is 

presented in this work. 

1.3 Scattering experiments on bicontinuous cubic phases 

The first observation of a bicontinuous cubic phase in· an amphiphilic mixture 

was reported by Luzzati and Spegt in 1967 [1]. The study concerned several 

water mixtures of various strontium soaps. Based on the x-ray diffraction 

data the structure of these phases have been assumed to compose of polar 

heads located on straight rods of finite length belonging to two interwoven 

infinite three dimensional networks. The hydrocarbon chains constituted a 

paraffin matrix in which the networks resided. The authors used this simple 

model of an I a3d cubic phase to calculate the scattering intensities. This 

procedure led to a good qualitative agreement with the experimental pattern. 

In 1968 another works concerning this subject were published (for example 

18 
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[2]). Again the rod model has been applied to fit the scattering spectra of 

Ia3d and R3m cubic phases. 

In 1970 Scriven [5] pointed out that the energy minimization for the 

interface between components in amphiphilic mixtures may resemble one of 

the triply periodic surfaces. In 1980 Larsson [48] suggested that the x-ray 

diagrams of Lindblom [49] could be explained by a P TPS based phase. 

In 1983 Longley and Mcintosh [50] explored a glycerol monooleate (GMO) 

water dispersion and basing on the x-ray data, suggested the D and G TPMS 

based phases. 

The first calculation of the structure factors for a bicontinuous cubic 

phase based on a D - double diamond - TPS was conducted by Alan Mackay 

in 1985 [51]. Five years later Anderson et al [37] published an extensive 

work on triply periodic surfaces of prescribed mean curvature. One can find 

structure factors for the P, D and I-WP surfaces there. Since 

407-water system) or a technologically breaking 

through work on the polymerized mesoporous materials [54]. As it will be 

shown in the third chapter of this work (analysis of the x-ray patterns of 

19 
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the system presented in [53]) even a careful and detailed analysis conducted 

in this manner can lead to presumably wrong conclusions. The influence of 

the width of the layer decorating the base minimal surface on the scattering 

pattern is strong and thus the molecular factor should be included in studies 

concerning these systems. 

An example of a comparison between theory and experiment involving 

the molecular factor (MF) associated with the width of the water or surfac-

tant layer, is a very elegant work of M. Clerc and E. Dubois-Violette [55]. 

The authors presented an isotropic model of the MF and fitted the experi-

mental data for several G- gyroid TPMS based systems. Although the fits 

were very promising, they were done only for the decorated G surface and 

its applicability for other structures has not been confirmed. Finally, only 

recently a beautiful work in this field has been done by P. E. Harper and 

S. M. Gruner [38, 39]. They have presented a detailed calculation of the 

scattering amplitudes for real lipid bilayers. From the data the authors have 

been able to reconstruct the bilayer's cross sectional density from the scat-

tering intensities, assuming the reduction of the density for the terminal CH3 

methyl groups. Unfortunately their analysis is rather complex. Evaluation 

of the scattering amplitudes for a different system would include the whole 

procedure with Fourier transforms of the parallel surfaces. This is a mathe-

matically and computationally demanding task and thus the method is not 

applicable as a common simple analysis tool for the x-ray data. 

20 
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1.4 of the scientific background and the aim 

of the work 

As it has been shown in the introduction the binary and ternary mixtures of 

water and amphiphilic molecules have aroused a big theoretical and experi-

mental interest over the last decades. The area becomes even more important 

as nano science enters the realm of technology. 

In this work we will use the commonly accepted assumption that the cubic 

phases in amphiphilic mixtures are based on triply periodic surfaces. The 

science of these surfaces has been extensively reviewed in the first section of 

the introduction. 

Looking at the theoretical works concerning the scattering patterns of 

these phases one sees a clear lack of simple models for the scattering ampli-

tudes which would include the influence of the cross sectional density profile 

and fluctuations. 

The purpose of this work is to fill this apparent gap in the 

theoretical studies and provide a simple tool for the theoretical 

analysis of the experimental data for the cubic periodic structures 

formed in the water mixtures of surfactants with hydrocarbons. 

After the model will be derived (chapter 2) we will check its applicability 

by comparing the model intensities with experimental scattering patterns 

(chapter 3). 

21 

http://rcin.org.pl



2 The model 

The cubic phases made from the self assembled surfactant molecules with 

hydrocarbon chains in water solutions can be physically realized in two pos-

sible ways. One is a direct phase in which a water film is centered on the 

Triply Periodic Minimal Surface (in case of the C(P), C(D), F -RD and 1-WP 

the TPMS is modeled here as a nodal surface[40]), while the two disjoint 

subspaces are filled with surfactant molecules (Figure 12b ). The second pos-

sibility is an inverse phase where the TPMS is decorated by a surfactant 

bilayer and the two channels are filled with water (Figure 12c). In each case, 

knowing the microscopic details of the molecules present in the system, one 

can postulate the form of the cross sectional electron density profile p( ~) in 

the direction normal to the surface. A schematic drawing of these profiles 

for a normal and a direct phase is illustrated in Figure 12d and 12e. It is 

a good question whether a one dimensional density profile contains all of 

the information on the density distribution within a three dimensional cubic 

cell. It does when two assumptions are fulfilled. One is that the regions 

of a given species (surfactant heads, tails or water molecules) are contained 

within so called parallel surfaces (surfaces of a constant distance to the base 

minimal surface). Another possibility is that the bounding surfaces are the 

constant curvature ones. It is a subject of an ongoing dispute which of these 

two postulates is true. Still, as it was argued in [38] these two solutions are 

quite close to each other and assuming parallel surfaces should not introduce 

significant differences. The second assumption is that the one dimensional 
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Figure 12: a) The zero width- mathematical surface in the unit cell of the P 

structure. The TPMS can be decorated by a water film b)- direct phase or by 

a lipid bilayer c) - inverse phase. These phases lead to different cross sectional 

density profiles d) and e) respectively. Still, in the first step approximation 

of the Small Angle X-Ray Scattering intensity these profiles can be modeled 

by f) a uniform density distribution. See text for explanation. 
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density profile does not change within the cubic cell. This is generally true 

due to the nature of the lipid or surfactant bilayers which are two dimen-

sional fluids. Since the molecules can freely move along the membrane, any 

density fluctuations should be leveled on a very short time-scale. There still 

remains the dependence of the density profile on the local curvature which is 

not constant. Reference [39] contains a detailed study of this problem. Yet 

reconstructing the detailed density profiles requires an analysis that starts 

with fitting the spectra with amplitudes for a constant density distribution. 

Furthermore as it will be argued below and shown in our consecutive pa-

per these matters will not affect the procedure leading to the determination 

of the most crucial parameters of a cubic phase. The last effect having an 

impact on the scattering amplitudes are the fluctuations of the membrane. 

They will be discussed in detail in chapter 2.3. For now it is enough to point 

out that characteristic relaxation times of both the molecular and collective 

fluctuations of the membrane are by many orders of magnitude shorter than 

typical exposition times in the scattering experiments. We will neglect all 

the correlations between fluctuations. It is thus enough to account for the 

fluctuations by introducing another parameter u into the expression for the 

average density distribution. In general both the influence of the molecular 

and De bye-Wailer term is dependant on the local curvature and orientation 

of the surface. as it will be shown in the following sections, inspite of the 

geometrical complexity of the TPMS based cubic phases, all of these effects 

factorize from the integral over the base surface and the scattering amplitude 

can be expressed as a product of a structure factor F 5 , molecular factor pM 
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and the De bye-Wall er factor pDW: 

A(q,p({),a) = F 5 (q) FM(q,p({)) pDW(q,a) (2.1) 

The main result of our work is summarized by the following formula: 

A(q -1 O,p((),u) = pS [2 [" d(p(()cos(q ahkl ()] exp [-~(q ahkl u)2
] 

(2.2) 

where { is the distance away from the base minimal surface, q = (27r /a) [ h, k, l) 

is the scattering wave vector (q = (27r /a)Jh2 + k2 + l2 ), h, k, l are the Miller 

indices and a. is a standard deviation related to the fluctuations amplitude 

(see chapter 2.3). The normalized structure factors and the a parameters are 

explicitly given in tables 2-8 for the P, D, G, C(P), C(D), F-RD and 1-WP 

TPMS based cubic phases. Thus this formula allows an evaluation of the 

scattering amplitudes for any density profile p( {) and fluctuations parame-

terized by the standard deviation a. The model scattering intensity for the 

powder samples is: 

l(q, p(~), a)= MhkliA(q, p(~), a)l2 (2.3) 

where the multiplicity factor Mhkl is also included in the tables. This method 

provides an easy to use tool which facilitates a very detailed determination of 

the actual cross sectional density profiles in the amphiphilic cubic systems. 

It is important to point out that expression (2.2) sets the normalization 

of the amplitudes in which the amplitude of the 000 reflection is equal to the 

total contrast electron density within the unit cell: 

(2.4) 
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where a is the cubic cell parameter, s0 = s0/a2 is the dimensionless surface 

area of the base minimal surface per unit cell and is given by the structure 

factor for the 000 reflection (so = Fto0). The term in rectangular brackets 

gives the surface area of the parallel surfaces inclosing the subvolume of the 

layer decorating the base TPMS (see Eqn{2.8)). Both the surface areas of the 

base TPMS and their Euler characteristics x per unit cell are summarized in 

Table 1 (chapter 2.1). 

In many cases an even simpler analysis is needed. The cubic phases 

formed in self assembling systems have a growing potential for nanomaterial 

investigations and possible industrial applications. There, the key features 

of these phases like their type (direct-inverse) and the layer width L are of 

crucial importance. For example in catalytic applications the size of the pores 

have a dramatic influence on the efficiency and molecular selectiveness of the 

material. Since the main contrast is associated with the density difference 

between water and hydrocarbons, it is legitimate to assume a flat density 

profile for both cases (Figure 12f). In the scattering experiments only the 

intensity is measured, therefore the sign of the density difference can also 

be neglected and only the width L of the layer decorating the TPMS is 

important. Furthermore, as it will be shown in chapter 2.3, the fluctuations 

of the membranes have a minor influence on the relative intensity of the hkl 

peaks when compared with the influence of the layer width. Thus inserting 

a flat density profile p(e) a = 0 into Eqn{2.2) we obtain: 

A(q tf 0, L) = F 5 2
Po sin (ahkl q ~) 

Cl!hkl q 2 
{2.5) 
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where Po is the electron density within the layer and 

A(q = 0, L) = Po l/>(L*) a3 (2.6) 

where 4> is the volume fraction of the layer (see Eqn(2.7)). We will show in 

the third chapter that this simplified modeling leads to a good approximation 

for the intensity of the Bragg reflections and provides a very valuable insight 

into the details of the cubic phase structure. 

