
http://rcin.org.pl

Software Tools
and Optimal Design

http://rcin.org.pl

ADVANCED COURSE ON STRUCTURAL CONTROL AND HEALTH MONITORING

SMART'Ol- (PP.l51-172)- WARSAW, MAY 22-25, 2001.

Graph grammars in conceptual design

A. BORKOWSKI

Polish Academy of Sciences
Institute of Fundamental Technological Research
Swi~tokrzyska 21, 00-049 Warszawa, Poland

e-mail: abork~ippt.gov.pL

This paper deals with new perspectives for conceptual design in engineering that are opened
by graph grammars and graph transformations. Due to their expressive power and natural
visualization these knowledge representation tools allow the designer to consider general
properties of the artifact prior to be occupied by details. Two fields of Civil Engineering
were chosen for validating the proposed methodology. The first one is the design of floor
layouts for single-family houses. The second area is the optimum design of the layout of
trusses. Despite their apparent dissimilarity both problems can be efficiently tackled by the
graph-based approach. The paper considers the theoretical background and the computer
implementation issues of the above-mentioned problems.

Key words: CAD, Graph grammars, Conceptual design.

1. Introduction

It is well known that a good concept is worth months of improving details of the
project. In the ancient Greece many beautiful temples were erected but they all followed
rather crude concept of a column-beam structure (Fig. la). As the result, Greek temples
were filled with grids of columns standing at a distance of less than 5 m from each other.
Reinventing the Sumerian arch in the ancient Rome brought revolutionary change in
architecture. Roman aqueducts and bridges gained larger spans and the magnificent
Pantheon (Fig. lb) with its 43 m of free space inside makes us feel impressed even
today.

In the course of maturing and collecting experience of many generations of archi­
tects and builders the domain of Civil Engineering became less and less susceptible to
revolutionary changes. For example, the introduction of skeletal structures made from
the cast iron in the 19th century (Fig. le) increased the span only by the order of 40%
as compared to the Pantheon. Nevertheless, it is much more than the typical gain of 5
to 10% achievable by the optimization within the frame of given concept.

The progress achieved during the last decades in CAD-tools is remarkable. It is easy
to generate 2D and 3D drawings of the designed building, to analyze its response to
external actions, to evaluate its construction costs and to plan the process of construc­
tion. On the other hand, there seem to be no computer-based counterpart of the sheet of
paper on which the designer makes conceptual sketches. Moreover, there is an apparent
temptation to skip the phase of conceptual design and to begin directly with composing

http://rcin.org.pl

152

(a)

(b)

(c)

A. BORKOWSKI

15J • •
T • • • • • • • • • • t • • ~ • •

• • • • l r6~ 1

FIGURE 1. Conceptual changes in structures: (a) ancient Greek time;
(b) Roman time; (c) 19th century.

• • •
• ••
• • •
• ••
• • •

the building of the routine library components. In that sense, the computerized design
office has the tendency towards reproduction of known solutions instead of looking for
novelty.

The necessity to stimulate creativity of the designer is obvious and many researchers
look for ways to exploit the advantages of computer in that task (compare the proceed­
ings of a conference devoted to the creative design [20]) . Perhaps the most known
software is the Invention Machine based upon the research done in the former Soviet
Union by H. Altshuller [1]. Most of "invention machines" are based on the following
pattern. First, the user is encouraged to formulate the problem that has to be solved.
Then associations to the basic principles of mathematics and physics are revealed. If
it is not possible to apply those principles directly, then the system presents solutions
of similar problems obtained by other inventors. The strength of such systems lies in
their case bases. Therefore, one could name this methodology the case-based creativity

http://rcin.org.pl

GRAPH GRAMMARS IN CONCEPTUAL DESIGN 153

support. It is important that the cases are indexed by primary principles used to solve
them. This allows the user to find solutions existing in domains being far from the area
of his work. The reasoning through comparison and analogy is probably one of the most
important ingredients of the human creativity.

Other possibility of looking for novelty is random or partly random search. Since
computer can generate large number of trial solutions, there is a chance that one of
them might prove to be useful as such or trigger the designer's imagination and let him
develop previously unknown artifact. This way of reasoning is followed by creativity
support systems that adopt the genetic algorithms. Perhaps pioneering work in this area
was done by M.-1. Maher and P.X. Wu [32). They looked for novel structural schemes
by applying genetic operators for standard solutions. Similar results were obtained by
G. Hliniak and B.Strug [27] in the domain of graphic design.

In this paper we want to confine the attention of reader to an interesting alternative
in the computer-assisted creative design. Pioneered by N. Chomsky [13], the linguistic
approach to world modeling found applications in many areas. The core idea in this
methodology is to treat certain primitives as letters of an alphabet and to interpret
more complex objects and assemblies as words or sentences of a language based upon
the alphabet. Rules governing generation of words and sentences define a grammar of the
concerned language. In terms of the world modeling such a grammar generates a class of
objects that are considered plausible. Thus, grammars provide very natural knowledge
representation formalism for computer-based tools that should aid the design.

