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This paper deals with new perspectives for conceptual design in engineering that are opened 
by graph grammars and graph transformations. Due to their expressive power and natural 
visualization these knowledge representation tools allow the designer to consider general 
properties of the artifact prior to be occupied by details. Two fields of Civil Engineering 
were chosen for validating the proposed methodology. The first one is the design of floor 
layouts for single-family houses. The second area is the optimum design of the layout of 
trusses. Despite their apparent dissimilarity both problems can be efficiently tackled by the 
graph-based approach. The paper considers the theoretical background and the computer 
implementation issues of the above-mentioned problems. 
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1. Introduction 

It is well known that a good concept is worth months of improving details of the 
project. In the ancient Greece many beautiful temples were erected but they all followed 
rather crude concept of a column-beam structure (Fig. la). As the result, Greek temples 
were filled with grids of columns standing at a distance of less than 5 m from each other. 
Reinventing the Sumerian arch in the ancient Rome brought revolutionary change in 
architecture. Roman aqueducts and bridges gained larger spans and the magnificent 
Pantheon (Fig. lb) with its 43 m of free space inside makes us feel impressed even 
today. 

In the course of maturing and collecting experience of many generations of archi­
tects and builders the domain of Civil Engineering became less and less susceptible to 
revolutionary changes. For example, the introduction of skeletal structures made from 
the cast iron in the 19th century (Fig. le) increased the span only by the order of 40% 
as compared to the Pantheon. Nevertheless, it is much more than the typical gain of 5 
to 10% achievable by the optimization within the frame of given concept. 

The progress achieved during the last decades in CAD-tools is remarkable. It is easy 
to generate 2D and 3D drawings of the designed building, to analyze its response to 
external actions, to evaluate its construction costs and to plan the process of construc­
tion. On the other hand, there seem to be no computer-based counterpart of the sheet of 
paper on which the designer makes conceptual sketches. Moreover, there is an apparent 
temptation to skip the phase of conceptual design and to begin directly with composing 
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FIGURE 1. Conceptual changes in structures: (a) ancient Greek time; 
(b) Roman time; (c) 19th century. 
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the building of the routine library components. In that sense, the computerized design 
office has the tendency towards reproduction of known solutions instead of looking for 
novelty. 

The necessity to stimulate creativity of the designer is obvious and many researchers 
look for ways to exploit the advantages of computer in that task (compare the proceed­
ings of a conference devoted to the creative design [20]) . Perhaps the most known 
software is the Invention Machine based upon the research done in the former Soviet 
Union by H. Altshuller [1]. Most of "invention machines" are based on the following 
pattern. First, the user is encouraged to formulate the problem that has to be solved. 
Then associations to the basic principles of mathematics and physics are revealed. If 
it is not possible to apply those principles directly, then the system presents solutions 
of similar problems obtained by other inventors. The strength of such systems lies in 
their case bases. Therefore, one could name this methodology the case-based creativity 
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support. It is important that the cases are indexed by primary principles used to solve 
them. This allows the user to find solutions existing in domains being far from the area 
of his work. The reasoning through comparison and analogy is probably one of the most 
important ingredients of the human creativity. 

Other possibility of looking for novelty is random or partly random search. Since 
computer can generate large number of trial solutions, there is a chance that one of 
them might prove to be useful as such or trigger the designer's imagination and let him 
develop previously unknown artifact. This way of reasoning is followed by creativity 
support systems that adopt the genetic algorithms. Perhaps pioneering work in this area 
was done by M.-1. Maher and P.X. Wu [32). They looked for novel structural schemes 
by applying genetic operators for standard solutions. Similar results were obtained by 
G. Hliniak and B.Strug [27] in the domain of graphic design. 

In this paper we want to confine the attention of reader to an interesting alternative 
in the computer-assisted creative design. Pioneered by N. Chomsky [13], the linguistic 
approach to world modeling found applications in many areas. The core idea in this 
methodology is to treat certain primitives as letters of an alphabet and to interpret 
more complex objects and assemblies as words or sentences of a language based upon 
the alphabet. Rules governing generation of words and sentences define a grammar of the 
concerned language. In terms of the world modeling such a grammar generates a class of 
objects that are considered plausible. Thus, grammars provide very natural knowledge 
representation formalism for computer-based tools that should aid the design. 