Fitting of the model intensities given by substituting amplitude (2.5) into 

Eqn(2.3) to the experimental intensities provides the layer width L. In order 

to compute area per surfactant head for the direct and inverse structure of 

a given layer width L one can use the following formulas which relate the 

dimensionless layer width L* = L/a with the volume fraction of the layer 

f/J and the surface area of the interface between surfactant and water rich 

regions sn = su/a2: 

1r 
4> = s~L* + -xL* 3 

6 

srr = 2 s~ 1rxL* 2 

{2.7) 

{2.8) 

In most cases comparison of the areas per surfactant head for the di-

rect and inverse phase enables determination of which of the types has been 

formed. An example of such analysis is presented in the third chapter. 

2.1 The Structure Factor 

The structure factor (SF) arises from the base TPMS. It is given by: 

F 5 =Is d 2rexp [iqr] {2.9) 
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where the integral is taken over the base minimal surface within the unit cell. 

In order to calculate the SF the surfaces have been triangulated. Then the 

integral over the surface has been substituted by a sum over the centers of 

the triangles: 
N 

F 5 = E s; exp [iqr;] 
i=l 

(2.10) 

where s; is the j-th triangle's surface area and r; is the location of its center 

of mass. The structure factors for the 000 reflection give the surface area s0 

of the base TPMS. Thus the SFs have the dimension of surface area. 

Table 1 summarizes the computed areas for the seven explored structures. 

The list of all of the SFs for the strongest Bragg reflections are included 

in the Tables 2-8. As it was shown in [56] they are in a very good agreement 

both with the space symmetry group of the explored structures and with 

analytical evaluations for the P, D and G surfaces conducted by Mackay[51], 

Anderson [37] and Clerc and Dubois-Violette (55]. 

Values of the surface area of the base TPS for the C(P), C(D), F-RD 

and 1-WP structures are slightly different then those given in literature. For 

example for the C(P) TPS we obtain a value of s0 = 3.7519 while Anderson 

[37] provides s0 = 3.510. Still our value is close to the one established by 

Schwartz (s0 = 3.809). These differences might be caused by the fact 

that Anderson has worked with minimal surfaces, while Schwartz {like in this 

work) has used its nodal approximation. 
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Major characteristics of 

the Triply Periodic Surfaces 

TPS X so 
p -4 2.3458 

D -2 1.9192 

G -8 3.0966 

C{D) -30* 4.4921 

C(P) -16 3.7519 

F-RD -40 4.8580 

1-WP -12 3.5543 

Table 1: Data from numerical evaluations. xis the Euler characteristic per 

unit cell and s0 = s0 fa2 is the dimensionless surface area of the TPS per unit 

cell with the cell parameter a. 

* The value obtained by the the Euler relation for a triangulated surface. 

Please note that the best reconstruction of the volume fraction ljJ (Eqn(2. 7)) 

and surface area of the parallel surfaces su (Eqn{2.8)) is obtained for x = -36. 

It is the same value as reported by Landh [53). 
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c) L 

Figure 13: The visualization of the models used to evaluate the scattering 

intensities, a) shows schematically the base surface decorated either by water 

film {direct phase) or lipid bilayer {inverse phase) and the flat density profile, 

b) the isotropic model, c) the lattice model. See text for explanation. 
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2.2 The Molecular Factor 

In order to evaluate the formula for a molecular factor (MF) we have first 

performed calculations for a flat cross sectional density profile (see Figure 

12f): 

p(~) = Po8 (~ -1~1) {2.11) 

where Po is the density within the layer, 8 is the Heaviside step function 

{8(x) = 0 for x < 0 and 8(x) = 1 for x > 0) , ~is a coordinate along the 

direction normal to the base minimal surface - namely, it is the distance away 

from the minimal surface and finally, L is the width of the layer. Apart from 

the layer, the density is set to zero, thus the integral over the whole volume 

of the unit cell can be substituted by an integral over the subvolume inclosed 

between the parallel surfaces: 

A(q, L) = 1 d 3rp(~(r)) exp[iqr] = Po 1 d 3rexp[iqr] 
V V:l((r)I<L/2 

{2.12) 

In order to perform _this last integral numerically, the unit cell of each TPMS 

has been projected on a cubic grid N x N x N of size N = 96 for the D 

surface, N = 128 for G and C{D) and N = 192 {P, C{P), I-WP and F-RD). 

For each point j on the grid, the smallest distance d; to the surface has been 

calculated. Then the integral {2.12) has been evaluated as a sum over points 

laying in a distanced smaller then L/2 from the TPMS: 

. Poa3 . 
A(q, L) = N3 E exp [~qr;] 

j:dJ<L/2 

(2.13) 

A schematic visualization of this procedure is shown on Figure 13c. In order 

to check the accuracy of this method we have performed calculations for two 
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Figure 14: The scattering intensity as a function of the scattering vector 

length for a single layer of vesicles arranged on a 2D square lattice. The 

insert presents the vesicle. 

analytically accessible structures - a vesicle and a rotational sinusoid. The 

results of this tests are presented in the following subsection. 

2.2.1 A vesicle and a rotational sinusoid 

Lets imagine a single layer of vesicles arranged on a 2D square lattice in the 

plane. It is important to remember here that it serves only as an abstract 

test structure for our model. Still this kind of thin layers of vesicles made 

from amphiphilic molecules have been obtained experimentally [57]. The 

vesicle is constructed by decorating a sphere of radius r0 = a/4 by a layer of 
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Figure 15: A cut through a unit cell of a rotational sinusoid. The structure 

is periodic in the z direction and is arranged on a 2D square lattice in the 

xy plane. 

uniform density and width ranging from L = 0 to L = a/2. The analytical 

expression for the scattering amplitude reads: 

A" .. (q, L) = i 12w d4J 1"' d(J sin(} [+L/2 
dr r 2 exp [i27Tlr cos 0] 

o o ro-L/2 
(2.14) 

where for simplicity the lattice cell parameter has been set to unity (a= 1) 

and the scattering vector q = ( 27T /a)[ h, k, l] is parallel to the z axis ( h = 
and k = 0). Figure 14 presents the scattering intensity as a function of the 

scattering wave vector. The lattice model reproduces the intensity evaluated 

analytically very well. 

The sphere is a structure of positive Gaussian curvature (both principal 
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radii of curvature have the same sign). The TPMS have negative Gaussian 

curvature meaning that at every point on the surface, the principal radii of 

curvature have opposite signs. Thus we have used another test structure that 

has both positive and negative Gaussian curvature regions. It is a rotational 

sinusoid (Figure 15). It's base surface is a cylinder of radius a/4 modulated 

by a sinus function. In the cylindrical coordinates the base surface is given 

by the following equation: 

r = ~ + i sin.(27rz) (2.15) 

Again the base surface is decorated by a layer of uniform density and width 

LE {0, a/4). These kind of structures have been proposed for the interme-

diate stage in the kinetics of phase transitions between hexagonal and cubic 

structures (see for example [58]). The scattering amplitude: 

Asi"(q, L) = I 11 
dz 12ft dljJ1"+ dr r exp [iqr] 

0 0 r-
(2.16) 

where r ± are functions of z setting the boundaries of the layer in such 

a way that the layer width L is constant in the direction normal to the 

surface of the sinusoid. Figure 16 presents the comparison of the scatter-

mg intensity obtained analytically and numerically for the scattering vector 

q = q(27r/a)[1, 1, 1] and L = a/4. Again the lattice model reproduces it very 

well. 

2.2.2 The isotropic fit 

goal is to find a form of the expression for the scattering amplitude 

(Eqn(2.12)) that would factorize into a product of a structure factor and a 
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Figure 16: A comparison of the scattering intensity calculated analytically 

and numerically using the lattice model for a rotational sinusoid for the 

scattering vector equal to q = q(27r/a)[1, 1, 1]. 

molecular factor: 

A(q, L) = F 8 (q)FM (q, L) (2.17) 

Dividing the left hand side of this equation (obtained numerically (Eqn(2.13)) 

by the appropriate structure factor we can extract an effective MF which was 

then fitted by a simple formula. 

It appeared that the simple formula can be extracted from the model 

shown in (Fig. 13b). In its original form it was first proposed by M. Clerc 

and E. Dubois-Violette (55] and was successfully used to fit several scattering 

patterns of the simple gyroid, G, structure based phases. The idea is to 

decorate the TPMS 
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and orientation of the surface: 

Fi~ = :!:._ sin(qL/2) 
qa 

(2.18) 

This model reconstructs the Heaviside function form of the scattering density 

in the direction normal to the surface only for plane surfaces. In the case 

of the curved surfaces it is only an approximation which fails when the local 

radius of curvature is comparable with the layer width L. 

We have found that for the uniform density distribution within the layer, 

the effective MFs of the explored TPMS based cubic phases can be very well 

approximated by a slightly corrected isotropic factor: 

F q, L) = --sin ahkl q-M( 2 Po . ( L) 
ahkl q 2 

(2.19) 

where the correction parameters ahkl are characteristic for every Bragg re-

flection and are explicitly given for the most prominent reflections for the P, 

D, G, C(P), C(D), F-RD and 1-WP structures in Tables 2-8. In this notation 

the MF has a dimension of electron charge per surface area. When multiplied 

by the SF of dimension of the area gives the final dimension of the scattering 

amplitude in arbitrary scale of electron charge. Please note here that it is 

exactly this form of the MF that has been inserted into the expression for 

the amplitude within the simplified model Eqn(2.5). 

The details of fitting the isotropic MF to numerically obtained amplitudes 

are summarized in the following subsection. 
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2.2.3 Results for triply periodic surfaces 

A typical powder diffraction pattern of a cubic phase in a binary or ternary 

mixture consists of few peaks. The number of the visible Bragg reflections 

rarely exceeds ten. To present the MF's for each structure we have chosen 

a certain number of the most pronounced reflections. To enter the list each 

pm.k had to be among the ten strongest ones for any layer volume fraction 

ifJ E {0, lPlimit), where lPlimit was chosen to be equal to 0.8 for the P, D, G 

am 1-WP structures, 0.65 for F-RD and C(D) and 0.5 for C(P). The layer's 

volume fraction ifJ is related to the layer width L by Eq{2.7). 

In the case of the P, D and G structures the isotropic model works very 

well. The intensity dependence on the layer width L evaluated using this 

model is (except for a few peaks) the same as given by the numerical inte-

grl.l Eqn{2.13). However for the C{P), C(D), 1-WP and F-RD surfaces, the 

numerical results differ significantly from the isotropic approximation and 

significant corrections (in terms of ahkl) 

ahkl parameters is the effective layer width seen 

in the cross section in the given hkl direction. 