2. Graph-based design knowledge representation

2.1. Graphs and graph transformations

Since G. Stiny [39] has developed the shape grammars, many researchers showed
how such grammars allow the architect to capture essential features of a certain style of
the building (e.g. a Victorian house or a Roman villa). However, the primitives of shape
grammars are purely geometrical which restricts their descriptive power. Substantial
progress was achieved after the graph grammars were introduced and developed (com­
pare, e.g. [41]). Graphs are capable to bear much more information than linear strings or
shapes. Hence, their applicability for CAD-systems was immediately appreciated (21].

A special form of graph-based representation has been developed by E. Grabska [22,
23]. This formalism distinguishes the composition graphs (CP-graphs) that describe the
structure of the object from the realization schemes describing the visualization. In 1996-
98 Grabska's model served as the basic knowledge representation scheme in the research
project [10] aimed at developing intelligent design-assisting tools for engineering. The
results of that project were reported at the conferences in Stanford [24], Ascona (7] and
Wierzba [8].

It turned out that by introducing an additional functionality graph into the orig­
inal Grabska's model one can conveniently reason about conceptual solutions for the
designed object. The functionality analysis of as the starting point of the conceptual
design has been proposed by several researchers (compare, e.g. [14]). Such methodology
allows the designer to distract himself from details and to consider the functionality of

http://rcin.org.pl

154 A. BORKOWSKI

the designed object, the constraints and the requirements to be met and the possible
ways of selecting optimum alternatives.

2.2. Composite representation

This model of knowledge representation consists of three main ingredients: the com­
position graph (CP-graph), the realization scheme and the control diagram. Figure 2
shows an example of the CP-graph: the objects a and b are linked by an edge corre­
sponding to certain relation. The left end of this edge is attached to an out-bond of
the node a. The opposite end enters an in-bond of the node b. Distinguishing in- and
out-bonds is useful in transformations that convert one graph into another.

FIGURE 2. Simple CP-graph.

The mostly used transformation is a production or graph rewrite rule:

p:L-tR (1)

Here p is the production label, L stands for the left-hand side of the rule and R is
its right-hand side. The operator --+ indicates that the graph L is transformed into the
graph R.

CP-graphs are used for storing structural information about objects. Data related
to geometry and visualization are described by realization schemes. In particular, such
schemes can contain predicates that constrain certain features of the described objects.
Libraries of primitive objects are also attached to realization schemes.

Finally, all information related to the generation of objects is stored in control
diagrams. These diagrams describe the sequence in which particular productions are
applied. The result of applying a control diagram is generating a class of objects. In the
context of design these are the objects plausible from the point of view of the designer.
Further details on the composite representation can be found in [22].

2.3. Building functionality graph

The experience gained in the project [10] showed that the composition graphs should
be further subdivided into the functionality graphs and the structural graphs. The nodes
of functionality graph correspond to specific functions that have to be carried out by the
designed object. The edges of this graph describe the relations between those functions.
The functionality graph describes an object at the highest level of abstraction: no physi­
cal components are attached to this graph. Such components correspond to the nodes of
structural graph. The edges of the latter describe relations between components. Thus,
the structural graph reflects sub structuring of the designed artifact.

http://rcin.org.pl

GRAPH GRAMMARS IN CONCEPTUAL DESIGN 155

It is a common opinion among designers that the analysis of functionality should pre­
cede the sub structuring. Such a methodology allows the designer to consider carefully
the most general aspects of the usage of the object prior to starting the detailed design.
The prototype software developed at the Institute of Computer Science of the Jagiel­
lonian University in Cracow contains a graphical editor for the purpose of functionality
analysis. Figure 3 shows the copy of its screen.

E:J Sleepng

• Rec•eat10n
0 Commut•ucahon

• Cook•no

,., Convnunlcat10n

~1 Cookng
••r Aoe~eabon

,~, '-' S'"'*'o

• J~·

,_, ... 81Qk1Chen

K.-chen
Chambe<

FotHelp. ptenF't

IJIIs• .. tfiJ "-""'""*"'· -11 cl '---· j 00 tt.f ~

FIGURE 3. Editor of functionality graphs.

The list of functions selected by the user is shown on the left panel. These turn
out to be the typical functions of a single-family house. The main panel contains the
functionality graph. The functions listed at the left are displayed in different colors.
After the user attaches a particular function to the node, this node is displayed in the
proper col or. The tools displayed in the menu bar allow the user to create new nodes
and edges, to delete them, to split a node into two nodes or to merge two nodes into one.
Each operation is mirrored to the symbolic description of the graph that is maintained
in the background.

The editor separates the designer from the technicalities of the model. He or she can
concentrate attention on the substantial features of the designed object, namely, on its
functions and the relations between them.

2.4. Building structural graph

In the second phase the functionality graph is mapped into a structural graph of
the object. The nodes of the structural graph correspond to the components of the
object; the edges represent relations between the components. Thus, the structural
graph describes a physical decomposition of the artefact. By assigning the functions
to the components one aims at satisfying all the functional requirements by the object

http://rcin.org.pl

156 A. BORKOWSKI

viewed as an assembly of its components. The transition from the functionality graph
to the structural graph is neither unique nor straightforward. Hence, the designer needs
usually several iterative loops before the satisfactory solution is found (Fig. 4) .