2. Graph-based design knowledge representation 

2.1. Graphs and graph transformations 

Since G. Stiny [39] has developed the shape grammars, many researchers showed 
how such grammars allow the architect to capture essential features of a certain style of 
the building (e.g. a Victorian house or a Roman villa). However, the primitives of shape 
grammars are purely geometrical which restricts their descriptive power. Substantial 
progress was achieved after the graph grammars were introduced and developed ( com­
pare, e.g. [41]). Graphs are capable to bear much more information than linear strings or 
shapes. Hence, their applicability for CAD-systems was immediately appreciated (21]. 

A special form of graph-based representation has been developed by E. Grabska [22, 
23]. This formalism distinguishes the composition graphs (CP-graphs) that describe the 
structure of the object from the realization schemes describing the visualization. In 1996-
98 Grabska's model served as the basic knowledge representation scheme in the research 
project [10] aimed at developing intelligent design-assisting tools for engineering. The 
results of that project were reported at the conferences in Stanford [24], Ascona (7] and 
Wierzba [8]. 

It turned out that by introducing an additional functionality graph into the orig­
inal Grabska's model one can conveniently reason about conceptual solutions for the 
designed object. The functionality analysis of as the starting point of the conceptual 
design has been proposed by several researchers (compare, e.g. [14]). Such methodology 
allows the designer to distract himself from details and to consider the functionality of 
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the designed object, the constraints and the requirements to be met and the possible 
ways of selecting optimum alternatives. 

2.2. Composite representation 

This model of knowledge representation consists of three main ingredients: the com­
position graph (CP-graph), the realization scheme and the control diagram. Figure 2 
shows an example of the CP-graph: the objects a and b are linked by an edge corre­
sponding to certain relation. The left end of this edge is attached to an out-bond of 
the node a. The opposite end enters an in-bond of the node b. Distinguishing in- and 
out-bonds is useful in transformations that convert one graph into another. 

FIGURE 2. Simple CP-graph. 

The mostly used transformation is a production or graph rewrite rule: 

p:L-tR (1) 

Here p is the production label, L stands for the left-hand side of the rule and R is 
its right-hand side. The operator --+ indicates that the graph L is transformed into the 
graph R. 

CP-graphs are used for storing structural information about objects. Data related 
to geometry and visualization are described by realization schemes. In particular, such 
schemes can contain predicates that constrain certain features of the described objects. 
Libraries of primitive objects are also attached to realization schemes. 

Finally, all information related to the generation of objects is stored in control 
diagrams. These diagrams describe the sequence in which particular productions are 
applied. The result of applying a control diagram is generating a class of objects. In the 
context of design these are the objects plausible from the point of view of the designer. 
Further details on the composite representation can be found in [22]. 

2.3. Building functionality graph 

The experience gained in the project [10] showed that the composition graphs should 
be further subdivided into the functionality graphs and the structural graphs. The nodes 
of functionality graph correspond to specific functions that have to be carried out by the 
designed object. The edges of this graph describe the relations between those functions. 
The functionality graph describes an object at the highest level of abstraction: no physi­
cal components are attached to this graph. Such components correspond to the nodes of 
structural graph. The edges of the latter describe relations between components. Thus, 
the structural graph reflects sub structuring of the designed artifact. 
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It is a common opinion among designers that the analysis of functionality should pre­
cede the sub structuring. Such a methodology allows the designer to consider carefully 
the most general aspects of the usage of the object prior to starting the detailed design. 
The prototype software developed at the Institute of Computer Science of the Jagiel­
lonian University in Cracow contains a graphical editor for the purpose of functionality 
analysis. Figure 3 shows the copy of its screen. 
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FIGURE 3. Editor of functionality graphs. 

The list of functions selected by the user is shown on the left panel. These turn 
out to be the typical functions of a single-family house. The main panel contains the 
functionality graph. The functions listed at the left are displayed in different colors. 
After the user attaches a particular function to the node, this node is displayed in the 
proper col or. The tools displayed in the menu bar allow the user to create new nodes 
and edges, to delete them, to split a node into two nodes or to merge two nodes into one. 
Each operation is mirrored to the symbolic description of the graph that is maintained 
in the background. 

The editor separates the designer from the technicalities of the model. He or she can 
concentrate attention on the substantial features of the designed object, namely, on its 
functions and the relations between them. 