T1le Schoen P surface 

The P surface has the Im3m symmetry group, its surface area per cubic 

cen is s0 = 2.3458 and Euler characteristic x = -4. The P minimal surface 

is shown on Figure 2. Table 2 contains the structure factors for the minimal 

suJface for the 20 most prominent Bragg reflections. Almost all of the exam-

intd reflections are very well described by the uncorrected isotropic model. 
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An example is shown in Figure 17. Even for large layer widths, the isotropic 

MF reproduces the numerically evaluated amplitude very accurately. Still 

two of the chosen peaks have to be slightly corrected. As an exam pie we 

have plotted the amplitude of the 110 reflection as a function of the layer 

width L. In order to fit this dependence the isotropic MF required the alpha 

parameter a 110 = 1.14 (see Figure 18). The same figure contains the values 

of the 110 amplitude for three specific layer widths L computed by Harper 

[38]. As in the case of all the other eleven peaks presented there [38] the 

values are in excellent agreement with our computations. 

Figure 19 shows how drastically the MF changes the relative intensities. 

One could imagine a binary water/surfactant system of a fixed volume com-

position 0.3/0. 7. If the P phase have been formed, the direct phase would 

have the layer volume fraction l/J ~ 0.3 (upper diffraction pattern) while for 

the invert phase q, ~ 0.7 (lower diffraction pattern). Thus comparing the 

numerical spectra with the experimental data one can unambiguously deter-

mine which structure has been formed. This result in turn can lead to the 

determination of many microscopic (such as the area per surfactant head) 

and macroscopic (such as the phase stability) characteristics of the system. 

The Schwartz D - double diamond surface 

The D surface (Figure 3) has the symmetry. It is worth noting 

here that this is a unit cell for the surface only, while the symmetry of the 

two subspaces (Fd3m) require an eighth times bigger unit cell (two times 

bigger linear size of the unit cell). Since we consider the scattering with the 
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The scattering data for the P based phases 

hkl Mh~cz ~S* hkl ahkl hkl Mh~cz ~S* hkl ahkl 

000 1 2.3458 332 24 0.2795 1 

1 1 0 12 -0.4496 1.14 422 24 0.2536 1 

200 6 -0.5444 1 52 1 48 0.0861 1 

2 1 1 24 0.4565 1.03 433 24 -0.2680 1 

310 24 0.0985 1 530 24 -0.1693 1 

222 8 -0.4056 1 532 48 -0.1356 1 

3 2 1 48 -0.2177 1 6 1 1 24 0.1577 1 

400 6 0.2454 1 5 4 1 48 0.1449 1 

4 11 24 -0.2425 1 543 48 0.1795 1 

330 12 0.2155 1 554 24 -0.2070 1 

420 24 0.1580 1 

Table 2: The scattering data for the P structure. The first column contains 

the hkl indices, the second the appropriate multiplicity factors for a powder 

spectrum, the third the dimensionless structure factors F5* = F5 / a2 for 

the zero-width base mathematical surface, the fourth the correction 

parameters for the isotropic MF. 
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Figure 17: The P surface. The scattering amplitude of the 554 reflection 

plotted as a function of the dimensionless layer width L* = Lfa, where a is 

the cubic cell parameter. The amplitude computed via the lattice (numerical) 

model is drawn with open circles and the amplitude given by the isotropic 

fit with a 554 = 1.0 with a solid line. The dashed line gives the layer volume 

fraction <P as a function of L* (Eqn 3.12). The amplitude has been divided 

by L* in order to compare it with the structure factor (A(q, L)/ L* --t F 5* 

when L* --t 0). 
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Figure 18: The P surface. The amplitude of the 110 reflection. The am-

plitude computed with the uncorrected isotropic MF is shown with the thin 

solid line while the corrected = 1.14) fit is drawn with a thick solid 

line. The filled squares represent the amplitudes computed by Harper [38] 

for three volume fractions t/J = 0.0766, 0.5791 and 0.6998. As in the case of all 

the other 12 reflections presented in [38] the data is in very good agreement 

with the amplitudes computed via the lattice model (open circles). The layer 

volume fraction 4> is given by the thick dashed line. 
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Figure 19: The scattering patterns for the P surface based cubic phases. The 

upper plot corresponds to the layer volume fraction ljJ = 0.3 and the lower 

one to ljJ = 0. 7. The insets show the parallel surfaces within which the layer 

is confined. 

surface contrast it is enough to take smaller unit cell, for which s = 1.9192, 

x = -2. Again as in the case of the P structure the effective MF's are very 

well described by the isotropic approximation. Only two reflections (110 and 

200) display significant deviations from the isotropic model (a110 = 1.08 and 

a 200 = 1.09). In case of all the other chosen reflections, within the numerical 

accuracy are equal to unity (see Table 3). Figure 20 shows the amplitude 

dependence on the layer width L for the 110 and 221 Bragg reflections. 
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The scattering data for the D based phases 

hkl M,"c~ F,S* hkl ahkl hkl Mh~ct F,S* hkl ahkl 

000 1 1.9192 322 24 0.1862 1 

1 1 0 12 0.4794 1.08 4 1 1 24 -0.1309 1 

1 1 1 8 0.4851 1 3 3 1 24 0.1812 1 

200 6 -0.2616 1.09 420 24 -0.1436 1 

2 1 1 24 0.2120 1 4 2 1 48 -0.1084 1 

220 12 0.2579 1 332 24 0.2094 1 

2 2 1 24 0.2799 1 333 8 0.2203 1 

3 1 0 24 -0.1885 1 432 48 0.1058 1 

3 11 24 -0.0987 1 4 3 3 24 0.1600 1 

2 2 2 8 0.2911 1 442 24 0.1481 1 

3 2 1 48 0.0957 1 443 24 0.1722 1 

Table 3: The scattering data for the D structure. The legend is the same as 

for Table 2. 
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Figure 20: The D surface. The amplitudes of the 110 and 221 reflections. 

The lattice data is plotted with open circles. The filled squares present the 

amplitudes computed by Harper [38). The amplitudes given by the isotropic 

model are drawn with solid lines. The thick lines correspond to the corrected 

MF (a110 = 1.08 and a221 = 1.0). In case of the 110 

c/J is given by thick dashed line. 
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The G - gyroid surface 

The G surface (Figure 4) is of the Ia3d symmetry, s = 3.0966, X= -8. 

In the Table 4 we present the results of our fits. For most of the 21 Bragg 

reflections the isotropic model works excellently. Only four of the corrections 

parameters differed more then one percent from unity (a211 = 1.07, a 220 = 

0.97, a 321 = 1.04 and a 400 = 1.04). Figure 21 presents the numerical data 

together with the isotropic fits for the 211 and 611 reflections. 

The C{D)- complementary to D surface 

As in the case of the D structure for the surface contrast scattering com-

putations it is enough to take one eight of the cubic cell. The surface space 

symmetry group is Pn3m. For the smaller cubic cell (Figure 8) the normal-

ized surface areas= 4.4921 and the Euler characteristic x = -30 (X= -36 

should be used to reconstruct the volume fraction tjJ of the layer and the 

surface area s11 of the parallel surfaces). Most of the 19 chosen reflections 

require corrections to the isotropic factor. Still the parameters ahkl are suffi-

cient to reconstruct the effective MF. The results for the C(D) structure are 

contained in Table 5. Figure 22 presents the results of fitting the isotropic 

form of the MF to the numerical data for the 111, 332 and 887 reflections. 

The Neovius C(P) - complementary to P surface 

The surface (Figure 7) is of the same symmetry as the P structure 

(Im3m). In our calculations we have obtained the surface area per cubic cell 

s = 3.734. The C(P)'s Euler characteristic is x = -16. 
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The scattering data for the G based phases 

hkl Mhkl pt,S* 
hkl ahkl hkl Mhkl pt,S* 

hkl ahkl 

000 1 3.0966 54 1 48 -0.1652 1 

2 1 1 24 0.6544 1.07 6 3 1 48 -0.1992 1 

220 12 0.4306 0.97 444 8 0.4112 1 

3 2 1 48 -0.0971 1.04 543 48 0.3012 1 

400 6 -0.3375 1.04 640 24 -0.1722 1 

420 24 -0.3309 1 752 48 -0.1915 1 

332 24 0.4751 1 655 24 0.3112 1 

422 24 0.2770 1 664 24 0.2403 1 

4 3 1 48 0.1898 1 754 48 0.1700 1 

6 1 1 24 -0.2287 1 776 24 0.2712 1 

53 2 48 -0.1114 1 875 48 0.1715 1 

Table 4: The scattering data for the G structure. The legend is the same as 

for Table 2. 
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Figure 21: The G surface. A plot of the amplitudes of the 211 and 611 

reflections. The legend is analogous to Figure 20. 
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The scattering data for the C{D) based phases 

hkl Mhkt F,S* 
hkl Cl!hkl hkl Mhkt F,S* 

hkl ahkl 

000 1 4.4921 333 8 0.5463 1.05 

1 1 0 12 0.2228 1.89 432 48 0.1846 0.97 

1 1 1 8 -0.6489 1.7 522 24 -0.2825 1.15 

200 6 -0.1303 0.84 4 4 1 24 -0.2547 1 

2 1 1 24 -0.3337 1.13 433 24 0.2765 1 

2 2 1 24 -0.5483 1.14 633 24 0.3577 1.04 

3 2 1 48 -0.1474 0.92 544 24 -0.3589 1 

400 6 0.2878 0.79 554 24 -0.3599 1 

330 12 0.3785 1.09 666 8 0.6251 1 

3 3 2 24 0.3726 1 887 24 -0.3430 

C(D) structure. The legend is the same 

as for Table 2. 
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Most of the C(P)'s 20 chosen peaks require corrections to the isotropic 

MF. The data for all of the peaks is included in Table 6. 

The F-RD surface 

The F-RD structure (Figure 6) of the Fm3m symmetry has the surface 

area s = 4.887 and x = -40. Most of the 20 chosen peaks require significant 

corrections to the isotropic model. The reconstructed MF's fit the lattice 

model data very well. The data is presented in Table 7. 

The 1-WP surface 

The 1-WP surface (Figure 5} has the Jm3m symmetry. In our calculations 

we have obtained a value of s = Sfa2 = 3.554 for the surface area per side 

of the cubic cell. It's Euler characteristic is equal to x = -12. All of the 

21 selected peaks have been successfully fitted with the modified isotropic 

MF. The data is presented in Table 8. Figure 23 presents the fits for the 200 

(a2oo = 1.23) and 400 (a4oo = 0.98) reflections. 