Functionality
graph

Structural
graph

I
I
I
____ Object

Object
2

1

Object
3

FIGURE 4. Editor of functionality graphs.

3. Floor layout design l)

Let us clarify the idea of our approach on an example of designing a single-family
house. The functional requirements for such a house are straightforward. Given the
number of inhabitants, consisting of adults, children and guests, one has to arrange the
space in the house so that they can sleep, prepare and consume meals, meet each other
and rest conveniently. It is natural, therefore, to consider the house as an assembly of
the sleeping area, the social area, the communication area, the guest area, etc. The size
of each area depends upon the number of relevant inhabitants. The total area of the
house is given as an a priori constraint.

The user of our systems begins with defining functional requirements. This is accom­
plished by means of a graphical editor. Figure 5 shows its window. The left part of it
contains the list of functions arranged in a tree. The right part shows the functionality
graph. The user can add or delete nodes representing functions, as well as perform edit
the edges representing functional relations.

In the second step the structural graph is generated. The nodes of this graph rep­
resent the rooms of the house; the edges between the nodes represent the accessibility
relations between the rooms. After the structural graph has been generated, the de­
signer evaluates it. Note that at this stage the level of abstraction remains high: the

1)This Section is based upon results obtained by J . Szuba in the course of preparing his Ph. D.-thesis.

http://rcin.org.pl

GRAPH GRAMMARS IN CONCEPTUAL DESIGN 157

FIGURE 5. Editor of functional decomposition.

geometry is still irrelevant, what matters is the assignment of functions to particular
rooms.

If the evaluation falls negative, the designer can modify the structure. In terms of
graphs this means adding or deleting a node, adding or deleting an edge, merging two
nodes into one, splitting a node into two, changing the type of node or changing the
label of edge. Given the editor, the architect is not bothered by the technicalities of the
graph theory. Adding (deleting) the node is for him adding (deleting) the room in the
house, adding (deleting) the edge is adding (deleting) the passage from one room to
another, merging two nodes is merging two rooms into one (e.g., joining bathroom and
WC), splitting two nodes is making two rooms out of one (e.g., dividing the hall into
two parts), changing the node type is changing the function of the room (e.g., changing
a dining room into a sleeping room), changing the label of edge is changing the relation
between rooms. Architects are trained in visual reasoning. Therefore, they find this tool
quite intuitive.

In the sequel we present results obtained in co-operation with E. Grabska, M. Nagl
and A. Schiirr under a joint research project [11] The aim of this project is to develop
prototype software that will assist an architect in the design of the layout of building.
Contrary to conventional expert systems proposed previously, like [18], our system can
be seen as a conceptual pre-processor for an architecture-oriented CAD-tool. It allows
the user to specify functional requirements for a single-family house in terms of graphs,
generates a proper graph grammar and translates the result into the input file for the
CAD-system ArchiCAD [2]. The architect obtains a draft layout of the house that can
be visualized and presented to the investor.

Fast prototyping is important in many areas and architecture is no exception. It
enables the designer to present the draft of the design to the client in short time and to

http://rcin.org.pl

158 A. BORKOWSKI

achieve approval or disapproval of the presented proposition. In this way the designer
knows the intention of the client. If the client accepts the general conception of the
design, the architect can start working on details.

Our system is generative: it does not produce a single layout but an entire fam­
ily of plausible layouts described by the graph grammar. In order to achieve that we
apply the Unified Modelling Language (UML) [5) for the specification purposes and
we take advantage of the FUJABA [19) - a convenient Java-based graph editor. It is
our intention to replace in the future FUJABA by the more powerful generative system
PROGRESS [37) developed at the RWTH, Aachen. The results described in this Section
can be viewed as the further development of the research reported previously in [25)
and [40).

FUJABA contains graph grammar language called story diagrams. This language
uses the UML class diagrams for specifying graph schemes. The UML activity diagrams
serve for the representation of control structures and the UML collaboration diagrams
provide the notation for graph rewriting rules. Story diagrams are internally translated
into Java classes and methods allowing seamless integration of the object-oriented and
graph-grammar-specific parts of the system.

People knowing the UML easily understand story diagrams. Class diagrams that
allow the user to define attributes, methods and relations between classes represent
graphs. Methods are implemented be means of story diagrams. Each story diagram
may ha,ve formal parameters for passing attribute values and object references. Story
diagrams follow the UML-notation of activity diagrams to represent graphically the
control flow. Thus, the basic structure of a story diagram consists of a number of ac­
tivities shown by rectangles with rounded left and right sides. Activities are connected
by transitions that specify the execution sequence. The execution of the story diagram
starts at the unique start activity represented by a filled circle. It proceeds by following
the outgoing transition(s). Multiple outgoing transitions are guarded by mutually exclu­
sive Boolean expressions shown in square brackets. Diamond-shaped activities express
branching.