Comment to the results 

The isotropic MF works very well for all three most commonly encoun-

tered structures P, D and G. Significant deviations from the isotropic model 

are seen when exploring the MF's of the more complex structures C(P), C(D), 

F-RD and 1-WP. This is caused by the fact that the normal vector distribu-

tion of the simple surfaces, P,D,G is very similar to that of the sphere. Thus 

the real MF, which should in general be a function of the local curvature 

and orientation of the vectors normal to the base surfaces, when averaged 
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The scattering data for the C (P) based phases 

hkl Mhkl F,S* 
hkl O!hkl hkl Mhkl F,S* hkl O!hkl 

000 1 3.7519 52 1 48 -0.1448 1.0 

1 1 0 12 -0.5076 1.5 600 6 0.4179 0.97 

200 6 -0.3424 1.2 6 11 24 0.4737 0.97 

3 1 0 24 0.5250 1.02 710 24 -0.4532 1.0 

222 8 -0.6448 1.09 55 2 24 0.2769 1.05 

3 2 1 48 0.1445 0.97 741 48 0.1796 1.0 

400 6 -0.4870 1.13 831 48 -0.1889 1.0 

4 1 1 24 -0.4699 1.04 9 1 0 24 0.3281 0.97 

330 12 -0.4840 1.07 10 0 0 6 -0.6677 0.98 

4 2 2 24 0.2527 0.97 13 1 0 24 -0.3705 1.0 

Table 6: The scattering data for the C(P) 
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The scattering data for the FR-D based phases 

hkl Mhkt p,S* 
hkl ahkt hkl Mhkt p,S* 

hkl ahkt 

000 1 4.8580 53 1 48 -0.1255 0.92 

1 1 1 8 -0.4033 1.53 600 6 -0.3637 1.03 

200 6 -0.8599 1.44 620 24 0.2526 1.0 

220 12 -0.5387 1.08 622 24 -0.3813 1.0 

3 1 1 24 0.3002 1.25 444 8 0.3859 1.0 

3 3 1 24 0.2995 0.91 7 11 24 0.5348 1.0 

420 24 0.5770 1.03 9 1 1 24 -0.3790 1.0 

422 24 -0.1075 0.96 753 48 -0.2653 1.0 

333 8 -0.8719 1.05 10 2 2 24 0.2699 1.0 

5 1 1 24 -0.4983 1.06 12 2 0 24 -0.5034 0.99 

440 12 -0.4920 1.13 

Table 7: The scattering data for the FR-D structure. The legend is the same 

for Table 2. 
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The scattermg data for the 1-WP based phases 

hkl Mh~:t p,S* 
hkl ahkl hkl Mh~:z p,S* 

/tiel O!hkl 
.I 

000 1 3.5543 440 12 0.2773 1.0 

11 0 12 -0.2561 1.61 530 24 -0.3026 1.0 

200 6 -0.5123 1.23 600 6 0.5253 1.04 

2 1 1 24 -0.0986 0.74 442 24 -0.2423 0.97 

220 12 -0.5006 1.0 532 48 0.2219 1.0 

3 1 0 24 0.6608 1.05 6 1 1 24 0.2208 1.07 

222 8 0.3980 1.16 622 24 -0.2594 0.96 

3 2 1 48 -0.0919 1.03 7 2 1 48 0.1406 0.98 

400 6 0.98 730 24 0.2657 1.0 

4 2 0 24 0.2070 0.92 752 48 -0.2333 1.0 

51 0 24 -0.3994 1.0 932 48 -0.2128 1.0 

Table 8: The scattering data for the IW-P structure. The legend is the same 

as for Table 2. 

53 

http://rcin.org.pl



y ' a=2d 

Figure 37: Schematic illustration of the lamellar to P TPMS based cubic 

phase transition and coexistence. The ratio between the cubic lattice con-

stant a and the lamellar repeat distance d is indicated by the x-ray spectra 

[6]. 
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Figure 24: A model density profile for two thin layers of width ~e laying in 

a constant distance e from the minimal surface. See text for explanation. 

over the whole surface gives similar results as the isotropic model without 

corrections. This is not true in the case of more complex structures, where 

the parameter ahkl has to be used for almost all of the Bragg reflections. 

Please note here that the biggest corrections apply always to the peaks of 

the smallest hkl indices. 

2.2.4 The general form of the Molecular Factor 

Having the MF for an uniform density within the layer one can compute 

the MF for a more complicated density profile. Lets imagine a structure 

composed of two thin layers of uniform density of scatterers p0 of width ~e 

laying in a constant distance { from the minimal surface (see Figure 24). 

The cross sectional density distribution p({') of this structure can be written 

as a combination of two Heaviside functions: 

p(e') = Po [o(e + ~e - le' I) - o(e - (2.20) 
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Figure 25: The numerically evaluated amplitudes for scattering on zero width 

parallel surfaces laying in distance L/2 away from the minimal surface are 

plotted with open circles. The solid lines are given by the relation Eqn(2.22) 

for p( ~) = 1 with the same a parameters as the ones fitted through the 

integral relation Eqn(2.19). 
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Now using Eqn(2.5) with ~ = L/2 we can write the expression for the am-

plitude: 

LlA( q, e) = F5 ~(sin (ahkl q (e + Ll~)) -sin (ahkl q e)] (2.21) 
O:hkl q 

And for Ll{ ~ 0: 

dFM 
dA( q, ~) = F5 ~cl{ = F5 2 Po cos( ahkl q e) df. (2.22) 

This last expression when integrated with a Kronecker delta distribution cen-

tered at distance e from the minimal surface can be compared with numerical 

evaluations of the scattering amplitudes for zero width parallel surfaces. This 

has been done by triangulating the parallel surfaces and evaluating expres-

sion similar to the one for the SF (Eqn(2.10)). This provides an alternative 

way of establishing the a parameters. In the case of all of the seven explored 

structures the this test provided excellent agreement of the a correction pa-

rameters. However, as can be seen on Figure 25, the fits have a smaller range 

of applicability. The fits for the integral relation Eqn(2.19) works very well 

for the volume fractions up to ljJ ~ 0.8 in case of the P,D,G structures and 

up to <P ~ 0. 7 in case of the others. The differential relation is fitted well in 

the range of <P E (0, 0.6). 

Having the expression Eqn(2.22) for the scattering amplitudes on parallel 

surfaces we can reconstruct the scattering amplitude for any cross sectional 

density distribution p(e) of the layer decorating the base minimal surface: 

A(q,p(~)) = F5 2100 

dl cos(ahkl q ~) (2.23) 
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2.3 Debye-Waller factor 

The last effect that have to be accounted for are the fluctuations of the 

membrane. We will assume only fluctuations in the direction normal to the 

surface of the layer and no correlations between the fluctuation amplitudes. 

First kind of the fluctuations are those of a single molecule. Due to the 

amphiphilic forces that are responsible for separation of water and hydro-

carbon rich regions, the amplitude of the fluctuations of a single molecule 

is much smaller than the amplitude of the collective movements of the bi-

layer. We will parameterize both amplitudes by standard deviations asingle 

and a collective. Since the total amplitude is 

{2.24) 

in the first approximation we can neglect the fluctuations of a single molecule. 

To evaluate the impact of the fluctuations we have assumed that they 

cause a broadening of the density profile described by a convolution of the 

original density profile p( €) with a Gaussian distribution function with a 

standard deviation a: 

An example of such a broadening is presented in Figure 26. Since we already 

have a formula for the scattering on any density profile (Eqn{2.23)) we can 

insert this broadened density distribution Pt(€, a) into Eqn(2.23) and obtain: 

2 100 100 [ (€ €')2] A{q, p(€), a) = Fs aV2i o cl€ -oo cl€' p(€') exp - 2~2 
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Figure 26: The cross sectional density profile used in the computations of 

P. E. Harper and S. M. Gruner (38] for a phospholipid molecule is shown 

with a solid line. The density distribution for fluctuations with amplitude 

parameterized by standard deviation a = 0.05L is shown with a dashed line, 

and a = O.lL with a dotted line. 

and after some analytical transformations (see Appendix 2) it can be ex-

pressed as 

A(q,p(~),u) = F 5 ~ p((} cos(q ahkl ~>] exp [ -i(q ahld u)2
] 

(2.27) 

We find that the influence of the fluctuations is independent of the original 

density profile p(~). The Debye-Waller term is expressed in a very simple 

form: 

(2.28) 
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Figure 27: The impact of the fluctuations on the scattering amplitudes of the 

D TPMS based phase with a cross sectional density profile shown on Figure 

26. 

Thus equation (2.27) is the final expression for the scattering amplitudes 

and it is exactly this formula which was presented as the general model 

(Eqn(2.2) ). 

In order to inspect the influence of the Debye-Waller term we have per-

formed calculations for a detailed cross sectional density profile presented in 

the work of P.E. Harper et al [38]. The authors used the Fourier transform of 

the volume .enclosed between parallel surfaces (to the base minimal surface) 
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to compute the scattering amplitudes for a bilayer made of typical phospho-

lipid molecules. The width of the head group layer was set to 2/10 of the 

monolayer width (L/2). The hydrocarbon tail length was 7/10 of L/2 and 

finally the terminal methyl groups were said to occupy a layer of width equal 

to 1/10 of L/2. The electron densities were 0.54e/A3, 0.3e/A3 and 0.16e/A3 

respectively. After subtracting the electron density of water {0.33e/ A 3) the 

relative densities were 21/-3/-17 for head/tail/methyl groups (see Figure 26). 

Figure 27 shows the influence of the fluctuations on the scattering amplitudes 

for aD TPMS based cubic phase. It is in agreement with our previous work 

[56] that the decrease of the intensity of the Bragg reflections associated with 

the fluctuations is small. Even for large fluctuations amplitude a = 0.1L (see 

Figure 26) the decrease of the intensity is of the order of 10-20%. At the same 

time the dependence on the layer width is much stronger. For example the 

intensity ratio of the 211 peak to the 110 peak of the P TPMS based phase 

is /2u/ I no = 1.6 for the volume fraction t/J = 0.3 and / 2u/ / 11o = 0.2 for 

t/J = {see Figure 19). 
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3 Analysis of the experimental scattering 

spectra 

In the preceding chapter we have presented the data for the scattering in-

tensities of the strongest reflections for seven (P, D, G, 1-WP, C(P), C(D) 

and F-RD) Triply Periodic Minimal Surface (TPMS) based cubic phases. In 

this chapter we want to show applications of the theoretical model for the 

scattering intensities to the analysis of the experimental spectra. 

We have applied our method to several systems out of which nine are 

presented in this w9rk. We have classified the systems into five groups. 

The first one includes the DLPE, DEPE and DOPE lipid aqueous disper-

sions. These lipid molecules are a part of a large class of lipids containing 

the -phosphatocholine part. They are commonly used to explore the phase 

diagrams of amphiphilic mixtures. Another example of a very popular am-

phiphilic molecule is the monoglyceride (GMO). We present a study of two 

systems with GMO. The third compound that has attracted a lot of experi-

mental attention is the DDAB lipid {analysis of one such system is presented 

here). We decided to include also a fit for the scattering pattern of a polimer-

ized structure formed in CTAS with TEOS additives. This study is motivated 

by a growing scientific and technological interest in microporous and mesa-

porous materials formed on surfactant templates by the polimerization of 

silicates (like TEOS). Finally we study a scattering pattern for a cubic phase 

of the fluorinated surfactant in water. 

As it will be discussed in detail in section 3.2, the analysis yielded interest-
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ing insight into the explored structures. In two cases we have discovered the 

phase coexistence between cubic-lamellar and cubic-hexagonal phases and 

established the epitaxial relations between them. The method has also been 

applied to a system of a known phase coexistence of a P and D structures 

observed in a fast cooling degree per minute) temperature scan exper-

iment. In this example we extract from the full x-ray spectrum the part 

of it which corresponds to the third unknown phase (probably metastable) 

forming during the phase transition. In principle such analysis shed light on 

the kinetics of phase transitions between ordered phases. 

Fitting the scattering pattern provides not only the TPMS on which 

the cubic phase is based but also its macro- and mesoscale characteristics 

such as: layer width (decorating TPMS), volume fractions of the coexisting 

phases, area per head of a surfactant molecule, and composition of the cubic 

phases in the presence of the excess water in the system. Scattering patterns 

give also, in many cases, a clear distinction between a direct or an inverse 

structure. This in turn, together with the layer width L can be used to 

study the elasticity constants of a surfactant layer, preferred curvatures and 

conformations of the hydrocarbon chains inside the layers. 

Section 3.1 contains a step by step description of the method. The results 

of its application are inclosed in section 3.2. 
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3.1 The method 

In this section we want to present a detailed step by step approach towards 

analysis of the experimental scattering spectrum. In order to compare mea-

sured intensities with the modeled ones, we have to take into account the 

corrections due to the experimental setup. The first one is the Lorentz-

polarization (LP) factor. It's form depends on the type of detector used to 

measure the scattering intensities. For a powder sample and a one dimen-

sional detector, the LP reads [59]: 

LP lD((}hkl) = ~ (1 +_cos2 28hkl) , 
2 Sin 28hkl 

(3.1) 

were (}hkl is the scattering angle, related to the scattering vector 

q = (21rja)[h, k, l] by the formula: 

. (} Aq 
Sill hkl = 41r. (3.2) 

Here A is the wavelength of the radiation and a is the lattice parameter of the 

unit cell (linear size). For a two dimensional detector the LP has a slightly 

different form: 

=! ( ~ ~ cos
2 

28hkl ) 
4 Sill (}hkl COS (}hkl 

(3.3) 

In most of the cases analyzed in this work we have assumed that the data 

presented in the experimental reports have been Lorentz-polarization cor-

rected. In some cases we have not used the LP factor, because of the private 

communication of the authors or the quality of the fits. We have also chosen 

to neglect other corrections such as an absorption coefficient, the multiple 
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scattering effect etc. Thus, the experimental intensities which will be com-

pared with the modeled ones are obtained by dividing the raw experimental 

data by a correct LP factor and subtracting the background intensity: 

/(raw) 
/(exp) = lakl - J{bg) (q ) 

hkl LP(fJhkl) hkl (3.4) 

When the experimental resolution is small, the background scattering can 

be easily extracted. In most of the cases presented in this paper, we have 

established the background intensity on the basis of experimental data, where 

the Bragg peaks usually sit on a well defined broad scattering pattern. In 

two cases the backgr.ound intensity resembled the scattering pattern from the 

microemulsion with a characteristic broad maximum. In these cases it was 

fitted with the scattering intensity for a microemulsion system given by [60]: 

J(bg)(q) = Io 2 

(1 - _lQ_) (:F- - 1) + _lQ_ 
ImG~ qmG~ lmG~ 

(3.5) 

where / 0 is the intensity for q = 0 and qmax is the scattering vector length 

for which the intensity attains maximum 

When the raw experimental intensities are corrected accordingly to the 

details of the experimental setup and the background intensity is subtracted 

one can proceed with fitting the modeled intensities. The first step is to 

determine the peak spacing and the cubic cell parameter a. If more than 

one ascription of the hkl Miller indices was reasonable all of the possibilities 

have been checked via the following fitting procedure and the best fit has 

been chosen. 
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The model amplitudes for the TPS based cubic phases have been de-

scribed in detail in the preceding chapter. Here, to fit the data we will use 

the simplified model which assumes a flat contrast density profile p(~) = Po 

for 1~1 ~ L/2 and p(~) = 0 for I~ I > L/2, where Lis the width of the layer 

decorating the· base minimal surface and e is a coordinate along the direction 

normal to the surface. Also the fluctuations of the layer will be neglected. 

Within this approximation the model scatering amplitude is: 

s 2Po . ( L) A(q,L)=F--sin qahkl-
2 ahklq 

{3.6) 

and since in comparison with experiment only the relative amplitudes matter, 

in order to simplify this expression, we can devide it by the factor 2a3 p0 which 

is constant for all hkl reflections. Finally the model scattering intensities are 

given by the following equation: 

1(mod)(L) _M [~s*sin (ahtl1rVh2 + k2 + l2 L*)] 
2 

( 3.7) 
hkl - hkl hkl ahkl 2wvh2 + k2 + z2 

where L* = L/a is the dimensionless layer width expressed in terms of the 

lattice constant a and all of the constants - the dimensionless structure factor 

F 5* = F 5 / a2, multiplicity factor Mhkl and the correction parameters ahkl 

are explicitly given in Tables 2-8 for the P, D, G, C(P), F-RD and 

1-WP based cubic phases. 

Since the scattering intensity is measured in an arbitrary scale only the 

relative intensities of subsequent peaks can be determined. Thus in order to 

fit the experimental data, the model intensities have to be multiplied by a 

normalization constant Z which is chosen in such a way as to set the model 
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intensity of one reference H K L peak to be exactly equal the experimental 

intensity. 

Z= (I~) 
IHKL 

(3.8) 

In all of the examples presented below we have chosen the first nonzero 

reflection as the reference peak. Then we checked whether any of the modeled 

structures satisfies the following relation: 

/(exp) 'V ZI(mod) (L*) V hkl 
hkl - hkl (3.9) 

for any layer width L. The object to find the actual width of the layer dec-

orating the minimal surface can be achieved by simply comparing the set of 

experimental intensities I~e:iP) with the modeled 1~':;'/Jd)(L*) ones for various 

layer widths. In practice it is numerically easier to look for the model scat-

tering patterns best resembling the experimental ones when they are both 

expressed as continuous curves rather then a set of distinct values. The exper-

imental and numerical intensity curves J(expfmod) ( q) have been reconstructed 

by a convolution of the set of I~e:ip/mod) values with the Gaussian resolu-

tion function R(q) = exp( -q2 /2u;)/(ur..J2;). The Ur parameter is directly 

related to the half-widths 6!112 of the experimental peaks Ur ~ (1/2.3)611; 2• 

J(expfmod)( ) _ 1 "" [-(qhkl- q)2
] J(expfmod) 

q - . 12= ~ exp 2 u2 hkl 
Ur V LJ'Tr hkl r 

(3.10) 

Thus instead of comparing the h, k, l peak intensities we have performed 

a minimization of the following integral: 

t1(L*) = {" (I(exp)(q)- ZJ(mod)(q, £*)) 2 --+ min 
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with the variation parameter being the dimensionless layer width L *. Then 

the optimal layer width L = aL* (for which ~(L*) is minimal) has been 

assumed to be the real width of the layer decorating the base minimal surface. 

Having established the width of the layer one can proceed with further 

analysis of the structure of the cubic phase. The following relation: 

1r 
t/J = s~L* + -x£* 3 

6 
{3.12) 

yields the volume fraction l/J of the layer (s0 = s0/a2 is the dimensionless 

surface area of the base TPMS and x is its Euler characteristic - both values 

are given in Table 1). 

In order to tell whether a direct or inverse structure has been formed 

one can compare l/J with the volume fractions of water (l/Jw), surfactant (l/Js) 

and hydrocarbons ( lPh) in the system. A layer volume fraction l/J compa-

rable with the water volume fraction l/J ~ tPw stands in favor of the direct 

phase - when the minimal surface is decorated with a water film. When t/J 

is comparable with the joint volume fraction of surfactant and hydrocarbon 

tfJ ~ tPs + more likely the inverse phase has been formed with the minimal 

surface draped with the surfactant bilayer. Still this method has a serious 

weakness. In many systems the cubic phases coexist with an excess water 

phase. Thus the system's composition does not reflect the composition of 

the cubic phase itself. Therefore a more reliable analysis is needed. It is 

based on the estimation of the surface area per surfactant head a8 as follows. 

The layer decorating the minimal surface is confined between two parallel 

surfaces laying at a distance L/2 away from the base minimal surface. The 
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surface area per unit cell of these two interfaces is given by: 

(3.13) 

The parallel surfaces divide the volume into three regions: the layer and two 

disjoint continuous channels. In the case of the direct phase the hydrocarbon 

and surfactant molecules occupy the two channels. It's volume per unit cell 

is equal to Vdir = (1 - l/J) a3 . When an inverse structure is formed the am-

phiphilic and hydrophobic molecules reside within the layer which's volume 

per unit cell is 'Vinv = ljJ a3• Knowing the molecular weight of the surfac-

tant M(g/mol], the densities of surfactant and hydrocarbon (p3 (g/cm3] and 

Ph [g / cm3] respectively) and the weight fractions of surfactant and hydrocar-

bon in the system (xs and xh) one can establish the number of surfactant 

molecules per cu hie cell: 

(3.14) 

where NA = 6.023 x 1023 is the Avogadro constant and the factor 10-24 comes 

from the ratio of the cubic centimeter to cubic Angstrom (1cm3 = 1024A3). 

Finally the area per surfactant head: 

s11 (L) 
as dirfinv (L) = N . . (L) 

dtr/tnv 
(3.15) 

In this approach we assume that all of the hydrocarbons present in the system 

are confined within the surfactant bilayer or channel. In the case of a binary 

mixture the term in brackets in Eq.{3.14) simplifies to the surfactant density. 

The density of surfactant is in principle an unknown feature as it can vary 
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from one ordered phase to another. Still, as it will be shown in the examples 

below, the dependence of the surface area per surfactant head on the layer 

width is strong enough to settle with an approximated density. In most 

cases, the plot of a, dir and a, inv against the layer volume fraction enables 

unambiguous determination of the type of the structure. 

3.2 Analysis of the experimental spectra 

3.2.1 The DLPE, DEPE and DOPE systems 

The DEPE/water system [61] 

The system is composed of 1,2-dielaidoyl-sn-glycero-3-phosphoethanolamine 

(DEPE) dispersion in an excess water phase. The diffraction pattern consists 

of 9 Bragg reflections. Their spacing ( v'2, v'3, v'4, v'6, v'B, ¥'9, VTO, v'12, 
Vf4) indicate a Pn3m symmetry (No. 224 in the International Crystallog-

raphy Tables). The most commonly encountered structure of this symme-

try is the double diamond D surface based phase. This assumption proved 

to be correct. Minimizing the integral Eq.(3.11) yielded the layer width 

L = 0.162a. This value correspond to the layer volume fraction t/J = 0.3. The 

experimental scattering pattern together with the model fit is shown on Fig-· 

ure 28. In addition we have been able to identify the background scattering 

intensity as the scattering from the microemulsion (Eq.(3.5) with parame-

ters Io = 0.174/uo, lmo.z = 0.714/110 and Qmo.x 0.15A -1). This suggests 

that the cubic mono-crystalline regions are separated by volumes filled with 

disordered bicontinuous phase or microemulsion formed in the excess water 
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phase. 