The first step in describing the specification of an object is constructing a class di­
agram where the objects that will be transformed and the relations between them are
defined. The class diagram relevant for the specification of the single-family house is
shown in Fig. 6. The most important class in this specification is the class House that
represents the entire building. The class Area is the base class for the subclasses Sleepin­
gArea, CommunicationArea, RelaxationArea, EatingArea, GuestArea , CleaningArea.
These subclasses bear the main functions of the house. The class Room is the base
class for subclasses BedRoom, BathRoom, WCBathRoom, WC, Kitchen, DinningRoom,
Hall, LivingRoom that represent physical decomposition of the building. Finally, the
class User is the base class for subclasses Adult, Child, Guest that represent types of
inhabitants.

The following relations are defined between classes:

1. HouseContainsArea - between House and Area,

2. AreaContainsRoom- between Area and Room,

3. Uses between User and Room,

4. AreaAccessibility between Area_1 and Area_ 2,

5. RoomAccessibility between Room_1 and Room_ 2

http://rcin.org.pl

Project Areas Project

' fliil Acttvtty diagrams
t !iZ:1I House

&-12!:11ntemal
D addAcceslbiiiiV

D deiAcceslbiiiiV

D oenCommunlcaUonArea

D oenSieeplngArea

D oenEaUngArea

D oenRelaxatlonArea

D oenCieanlngArea

D oenOuestArea

D oenChosenAreas

D addEatingAreaUnk

D addSieeplngAreaUnk

D addCieanlngAreaUnk

D addOuestAreaUnk

D addRelaxationAreaUnk

D oenAreaRelaUons

D genRoomReiFromAreaRel

D trans1RandArea

D transtArea
• ~ SleeplngArea
&- 1E'1 CommunlcaUonArea
• ~ RelaxationArea
&- Ei! EatingArea
•Ll:aouestArea
• !iZ:1I CleanlngArea
t>-f!::i~Room
•~user
•1'1:1Area

,1!\1 I

GRAPH GRAMMARS IN CONCEPTUAL DESIGN

FIGURE 6. Class diagram of single-family house in FUJABA.

159

Until now we deliberately stripped our objects Wf the geometry: they were dimen­
sionless and the only thing that matters were their mutual functional relations. After
this phase of the design process is accomplished, one needs to proceed with the second
phase: the generation of the drawing of designed object. In our case this means the
drawing of the floor plan of the house.

The layout generator should take into consideration important requirements that
were not covered by the functional graph and the structural graph. Some of them,
taken from the guides on design in architecture [31] and [29), are listed below:

1. The outer contour of the house may be influenced either by the shape and dimen­
sion of the available piece of land or by the preferences of the client;

2. The orientation of the house with respect to the north-south axis must be taken
into account when placing the rooms best location of the room in the house with
regard to world directions (e.g., a living room should be located in the south,
whereas a kitchen in the north);

3. There are minimal values of areas for particular types of rooms (e.g., the a'rea of
living room should not be less than 18m2);

4. Most rooms should be kept as close as possible to square shape (exceptions are
communication areas and special purpose units);

http://rcin.org.pl

160 A. BORKOWSKI

5. Main dimensions of the building, like the distances between load carrying walls,
the height of the floors , etc ., are standardized and must follow certain modular
system;

6. Components like doors or windows are taken from the library and also have mod­
ular dimensions .

The present prototype of floor layout generator works under the assumption of
"rectangular world": the outer contour of the building is a rectangle and the house
consists of rectangular rooms. This assumption simplifies the strategy of composing the
floor layout. It will be abandoned in the next version of the program. The advanced
version of the floor generator will include also the positioning of the house over the
land piece and its orientation with respect to the north-south direction. At present this
orientation and the choice of the position of main entrance are done manually.

The floor layout generator scans the structural graph of the house node by node and
creates "embryos" of rooms: the objects that have already walls but are of square shape
with minimum allowable area. Such embryos are placed inside the preliminary contour
of the floor according to heuristic rules. Then they are allowed to expand until there
is no free space between adjacent rooms. The preliminary outer contour is allowed to
adjust itself in order to accommodate all necessary rooms.

The initial placement of room embryos follows three predefined patterns. The choice
of pattern depends upon the global area of the house requested by the client. The

Kitchen
15' 0" X 12' 6"

I
jJ

==-~~ .. ~-ili:t.\1'""'~"'" ' =·,~~J

FIGURE 7. Generated layout of house .

http://rcin.org.pl

GRAPH GRAMMARS IN CONCEPTUAL DESIGN 161

rooms in small houses are placed around a corridor leading from the main entrance.
For medium size houses this corridor is replaced by a hall and for big houses - by an
internal garden or atrium.

After the position and the size of each room have been found, the generator begins to
place doors and wall openings. These elements are located according to the accessibility
edges given in the structural graph. Additional requirements coming from the codes
of practice are also taken into account. Finally the windows are placed in the outer
walls. Their size and position follows from the illumination requirements for rooms of
the specific size and function.

Figure 7 shows the floor layout obtained by means of the prototype generator. Usu­
ally the floor layout generated automatically serves only as a raw material for further
improvement. At present the architect itself within the ArchiCAD must do all changes.
Our aim is to equip the next version of the system with a possibility of transferring
changes back to the level of graph-based functional-structural description. This will
significantly improve the flexibility and the assisting power of the tool.