The inset of Figure 28 shows the area per surfactant head as a function 

of the layer volume fraction </J. The molecular weight of DOPE is M DoPE= 

744[gfmol]. In our calculations we have assumed its density to be equal 

to unity (PDOPE = 1). For <P ~ 0.3 the area per head is a. dir ~ 50A2 or 

a. inw ~ 120A2• The comparison of these two values strongly supports the 

direct phase ( dir) with a water film decorating the minimal surface. 

Since the system is prepared with excess water~ it is important to note 

here, that determining the layer width L and the structure type is a direct 

way of establishing the composition of the cubic phase. 

The DLPE/ a-tocopherol/water system [62] 

The system under investigation contained a fully hydrated 1,2-dilauoryl-

sn-glycero-3-phosphoethanolamine (DLPE) with an addition of lOmol% a-

tocopherol. The experimental scattering spectrum consisted of 9 reflections 

v'2, V3, v'4, v'6, v'B, J9, v'W, v'i2, v'i4 (Pn3m symmetry No. 224). 

The authors of [62] concluded that it is the double diamond D structure. 

It is partially right - Figure 29 shows the fit for the D structure ( <P = 
0.2, a. dir ~ 45A2 and as inw ~ 180A2 indicating a direct phase). Still the 

sole analysis of the peak positions overlooks the phase coexistence with the 

hexagonal phase. All of the peaks are fitted very well besides the 111, 221 

and 222 reflections spaced 1, V3 and v'4 respectively. The inset in the upper 

left corner of Figure 29 shows the modeled intensity subtracted from the 

experimental data. The remaining peaks are characteristic of a hexagonal 
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Figure 28: The fit of the experimental scattering pattern reported in [ 61]. 

The solid line shows the experimental intensity curve reproduced using 

Eq.(3.10). The thin dashed line gives the background intensity fitted through 

Eq.(3.5). The thick solid line presents the theoretical fit for the D based cu-

bic phase of the layers volume fraction cp = 0.3. The areas per lipid head for 

a direct and an inverse type of the D structure are drawn in the inset (dashed 

and solid lines respectively). For cp = 0.3 the area per lipid is as dir ~ 50A2 

for the direct phase and a8 inv 120A2 for an inverse type. This indicates a 

D based direct cubic phase of the water film volume fraction t/> = 0.3. 
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Figure 29: The fit of the experimental scattering pattern reported in [62]. 

The solid line shows the experimental scattering curve Eq.{3.10), while the 

thick dashed line gives the theoretical fit for a D based phase of the layer 

volume fraction tjJ = 0.2. 

a<hex) = {2/3)a<D). The intensity 

difference between the experimental and fitted curve is shown in the top left 

inset. The top right inset presents the areas per lipid head as a function of 

the layer volume fraction. 
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a) b) 

Figure 30: Visualization of the two disjoint channels forming the double-

diamond periodic network. Part a) shows the cubic cell of a lattice pa-

rameter a<D) used for the scattering spectrum evaluation. It is given by 

black lines with the vertices marked with white-black circles. b) the same 

network of channels seen along the diagonal of the cubic cell. The edges 

of the cubic cell form a two dimensional hexagonal lattice of a parameter 

a(hex) = ( V2/ J3)a<D). 

phase. A very similar phenomenon has been discovered in a 1,2-dioleoyl-sn-

glycero-3-phosphocholine (DOPE) dispersion in water [63] . The reflections 

10, 11 and 20 from the hexagonal phase were superimposed on the 111, 

221 and 222 peaks originating from the double-diamond structure. What 

is particularly interesting is the ratio between the hexagonal and cubic cell 

parameters. The scattering vector length is related to the hexagonal lattice 
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parameter by q~> = (27r/a(hez))(2/v'3)../h2 + k2 - hk and for the cubic 

lattice qif/ = (27rfa<D>)../h2 + k2 + l2• Since q~~> = q~f{: 
(hex) 27r 2 27r y'3 (D) 

qlO = a(hex) .;3 = a(D) 3 = qlll (3.16) 

then a<hex) = (2/3)a<D). The double-diamond structure consist of two sepa-

rate continuous networks of rods connected four by four. If one looks at a 

projection of the node positions on a [111] plane perpendicular to the diagonal 

of the cubic cell he would see a 2D hexagonal lattice with the lattice param-

eter a<hex) = ( .../2/../3)a<D) (Figure 30). It is significantly different from the 

one established from the scattering data. Thus the ratio a(hex) = (2/3)a<D) 

seen in two different systems can not be explained by a simple geometrical 

- epitaxial relationship. The relation between the lattice parameters could 

yield in principle interesting information on the elasticity constants of DLPE 

and DOPE monolayers. 

The DOPE/water system [65] 

A 50 weight% DOPE-water dispersion was studied in a wide temperature 

range (4°C< T < 80°C). At high temperatures the hexagonal phase dominate 

the scattering pattern. However for temperatures below T = 30°C several 

peaks of two coexisting cubic phases appear. The experimental scattering 

curve forT = 5°C is presented in Figure 31a with open triangles. The pattern 

consists of the .../2, ../3, v'6 and v'9 reflections originating from the Pn3m 

symmetry with a 132A unit cell and .../2, v'4 and v'6 

/ 0 = 0.8/17 Imax = 4.7/1 and 
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Figure 31: The experimental [65] intensity curve is shown with open triangles 

in the a) part of the figure. The fits for the background intensity (dashed 

line) and for the D phase (l/J = 0.1) (solid line) is shown. The arrows marked 

1,2 and 3 point to the 110 (1), 211 {2) and a group of the 220, 221 and 310 

peaks (3) which are reconstructed very accurately. Then the intensity of the 

D based phase is subtracted from the experimental curve. The remaining 

intensity curve is shown with open triangles in b). The solid line presents 

a theoretical intensity for a P based phase (l/J = 0.1). After subtracting the 

P intensity only three peaks remain at spacing frequency J4, v'5 and v'6 
marked with the 10, 11 and 12 respectively. 

76 

http://rcin.org.pl



qmtl% = 0.145A -1, where / 1 corresponds to the intensity of the first peak 

located at 0.0529A). Next we assume that the Pn3m cubic phase is based on 

a double-diamond D TPMS. Minimization of the integral Eq.(3.11) yields a 

small volume fraction of the lay~r t/J E (0.1, 0.2). The fit is shown on Figure 

31a with a solid line. The intensities of the 211 reflection (marked with an 

index 2 on the figure) and the group of the 220, 221 and 310 peaks (marked 

with 3) are reconstructed very accurately which supports the assumption on 

the structure type. The molecular weight of DOPE is M DoPE = 744[g/mol). 

Evaluating Eq.(3.15) we have obtained the following areas per surfactant 

head: a3 dir E (40.3, 44.4) A2 and a, inv E (362.8, 177.7)A2• The values for 

the direct phase are similar to the ones computed for the systems described 

above. This fact, together with a good fit of the intensities confirm a D 

direct structure. In the next step we subtract the modeled intensity for the 

D structure from the original experimental data. The remaining intensity 

contains 4 well resolved peaks of the spacing v'2:v'4:v'5:/6 (on Figure 31b 

marked with the indices 4,5,6 and 7 respectively). If we assume that the 

v'2: v'4: v'6 reflections originate from an I m3m cubic lattice, only the P based 

phase could be fitted to this data. It means that the sequence should be 110, 

200 and 211 reflections. Minimizing Eq.(3.11) gives a small volume fraction 

of the layer. This is also supported by relatively large intensity of the 222, 

321 reflections fitting the experimental peak marked by the index 8 on the 

figure and 400, 411 (mark 9). Moreover in the t/J E 0.2) range of volume 

fractions the area per surfactant head for the direct phase assume reasonable 

values a, dir E (38.1, 42.2)A2 . Thus if the assumption that the P structure 
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has been formed is correct, most probably it would be a direct phase with 

a small volume fraction of the water film, the same as for the coexisting D 

structure. 

After subtracting the intensity for the P structure the remaining intensity 

curve consists of three peaks v'4:v'5:v'6 (Figure 31c, marks 10, 11 and 12 

respectively). A very similar pattern has been reported for a sodium dodecyl 

sulfate (SDS)/ hydrocarbon /water system [66) where it has been assigned 

to a Pm3n micellar cubic phase. The peaks could also be interpreted as 

an evidence of some unidentified third phase separating the monocrystalline 

regions of D and P phases. As we have the data for only one temperature it 

is impossible to risk any final judgment. A similar analysis of the scattering 

patterns during the whole temperature scan would probably give reliable 

answers. For example one could track the kinetics of the phase transition. 

Assuming that the D and P structure assignment is correct, one can extract 

approximate volume fractions of these phases. Namely, amplitude of the 000 

reflection is proportional to the volume occupied by the layer decorating the 

minimal surface (see Eqn(2.6) in chapter 2): 

looo(L) ex: [t/>(L)V)2 (3.17) 

where V is the volume of the given cubic phase. When the experimental 

scattering pattern has been fitted with modeled intensities for a given layer 

width L, the intensity of the 000 reflection can be extracted from the following 

relation: 
J(exp) 

L = l(mod) (L) hid 
000 000 (mod) ( ) 

lhkl L 
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thus the volume ratio of the D and P phase is: 

y(D) 

V(P) = 
If: (tf>(P)) 
zCP) tf>(D) 

000 

{3.19) 

Substituting the values of fjJ(D) = tf>(P) = 0.15, I~~ exp) = 84 [arb. units], 

I~foexp) = 17 [arb. units], I~~mod)(L(f/J = 0.15)) = 2.638, I~fomod)(L(f/J = 
0.15)) = 2.364, I~ mod) = 3.690 and I~ mod) = 5.502 we obtain: 

y(D) 

V(P) ~ 1.7 {3.20) 

a value that would be very difficult to determine without the analysis of the 

peak intensities. Furthermore having this kind of data for a whole range 

of the temperature scan one could determine the phase transition speed. 

Which together with information on the third metastable phase could lead 

to a better understanding of the phase transition mechanisms. 

3.2.2 The GMO systems 

The GMO /Polaxamer 407 /water system [67] 

In ref. [67] a study of a glycerolmonooleate (GMO) with an addition of a 

PE098PP067PE098 {Polaxamer 407) polymer mixture in an excess water is 

presented. We have been able to extract data of two scattering patterns - one 

for a 4 weight% polymer to GMO ratio {Figure 32a) and the second for a 7.4 

wt% ratio (Figure 32b). The first system has been successfully fitted with a 

D based structure of the layer volume fraction 4> = 0.45. Too small value of 

the 200 
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Figure 32: The scattering patterns reported in [67 (solid lines) together with 

the theoretical fits {dashed lines) a) aD based phase (4J = 0.45), b) a P based 

phase (4J = 0.5). 

by a small addition of the hexagonal phase which in fact has been reported 

in this system (67]. The superposition of the 10 

200 Bragg reflection of the double-diamond D based 

phase is yet another confirmation of the epitaxial relationship described above 

for the DLPE [62] and DOPE [63] systems. The areas per surfactant head 

for 4J = 0.45 are as dir = 39A 2 for a direct phase and as inv = 48A 2 for an 
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inverse structure. The value of 39A 2, as compared to the existing literature, 

seems more reasonable and thus we propose a D direct phase for this system. 

The second scattering pattern has been fitted with the intensities of the 

P based structure: t/J = 0.5, a1 dir = a, inv = 36.7 A 2• In this case we cannot 

distinguish the direct from the inverse structures. 

The GMO/Polaxamer 407/water system (53] 

As in the last example, the system under investigation is the GMO/Polaxamer 

407 /water mixture. Reference [53] presents a thorough examination of its 

phase behavior. Besides the hexagonal and lamellar structures, Landh shows 

[53] several scattering patterns from the cubic phase region in the phase 

diagram. 

Four of the experimental patterns together with our fits are shown in 

Figure 33{a-d). In the case of all of the presented patterns the modeled 

intensities fitted the experimental scattering curves quite well. The data 

for all these fits is included in Table 9. To enhance the analysis of the 

structure type we made an attempt to compare the fitted volume fraction t/J 

of the layer decorating the TPMS with the joined volume fraction tPGMO+P4o1 

of surfactant and polymer in the system. For the mixture of composition 

(caMo/cP4o7/Cwater) wg% we have: 

~+~ 
A. _ PGMO PP407 
'rGMO+P407 - !£G.M..Q. + ~ + ~ 

PGMO PP407 Pwater 

(3.21} 

where .xi = Ci/100 are the weight fractions. 

For the first three systems both the fitted volume fractions t/J of the layer 
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Figure 33: Successful fits of four scattering patterns reported in [53]. The 

experimental patterns are drawn with open triangles and theoretical fits with 

solid lines. a) a G gyroid cubic phase, b) aD double diamond cubic phase, 

c) and d) two based cubic phases. 
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Analysis of the GMO/P407 /water systems [53] 

comp. wg% fitted fitted ifJch = lfJGMO+P401 as[A2] a8 [A2] prop. 

CGMo/cP407/Cw TPS a[A] 4> 1-l/> (Eq.(3.21)) DIR INV type 

68.6/2/29.4 G 136.6 0.25 0.75 0.718 38 114 DIR 

63.1/1/35.9 D 99.7 0.3 0.7 0.654 34 79.3 DIR 

60.1/5.1/34.8 p 124.3 0.4 0.6 0.664 39 58.4 DIR 

38.7/14.1/47.2 p 195.6 0.55 0.45 0.538 37.3 30.5 ? 

Table 9: First column - weight fractions of the explored mixtures. Second 

column - the base TPMS. The fits are presented graphically on Figure 33. 

The following columns contain the lattice parameter a, the volume fraction 

of the layer (if>) and the volume fraction of the two disjoint channels ( l!>ch = 

1- lf>). This two values should be compared with the joined volume fractions 

of the surfactant and polymer (sixth column). In the first three cases the 

4>aMO+P4o1 values are similar to the volume fractions of the channels which 

indicate a direct type of the cubic phase. Small differences (up to '"V 10%) 

may be caused by the fact that the fits determine the width of the layer of 

an effective contrast which might be slightly different then the actual layer 

width including the surfactant heads. Another possible explanation is that 

the system is a multi phase one with additional regions of microemulsion, 

sponge phase or excess water. The seventh and eight column present the 

computed surface areas per surfactant head for a direct and inverse structures 

for the layer volume fraction given in column four. T~e last two columns show 

our determination of the structure type compared with the one presented in 

ref. (53]. 
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Figure 34: Experimental scattering curve from ref.[53) is shown with open 

triangles. Its ascription to a based phase was wrong as it is seen from 

comparison with three theoretical patterns for this structure for ljJ = 0.3, 

ljJ = 0.5 and ljJ = 0.7 (b, c, d respectively). 
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compared with the joined volume fraction tPGMO+P407 of surfactant and poly-

mer and the surface areas per surfactant head point out to the direct struc-

tures. The data is convincing enough to risk a statement that ascribing these 

patterns to inverse phases in ref. (53] was wrong. In the case of the fourth sys-

tem it is impossible to decide which type of the P structure has formed. The 

fitted volume fraction tjJ suggests an inverse phase, but the area per surfac-

tant head is more reasonable for the direct structure. As was noted in [53] on 

increasing the water weight fraction the system underwent a phase transition. 

Thus a transition from a direct to an inverse phase could be possible. For 

even higher water weight fraction ( Cwater > 50) Landh has recorded a diffrac-

tion pattern, interpreted as an evidence of the appearance of the C(P) based 

cubic phase. A typical pattern from this region (34.18/14.77 /51.05) is shown 

in Figure 34a. In [53] it was suggested that the 1:v'2:v'3:v'4:v'5:v'7:v'8 re-

flections originate from ~ C(P) structure with a lattice parameter a = 315.3A. 

However we could not fit the experimental pattern with the C(P) 's spectrum 

for any layer width t/J. To illustrate how different the C(P) 's patterns are, 

we have showed the J(C(P) mod) (Eqn. 3.10) for tjJ = 0.3, 0.5 and 0.7 (Figure 

94b-d). Thus we suggest that it is not a C(P) based phase being rather a P 

based phase coexisting with some unknown phase. 

3.2.3 The DDAB/cyclohexanefwater system [6] 

The system composed ofDidodecyl Dimethyl Ammonium Bromide (DDAB), 

cyclohexane and water. We have been able to extract the scattering intensity 

from two scattering patterns. The first one of a composition (52.9/13.2/33.9) 
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wg% of DDAB/C6H12/H20. The experimental scattering pattern together 

with the model fit for a double-diamond D based phase is shown in Figure 

35. The best fit was obtained for if> = 0.4. For this if> value the areas per 

surfactant head {for PDDAB = 1(g/cm3], Pc6 H12 = 0.78[g/cm3] and a= 120A) 

are a. dir = 43A 2 for a direct phase and a5 inv = 64.6A 2 for an inverse one. 

The second value is similar to that proposed by Barois a. = 68A2 [6]. It is 

also in good agreement with an expected chain length of the DDAB molecule. 

The molecular weight ofDDAB is MvvAB = 462[gfmol], thus, for a5 ~ 65A2 , 

it's length is: ls = VvvAB/a, = MvvAB/(0.6023pvvAB) ~ 12A. Furthermore 

for the lattice parameter a= 120A and for the layers volume fraction l/J = 0.4 

the corresponding layer width L = 0.22a = 26.4A. Thus the layer width is 

approximately twice as large as the length of the surfactant molecule ( L ~ 

2l,). All this evidence stands in favor of an inverse structure. 

The second scattering pattern has been recorded for a mixture of com-

position {41.7/9.3/49) wg% of DDAB/C6H12/H20 respectively. The exper-

imental scattering curve is shown on Figure 36. The authors of [6] suggested 

that this pattern originates from a P based structure. Indeed, we obtained 

the best fit for the P structure with if> = 0.45. The 110, 211, 321 peaks are 

reconstructed very accurately. The 222 and 411 reflections have acceptable 

values. The area per surfactant for a direct phase a, dir = 62.3A 2 confirms 

the choice of a P direct structure. However the intensities of the 200 and 

400 experimental peaks are by far greater then the modeled ones. After sub-

traction of the modeled intensities from the experimental pattern we have 

obtained a pattern typical for a lamellar structure (see inset in the right top 
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Figure 35: A fit for a DDAB/cyclohexane/water system described in [6]. The 

experimental intensity is shown with a dashed line while solid line presents 

theoretical pattern for aD TPMS based cubic phase with the layer volume 

fraction ifJ = 0.4. 

inv(l/J = 0.4) = 64.6A2 confirms the 

choice of the structure and layer width. The areas per DDAB per molecule 

for a direct (solid line) and inverse (dashed line) structures are shown in the 

inset. 
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Figure 36: The experimental scattering intensity reported in [6] is shown 

with a dashed line in the main figure and the lower right inset. The best fit 

with theoretical spectra was obtained for a based structure for c/J = 0.45 

(solid line). The 110, 211, 222, 321 and 411 reflections are reconstructed 

quite well. The areas per surfactant head for a direct (solid line) and inverse 

type (dashed line) of the P structure are drawn in the top left inset. The 

top right one show the difference between the experimental intensity and the 

fitted pattern for a P structure. The remaining peaks spaced at the ratio 

1:2 are characteristic of a lamellar phase indicating a phase coexistence. The 

v'5J2 peak might originate at some transition state. 
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corner of Figure 36). From the peak positions one can deduce the lamel-

lar repeat distance d to cubic lattice parameter a ratio: d/a = 1/2. Thus 

we conclude that the investigated mixture was in fact a two phase region. 

Furthermore the epitaxial relationship between the lattice parameters of the 

cubic and lamellar phase suggests a phase transition mechanism illustrated 

on Figure 37. 

Namely, when crossing the phase boundary from the lamellar region to 

the P region the number of passages drastically increase. At some point the 

passages order in the 2D lamellar planes in a square lattice to form a P based 

cubic structure. 

3.2.4 Polimerized G structure [68] 

We would also like to present a fit to the experimental pattern of a polimer-

ized G structure. The system described in [68] was an aqueous solution of 

a cetyltrimethylammonium chloride ( CTAC) with an addition of tetraethy-

lorthosilicate (TEOS). After reaching equilibrium the system was left for 

several hours in order to let the hydrolysis of TEOS takes place. Next the 

mesoporous solids obtained in the polimerization reaction were analyzed. 

Figure 38 shows the experimental scattering pattern of the mesoporous ma-

terial of the I a3d symmetry. This spectrum was successfully fitted with the 

scattering intensities for a G based structure of the layer volume fraction 

4J = 0.45. The corresponding layer width is L = = 14.6A. Thus fit-

ting the scattering pattern can also be a method for an efficient layer width 

measurement. The visualization of this mesoporous structure is presented in 
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y ' a=2d 

Figure 37: Schematic illustration of the lamellar to P TPMS based cubic 

phase transition and coexistence. The ratio between the cubic lattice con-

stant a and the lamellar repeat distance d is indicated by the x-ray spectra 

[6]. 
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Figure 38: Comparison of the experimental [68) scattering pattern of a 

polimerized mesoporous material of an I a3d symmetry (dashed line) with 

a theoretical spectrum for a gyroid G TPMS based phase of a layer volume 

fraction <P 0.45 (solid line). 