4. Structural optimization

4.1. Formulation of problem

The problem of structural optimization is usually formulated as follows: given a set of
design variables and a set of constraints find a structure that is optimal in certain sense
and simultaneously feasible. The condition of optimality is fulfilled if a given function of
the design variables attains its extreme (scalar optimization) or if a compromise betwe~n
several conflicting design goals is found (vector optimization). The feasibility condition
requires the design variables to satisfy all constraints imposed of the structure.

Depending upon the type of design variables two alternative approaches to the con­
sidered problem can be distinguished. In the smooth or continuum approach (Fig. 8a)
one looks for an optimum shape and, possibly, for optimum distribution of internal
properties of the body. In this case the design variables are smooth functions of the
coordinates, the constraints may include differential equations and the design goal is
usually expressed in the form of integral over the body. Finding a function that brings
an integral over a given domain to its extreme is the well known problem of the variation
calculus. Unfortunately, few practically important problems can be solved this way.

An alternative is to consider the structure being composed of a finite number of
components. The truss shown in Fig. 8b is a natural example: it consists of 6 nodes

(a) .,.-·----- --...:.--

FIGURE 8. Alternative approaches in optimum structural design: (a) smooth; (b) discrete.

http://rcin.org.pl

162 A. BORKOWSKI

connected by 9 bars. The design variables are this time pure numbers and the design
goals can be expressed in terms of functions as opposed to functionals present in the
smooth formulation.

Simplicity of the discrete case is misleading: discrete problems are computationally
expensive due to their combinatorial nature. The full formulation of such problems
should cover the following levels of optimization:

1. the layout2) level,

2. the geometry level,

3. the member level.

At the layout level one has to decide how many components are to be used and
how these components are to be interconnected. The natural formalism for expressing
structural layouts is the graph theory. It allows the user to construct, evaluate and
manipulate graphs that bear all necessary information.

At the geometry level we assume the layout to be fixed and we consider the best
positioning of individual components. In the case of truss depicted in Fig. 8b this means
looking for the optimum positions of the nodes. Certain constraints may appear at this
level: usually the supports have given a priori positions, sometimes the contour of the
structure must conform to certain pattern, etc.

The lowest level is related to the properties of individual members. Given the layout
and the geometry, one may still look for the best sizes of cross sections or for the most
suitable distribution of material properties (the Young module, the yield stress, etc.).

If one considers only the levels 2 and 3, i.e. if one optimizes the geometry and the
structural components under the given layout, then the problem falls into the class of
mathematical programming problems [6]:

(2)

and can be solved by means of a suitable numerical method [36]. Here the design goal is
to minimize the function f(xk)called the cost function, Xk stand for the design variables
and the constraints gz include not only the design variables but the state variables Yj as
well. This type of structural optimum design has very rich literature and can regarded
as more or less exhausted as a topic of research.

4.2. Previous attempts on layout optimization

Contrary to that, it is still an open question how to find the best structural layout.
Many researchers devoted their effort to it (compare, e.g. , the reviews (30] and (42])
but the results are still far from being satisfactory. Perhaps the best method for today,
called adaptive optimization [3] , was inspired by the living nature. A bone is the main
load carrying component of the human body. It develops its sophisticated and highly
efficient internal structure (Fig. 9) during the phase of growth. The external surface
remains smooth and resembles a tube whereas the internal skeleton follows the lines of
principal stresses. Notably, this process is reversible: the astronauts suffer from their
bones becoming weaker after a long stay in the space. At the absence of loading the
unnecessary material is removed from the bone.

2)Many authors substitute ''topology" for the layout . This should not be done since mathematicians
already use the term "topology" for different purpose.

http://rcin.org.pl

GRAPH GRAMMARS IN CONCEPTUAL DESIGN 163

FIGURE 9. Structure of bone.

Figure 10 taken from the paper by K.-U. Bletzinger, S. Kimmich and E. Ramm [4]
shows typical result of the adaptive optimization. The solid block visible at the left side
was taken as an initial guess for the cantilever loaded by a single vertical force. The
hollow shape at the right is the final result. Notably, this result requires heuristic post
processing since the adaptive process itself ends up with a discrete truss-like structure,
as can be seen in the lower part of the figure.

The adaptive method circumvents the difficulty in solving directly the layout op­
timization problem. It starts with a homogeneous solid of an arbitrary simple shape
and relies upon the users ability to extract optimum topology from the truss-like skele­
ton. Another interesting indirect method has been proposed by D.M. Stal and G.M.
Turkiyyah [38]. This method introduces the notion of the structural backbone that is
allowed to develop in the gradual optimization process.

Probably the first direct method of the layout optimization was the ground structure
concept developed in early 1960's by W. S. Dorn, R. E. Gomory and H. J. Greenberg [16].
It was applicable only for trusses and excluded optimization of nodes. Figure 11 shows
the ground structure for the rectangular truss. The positions of all nodes are fixed and
all possible connections between them are taken into account. Such ground structure
serves as an initial solution for the numerical optimizer - the simplex method of linear
programming - with the cross sectional areas of the bars as the design variables. The
optimum solution includes bars with cross sectional areas close to zero. Removing them
one obtains the optimum layout. Though simple in principle, this method proved to be
numerically unstable and is not used today.

http://rcin.org.pl

164

81ep: s

A. BORKOWSKI

100"11> Objc:ctiY&: .Sirain Energy

l1enlion

====== 'l'opo&ISY Optin1ir.u.1iOD ======:>

Step: 15

,....
I
I
I
I

I
I
I
I
I

Slcp: ~

FIGURE 10. Example of adaptive optimization.