Figure 39. 

3.2.5 The RfEE02/water system [9] 

This last example is meant to show that the analysis of the intensity of the 

Bragg reflections can be done without performing the fitting procedure given 

by Eq.{3.11). It can be done when the intensities of several allowed peaks 
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Figure 39: A computer visualization of the G gyroid TPS based cubic 

phase determined by fitting the experimental SAXS pattern (Figure 38). 

The darker areas correspond to the subvolume (4> = 0.45) occupied by the 

polimerized bilayer. 

are very small. In the preliminary analysis it is enough to draw the relative 

intensity of the strongest reflections in respect to one reference peak as a 

function of the layer width L: 

J(mod)(L) 
hkl(L)(JHKL] = ~!:od)( ) 

IHKL L 
(3.22) 

The reference peak should have a large intensity and possibly the smallest 

H K L indices. In the case of all three simple structures P, D and G the 

first reflection is a good candidate. Figure 40 shows the intensities of the 

strongest reflections of the D based phase in terms of the reference peak 

H K L = 110. These in turn can be compared with analogously expressed 
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Figure 40: The theoretical intensities for the D TPMS based phase of the 111 

(solid line), 220 (circles}, 221 (squares), 310 (triangles) and 222 (diamonds) 

reflections expressed in terms of the intensity of the 110 peak. the arrows 

mark the layer volume fraction </> ~ 0.6 for which the theoretical intensities 

are in accordance with experimental measurements [9]. The 111 intensity has 

been measured to be / 111 ~ 0.5/110 while the 220, 310 and 222 peaks 

were very weak ( < 0.01/110}. The inset show the theoretical intensities of 

the 200 and 211 reflection, experimentally measured to be l2oo ~ 0.01 and 

/211 ~ 0.03. 
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spacing hkl assignment J(exp) 

V2 110 1 

y'3 111 '""'0.5 

V4 200 '""' 0.01 

y'6 211 '""'0.03 

v's 220 < 0.01 

v'9 221 < 0.01 

v'W 310 0 

v'i2 222 0 

Table 10: The experimental intensities reported in [9]. The first column 

contains the spacing of the observed peaks, the second the hkl assignment 

and the last column contains the intensities expressed in terms of the intensity 

of the first (110) reflection. 

intensities of the experimental scattering pattern of the fluorinated surfac-

tant C6 F13C2H4SC2H4(0C2H4)20H (R{EE02)/ water system reported in 

[9]. The experimental intensities are presented in Table 10. The intensity 

of 111 peak ~~~P) rv 0.5, the small values of the 200, 211, 220, 221 reflec-

tions and absence of the 310 and 222 reflection are in good agreement with 

the theoretical values for the layer volume fraction 4J ~ 0.6. Furthermore at 

this value of 4> the 200 and 211 reflections are significantly greater then zero, 

which is in accordance with the experimental measurement. It is important 

to note here that the intensity of the 200 reflection might be in fact bigger 
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than the intensity of the 211 peak as expected by the theory. Due to rather 

small resolution of the scattering patterns presented in [9] the 200 peak lays 

within the vicinity of the broad 111 reflection. Thus it's intensity is probably 

underestimated. 
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4 Summary 

The results of this work are summarized in chapter 2 by Eqs(2.2, 2.5) and 

Tables 2-8. The first equation enables reconstruction of the scattering am-

plitudes for any electron density profile and fluctuations. A detailed cross 

sectional density profile can be constructed from the knowledge of the micro-

scopic details of the molecules present in the system. Then it can be tested 

by comparing the amplitudes evaluated through Eqn(2.2) with high quality 

experimental diffraction data. 

For a simpler and faster analysis we propose modeling described by 

Eqn(2.5). It takes into account only the crude (Eqn(2.11)) electron density 

contrast and neglects the fluctuations. The last point has been justified in 

chapter 2.3. The Heaviside distribution form of the density function is related 

to the fact that the main contrast in most amphiphilic systems results from 

the electron density difference of water and hydrocarbons. 

In the third chapter this simple method for a quantitative analysis of 

the scattering patterns of self assembled cubic phases has been applied to 

several experimental amphiphilic systems. Presented examples prove the 

utility of our method. Even such a crude model provides crucial information 

on the type of the structure, its microscopic details and on the stability of the 

system. Namely in phase coexisting systems one can determine the phases 

present, their structural relationships, volume ratios, etc. In time resolved 

techniques this could lead into an interesting insight on the kinetics and 

mechanisms of phase transitions. 
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FUrthermore this approach could be used to study how the amplitude 

signs change with the parameters for more detailed density profiles. In this 

respect our approach could be used together with the method presented in 

[38] in order to find simple formulas for the intensity and density distribution 

in surfactant systems leading to reconstruction of the actual density map of 

the cubic phases in amphiphilic systems. We believe that our method will 

deepen the knowledge of these fascinating systems. 
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5 Appendices 

5.1 Appendix 1: Nodal approximations for the C(P), 

C(D), F-RD and 1-WP surfaces 

The nodal approximations for the unit cells (x, y, z E {0, 1)) of the latter 

minimal surfaces are given by the equations below (40]: 

C(P): cos(X) + cos(Y) + cos(Z) + 3cos(X) cos{Y) cos(Z) = 0 {5.1) 

C(D) : cos{3X) cos(Y) cos(Z) + cos{3Y) cos(Z) cos{X) 

+ cos{3Z) cos( X) cos{Y) + cos{3X) sin{Y) sin(Z) 

+ cos{3Y) sin{Z) sin{X) + cos{3Z) sin{X) sin{Y) 

- sin{3X) cos(Y) sin{Z)- sin{3Y) cos(Z) sin(X) 

- sin{3Z) cos( X) sin(Y) - sin{3X) sin{Y) cos(Z) 

- sin{3Y) cos(Y) = 0 (5.2) 

F - RD : 12 cos( X) cos(Y) cos{Z) - 3 cos{2X) cos{2Y) 

-3 cos{2Y) cos{2Z) - 3 cos{2Z) cos{2X) = 0 {5.3) 

I- W P : 2 cos(X) cos(Y) + 2 cos(Y) cos(Z) + 2 cos(Z) cos(X) 

- cos{2X) - cos{2Y) - cos{2Z) = 0 {5.4) 

where X = 21rx, Y = 21ry and Z = 21rz for the C{P), F-RD and 1-WP 

surfaces and X= 1rx, Y = 1ry and Z = 1rz for the C{D) surface. 
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5.2 Appendix 2: Derivation of the Debye-Waller factor 

The right side of the equation (2.26): 

(5.5) 

can be rewritten in the following form: 

(5.6) 

after substituting X= e- e' we obtain: 

2Fs 100 1oo [ x2] m= de' p(e') dx exp ; 2 cos( ahklq(x + e')) 
ay 211" -oo -{' a 

(5.7) 

then, from the relation cos( a+ b) =cos( a) cos( b) -sin( a) sin( b), we have: 

2~ 100 

de'p(e') cos(ahklqe') 100 

dxexp [;x:] cos(ahklqx)-
ay 211" -oo -{' a 

-
2~ 100 

de' p(e') sin(ahklQe') 100 

dx exp [;x:] sin(ahklqx) (5.8) 
ay 211" -oo -{' a 

and after breaking up each of the integrals over x into a sum of two integrals 

( J~, dx = f~e' f0
00 dx) we obtain four integrals, that is: 

(5.9) 

where 

Ct = 
2~ 100 

de'p(e') cos(anklqe') 1° dxexp [;~] cos(ahkzqx) (5.10) 
ay 211" -oo -{' q 

C2 = 
2~ 100 

de' p(e') COS( O:hklQe') 100 

dx exp [ -2 X:] COS( O:hklQX) {5.11) 
ay211" -oo o a 
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Ca = 2~ 100 

d{'p(e') sin(o:hkzqe') 1° dxexp [-x:] sin(o:hkzqx) (5.12) 
av 21r -oo -e' 2a 

c4 = 
2~ 100 

d{'p(e') sin(o:hkzqe') {
00 

dx exp [-2 x:] sin(o:hkzqx) (5.13) 
av 211'" -oo Jo a 

We will now rewrite the C1 in the following form: 

(5.14) 

where 

!t(€') = £. dxexp [;::] cos(ahklqx) (5.15) 

is an asymmetrical function of e' because after a substitution y = -x and 

since cos( -y) = cos(y) we have: 

10 [-y2] /1(e') =- e' dyexp 2a 2 cos(o:hkzqy) = -/1(-e') (5.16) 

thus, since p( e') and cos( O:hkzqe') are symmetrical in e' the integral cl is equal 

to zero. Similar argument applies to C3: 

2Fs 1oo ' ( ') . ( ') ( ') Ca = ~ '2= de p e Sin ClhklQe la e 
<7y.G1r -oo 

(5.17) 

where 

fa(£!)= L:. dx exp [ ;::] sin(ahklqx) (5.18) 

is symmetrical because (y = -x; sin( -y) = - sin(y)): 

fa(€') = l dyexp [ ;::] sin(ahkzqy) =fa(-£!) (5.19) 

Again two of the functions under the integral over e' are symmetrical (p( e') 
and / 3 (e')) and one is asymmetrical (sin(ahklQe')) and C3 = 0. The integral 
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OVer X in C4 is independent of {1 and since sin(ahklQ{1
) is asymmetrical, 

C4 is also equal to zero. Thus the only possibly nonzero component is C2 • 

Since both cos(ahklqx) and exp[-x2 /2u2] are symmetrical in x the integral 

J0
00 

dx = (1/2) f~oo dx and: 

where 

11
00 

[ x2] '2 -oo dx exp 2q 2 cos(ahklqx) = (5.21) 

11
00 

[-x2] 11oo [-x2] - dxexp - 2 exp[iahktQX] +- dxexp - 2 exp[-iahklqx] 4 -oo 2u 4 _00 2u 
(5.22) 

the latter two integrals are identical and: 

11
00 

[-x2] 11oo [-x2] -2 dxexp - 2 cos(ahklqx) =- dxexp 22" exp[iahklqx] 
_ 00 2u 2 _

00 
u 

(5.23) 

which is a Fourier transform of the Gaussian distribution 

11
00 

[-x
2
] . u.;2/i [ 1 2 2 2] 2 -oo dxexp 2u2 exp[tahklqx] = - 2- exp - 2u ahklq (5.24) 

which after insertion into (5.20) gives: 

A(q, p(t), u) = C2 = F 5 [}~: dt p(t) cos(q ahkl t)] exp [ -~(q a~ u)2
] 

(5.25) 

and since f~oo dx cos(x) = 2 J0
00 dx cos(x), 

A(q, p(t), u) = F5 [ 2100 

dt p(t) cos(q ahkl t)] exp [ -~(q ahkl u?] 

(5.26) 

which exactly of the same form as Eqn(2.27). 
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