FIGURE 11. Example of adaptive optimization.

Slep: 90

A novel concept of topological derivative was proposed recently by Z. Mr6z and
D. Bojczuk (35]. They define a set of basic transformations like introducing a new
node (Fig. 12a) or splitting an existing node (Fig. 12b) and consider the influence of
such transformation upon the cost function. The derivative with respect to the design
variable Sj gives the user information about the slope of the cost surface and allows him
to look for the optimum by means of the gradient-based search.

Mr6z and Bojczuk adopted gradual growth of the structural length as the main
strategy. They were able to show that at certain characteristic values of the length

http://rcin.org.pl

2EC U
P

2 2 ac
100

20

a)

b)

GRAPH GRAMMARS IN CONCEPTUAL DESIGN 165

.. ..

FIGURE 12. Concept of topological derivative.

2.0 11c2=2.96

FIGURE 13. Topological bifurcations.

http://rcin.org.pl

166 A. BoR.KowsKI

the optimum layout changes and called this phenomenon the topological bifurcation
(Fig. 13). Changes in the layout may introduce discontinuities in the cost function.
Therefore the topological derivative must be understood in the generalized sense.

The Mr6z-Bojczuk method leads to interesting and practically meaningful results.
Figure 14 shows the evolution of cantilever truss optimum in the sense of minimum
compliance. The buckling constraints were neglected in this case. After introducing
them and changing the design goal to the minimum weight, one obtains substantially
different evolution depicted in Fig. 15.

(1)

(2)

FIGURE 14. Evolution of truss optimal in sense of minimum compliance: (1) initial stage;
(2) continuation .

It is well known that the problem of layout optimization for a minimum compli­
ance has been solved analytically by A.G.M. Michell [34] already in 1904. His solution
disregards buckling and consists of an infinite number of logarithmic spirals that split
into two buckets originating at the supports. The discretized form of this solution is
shown in Fig. 16. The solution obtained by Mr6z and Bojczuk differs from the Michell's
truss. The probable cause of this discrepancy is the non-differentiability of the cost
function in the layout optimization problem. The generalized derivative introduced in
the Mr6z-Bojczuk method may lead to sub optimal solutions.

http://rcin.org.pl

GRAPH GRAMMARS IN CONCEPTUAL DESIGN 167

(1)

a) b)

X
p

I• •I I• .. I

c) d)

Yt Yt
<D

(2)

a)

I· 1=3a

1=4a

FIGURE 15. Evolution of truss optimal in sense of minimum weight : (1) initial stage; (2) continuation .

http://rcin.org.pl

168 A. BORKOWSKI

FIGURE 16. Michell's truss.

4.3. Graph-based approach combined with genetic search

Since the optimization of layout leads to discontinuities of the cost function, natural
candidates for numerical optimizers are methods that do not rely on the gradient of
that function. A broad class of such methods is available in the theory of optimization,
most of them including the component of random search in the space of solutions. The
genetic algorithms (compare, e.g. the excellent monograph by Z. Michalewicz [33]) that
became popular recently belong to this class.

The concept of genetic algorithm has been borrowed from the Darwin's evolution
theory. In the classical form proposed by J .H. Holland [28] the properties of an op­
timized object are coded in the form of binary string called chromosome. Generating
chromosomes at random forms an initial population of objects. The iterative process of
evolution consists of mating objects taken from the current population (the parents),
producing their off springs and allowing the best of them to form the next population.
The objects are evaluated by the fitness function that resembles the cost function in
conventional optimization.

Nowadays the theory of genetic search is quite elaborate: many ways were pro­
posed regarding coding conventions for chromosomes, genetic operations that produce
off springs, selection strategies, etc. Taking advantage of those proposals several authors
applied the genetic search to the structural optimization (compare, e.g., the papers by
T. Burczynski [12], K. De Jong and T. Arciszewski [15], H. Eschenauer and A. Schu­
macher [17] or P. Hajela and J . Lee [26]).

Despite the difference in the optimization tool, most of those papers followed the
methodology of adaptive optimization proposed by Bendsoe and Kikuchi. This means

http://rcin.org.pl

GRAPH GRAMMARS IN CONCEPTUAL DESIGN 169

that the layout was neither explicitly represented nor explicitly optimized. For example,
the bubble method proposed in [17] starts with a random number of cavities (bubbles)
introduced into a homogeneous solid and let those cavities evolve into the final layout.

The research project started recently by the author of present paper in the collabo­
ration with E. Grabska aims at exploiting the advantages of graphs as the language for
representing structural layouts. Figure 17 shows the graph grammar for Michell's truss.
Similarly as it was done with the floor layouts, one can build a graph-based generative
system that will produce plausible initial populations of structural layouts. Applying
genetic evolution to such populations one may expect interesting optimal or sub opti­
mal layouts to emerge. The first attempts made in the domain of industrial design [27]
indicate that this approach may be quite successful.

FIGURE 17. Michell's truss.

5. Conclusions

In this article we have concentrated on the passage from the functional requirements
of a designed object to the object structure. We restricted our consideration to a rather
simple example of designing a house since the methodology remains valid for any ob­
ject. In our example it is easy to distinguish various kinds of areas, rooms and relations
between them and to show that graphs and graph transformations are useful as knowl­
edge representation in computer aided design. The presented methodology seems to be
appropriate for architects because they often use graphs - sometimes being unaware
of it.

The second part of the paper is devoted to the difficult problem of structural layout
optimization. Having compared different indirect and direct methods proposed so far,

http://rcin.org.pl

170 A. BORKOWSKI

we argue that the graph-oriented representation combined with the genetic search may
lead to efficient methodology. At present this approach is at the preliminary phase and
much effort is still needed before reaching the maturity for practical applications.

Acknowledgement

Partial financial support of the Alexander von Humboldt Foundation under the
joint Polish-German research project "Graph-based tools for conceptual design in Civil
Engineering" is gratefully acknowledged.

References

1. H. ALTSHULLER, Algorithm of Invention (in Russian), Moskovskij Rabochij Publishing House,
Moscow 1969.

2. ArchiCAD 6.5 Reference guide, Graphisoft, Budapest 2000.

3. M.P. BENDSOE, Optimization of Structural Topology, Shape and Material, Springer, Berlin 1990.

4. K.-U BLETZINGER, S. KIMMICH and E. RAMM, Efficient modeling in shape optimal design. in:
B.W.E. ToPPING (Ed.), Computational Structures Technology, Herriot-Watt University, pp.1-15,
Edinburgh 1991.

5. G. BoocH, J. RuMBAUGH and I. JACOBSON, The Unified Modeling Language User Guide, Addison
Wesley Longman Reading, 1999.

6. A. BoRKOWSKI and ST. JENDO, Mathematical Programming, Vol.2 of the Series "Structural Op­
timization" ed. by M. SAvE and W. PRAGER, Plenum Press, New York 1990.

7. A. BoRKOWSKI and E. GRABSKA, Converting function into object, in: I. SMITH (Ed.), Proc. 5th
EG-SEA-AI Workshop on Structural Engineering Applications of Artificial Intelligence, LNCS
1454, Springer-Verlag, pp.434-439, Berlin 1998.

8. A. BoRKOWSKI (Ed.), Artificial Intelligence in Structural Engineering, Proc. 6th EG-SEA-AI
Workshop, Wierzba June 1999, WNT, Warszawa 1999.

9. A. BoRKOWSKI, E. GRABSKA and G. HLINIAK, Function-Structure Computer-Aided Design
Model, Machine GRAPHICS and VISION, Vol.9, pp.367-383, 1999.

10. A. BoRKOWSKI, E. GRABSKA and J. PoKOJSKI, Computer-Aided Innovative Design (in Pol­
ish), Final Report of the Research Project No. 8TllF02611 financed by the Polish Committee of
Research, IPPT PAN, Warszawa 1999.

11. A. BoRKOWSKI, E. GRABSKA, M. NAGL and A. ScHORR, Graph-based tools for conceptual design
in Civil Engineering, Joint research project financed by the BMBF, Warsaw-Cracow-Aachen­
Munich 2000-2002.

12. T. BuRCZYNSKI, Evolutionary algorithms: applications in mechanics (in Polish), in: T. BuR­
czvriiSKI and W. CHOLEWA (Eds.), Proceedings of Symposium on Methods of Artificial Intelligence
in Mechanics and Mechanical Engineering (AI-MECH 2000}, Gliwice 2000.

13. N. CHOMSKY, Aspects of Theory of Syntax, MIT Press, Cambridge 1965.

14. E.L. CoLE JR., Functional analysis: a system conceptual design tool, IEEE Trans. on Aerospace
& Electronic Systems, 34 (2), pp.354-365, 1998.

15. K. DEJONG and T. ARCISZEWSKI, An overview of evolutionary computation and its application
to engineering design, in: A. BoRKOWSKI (Ed.), Artificial Intelligence in Structural Engineering,
Proc. of the 6th EG-SEA-AI Workshop, Wierzba June 1999, pp.9-22, WNT, Warszawa 1999.

16. W.S. DoRN, R.E. GoMORY and H.J. GREENBERG, Automatic design of optimal structures.
Journal de Mechanique, 3, pp.25-52, 1964.

http://rcin.org.pl

GRAPH GRAMMARS IN CONCEPTUAL DESIGN 171

17. H.A. EscHENAUER and A. ScHUMACHER, Bubble method for topology and shape optimization of
structures, Structural Optimization, 8, pp.42-51, 1994.

18. U. FLEMMING, R. CovoNE, T. GAVIN and M. RvcHTER, A generative expert system for the
design of building layouts - version 2, Artificial Intelligence in Engineering: Design, in: B.H. V.
ToPPING (Ed.), Computational Mechanics Publications, pp.445-464, Southampton 1995.

19. T. FISCHER, J. NIERE, L. ToRUNSKI and A. ZONDORF, Story diagrams: a new graph rewriting
language based on the Unified Modeling Language and Java, in: Proceedings of TAGT'98 {Theory
and Application of Graph Transformations}, LNCS , Springer-Verlag, Berlin 1999.

20. J. GERO, M.-L. MAHER and F. SuowEEKS (Eds.), ?reprints of Computational Models of Creative
design, Key Center of Design Computing, Melbourne, 1995.

21. H. GDTTLER, J. GONTHER and G. NIESKENS, Use graph grammars to design CAD-systems!, in:
G. RozENBERG (Ed.), 4th International Workshop on Graph Grammars and Their Applications
to Computer Science, LNCS 532, pp.396-410, Springer-Verlag, Berlin 1991.

22. E. GRABSKA, Theoretical concepts of graphical modelling. Part one: Realization of CP-graphs,
Machine GRAPHICS and VISION, 2(1), pp.3-38, 1993; Part two: CP-graph grammars and lan­
guages, Machine GRAPHICS and VISION, 2(2), pp.149-178, 1993.

23. E. GRABSKA, Graphs and designing, in: H.J. ScHNEIDER and H. EHRIG (Eds.), Graph Transfor­
mations in Computer Science, LNCS 776, pp.188-203, Springer-Verlag, Berlin 1994.

24. E. GRABSKA and A. BoRKOWSKI, Assisting creativity by composite representation, in: J .S. GERO
and F. SuowEEKS (Eds.), Artificial Intelligence in Design'96, pp.743-760, Kluwer Academic Pub­
lishers, Dordrecht 1996.

25. E. GRABSKA and A. BoRKOWSKI, Generating floor layouts by means of composite representation,
in: Proc. Worldwide ECCE Symp. on Computers in the Practice of Building and Civil Engineering,
pp.154-158, 1997.

26. P. HAJELA and J. LEE, Genetic algorithms in truss topological optimization, Journal of Solids
and Structures, Vol.32, No.22, pp.3341-3357, 1995.

27. G. HLINIAK and B. STRUG, Graph grammars and evolutionary methods in graphic design, Ma­
chine GRAPHICS & VISION, Vol.9, 1(2), pp.5-13, 2000.

28. J .H. HoLLAND, Adaptation in Natural and Artificial Systems, The University of Michigan Press,
Ann Arbor 1975.

29. E. NEUFERT, Bauentwurfslehre, Vieweg & Sohn, Braunschweig-Wiesbaden 1992.

30. U. KIRSCH, Optimal topologies of structures, Applied Mechanics Reviews, 42, pp.223-239, 1989.

31. W. KORZENIEWSKI, Appartement Housing. Architect's Guide (in Polish), Arkady, Warszawa 1989.

32. M.-L. MAHER and P.X. Wu, Creativity through eo-evolutionary design, in: J. GERO, M.-L.
MAHER and F. SuowEEKS (Eds.), ?reprints of Computational Models of Creative Design, Key
Center of Design Computing, Melbourne, pp.244-259, 1998.

33. Z. MICHALEWICZ, Genetic Algorithms +Data Structures= Evolution Programs, Springer-Verlag,
New York 1994.

34. A. G. M. M I CH ELL, The limits of economy of material in frame structures, Philosophical Magazine,
Ser.6, 8, 1904.

35. Z. MR6z and D. BoJczuK, Topological derivative concept in optimal design of structures, in:
Proc. 2nd World Congress of Structural and Multidisciplinary Optimization, Amherst, May 1999.

36. K. SCHITTKOWSKI, Software for mathematical programming, in: K. SCHITTKOWSKI (Ed.), Compu­
tational Mathematical Programming, NATO Advanced Study Institute Series, Vol.F15, Springer­
Verlag, Berlin 1985.

37. A. ScHORR, A. WINTER and A. ZONDORF, Graph grammar engineering with PROGRESS, in:
W . SCHAFER and P. BoTELLA (Eds.), Proc. 5th European Software Engineering Conference
(ESEC'95}, LNCS 989, Springer-Verlag, Berlin, pp.219-234, 1995.

http://rcin.org.pl

172 A. BORKOWSKI

38. D.M. STAL and G. M. TuRKIYYAH, Skeleton-based techniques for the creative synthesis of struc­
tural shapes, in: J.S. GERO and F. SuowEEKS (Eds.), Artificial Intelligence in Design '96, Kluwer
Academic Publishers, pp.761-780, Dordrecht 1996.

39. G. STINY, Introduction to Shape and Shape Grammars, Environment and Planning B: Planning
and Design, Vol.7, p.343-351, 1980.

40. J. SzuBA, E. GRABSKA and A. BoRKOWSKI, Graph visualization in ArchiCAD, in: M. NAGL, A.
ScHORR and M. MONCH (Eds.), Application of Graph Transformations with Industrial Relevance,
LNCS 1779, Springer-Verlag, pp.241-246, 2000.

41. G. RozENBERG (Ed.), Handbook of Graph Grammars and Computing by Graph Transformation,
World Science, 1997.

42. G.I.N. RozvANY, M.P. BENDSOE and U. KIRSCH, Layout optimization of structures, Applied
Mechanics Reviews, 48, pp.41-119, 1995.