2.4. Building structural graph 

In the second phase the functionality graph is mapped into a structural graph of 
the object. The nodes of the structural graph correspond to the components of the 
object; the edges represent relations between the components. Thus, the structural 
graph describes a physical decomposition of the artefact. By assigning the functions 
to the components one aims at satisfying all the functional requirements by the object 
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viewed as an assembly of its components. The transition from the functionality graph 
to the structural graph is neither unique nor straightforward. Hence, the designer needs 
usually several iterative loops before the satisfactory solution is found (Fig. 4) . 
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FIGURE 4. Editor of functionality graphs. 

3. Floor layout design l) 

Let us clarify the idea of our approach on an example of designing a single-family 
house. The functional requirements for such a house are straightforward. Given the 
number of inhabitants, consisting of adults, children and guests, one has to arrange the 
space in the house so that they can sleep, prepare and consume meals, meet each other 
and rest conveniently. It is natural, therefore, to consider the house as an assembly of 
the sleeping area, the social area, the communication area, the guest area, etc. The size 
of each area depends upon the number of relevant inhabitants. The total area of the 
house is given as an a priori constraint. 

The user of our systems begins with defining functional requirements. This is accom­
plished by means of a graphical editor. Figure 5 shows its window. The left part of it 
contains the list of functions arranged in a tree. The right part shows the functionality 
graph. The user can add or delete nodes representing functions, as well as perform edit 
the edges representing functional relations. 

In the second step the structural graph is generated. The nodes of this graph rep­
resent the rooms of the house; the edges between the nodes represent the accessibility 
relations between the rooms. After the structural graph has been generated, the de­
signer evaluates it. Note that at this stage the level of abstraction remains high: the 

1)This Section is based upon results obtained by J . Szuba in the course of preparing his Ph. D.-thesis. 
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FIGURE 5. Editor of functional decomposition. 

geometry is still irrelevant, what matters is the assignment of functions to particular 
rooms. 

If the evaluation falls negative, the designer can modify the structure. In terms of 
graphs this means adding or deleting a node, adding or deleting an edge, merging two 
nodes into one, splitting a node into two, changing the type of node or changing the 
label of edge. Given the editor, the architect is not bothered by the technicalities of the 
graph theory. Adding (deleting) the node is for him adding (deleting) the room in the 
house, adding (deleting) the edge is adding (deleting) the passage from one room to 
another, merging two nodes is merging two rooms into one (e.g., joining bathroom and 
WC), splitting two nodes is making two rooms out of one (e.g., dividing the hall into 
two parts), changing the node type is changing the function of the room (e.g., changing 
a dining room into a sleeping room), changing the label of edge is changing the relation 
between rooms. Architects are trained in visual reasoning. Therefore, they find this tool 
quite intuitive. 

In the sequel we present results obtained in co-operation with E. Grabska, M. Nagl 
and A. Schiirr under a joint research project [11] The aim of this project is to develop 
prototype software that will assist an architect in the design of the layout of building. 
Contrary to conventional expert systems proposed previously, like [18], our system can 
be seen as a conceptual pre-processor for an architecture-oriented CAD-tool. It allows 
the user to specify functional requirements for a single-family house in terms of graphs, 
generates a proper graph grammar and translates the result into the input file for the 
CAD-system ArchiCAD [2]. The architect obtains a draft layout of the house that can 
be visualized and presented to the investor. 

Fast prototyping is important in many areas and architecture is no exception. It 
enables the designer to present the draft of the design to the client in short time and to 
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achieve approval or disapproval of the presented proposition. In this way the designer 
knows the intention of the client. If the client accepts the general conception of the 
design, the architect can start working on details. 

Our system is generative: it does not produce a single layout but an entire fam­
ily of plausible layouts described by the graph grammar. In order to achieve that we 
apply the Unified Modelling Language (UML) [5) for the specification purposes and 
we take advantage of the FUJABA [19) - a convenient Java-based graph editor. It is 
our intention to replace in the future FUJABA by the more powerful generative system 
PROGRESS [37) developed at the RWTH, Aachen. The results described in this Section 
can be viewed as the further development of the research reported previously in [25) 
and [40). 

FUJABA contains graph grammar language called story diagrams. This language 
uses the UML class diagrams for specifying graph schemes. The UML activity diagrams 
serve for the representation of control structures and the UML collaboration diagrams 
provide the notation for graph rewriting rules. Story diagrams are internally translated 
into Java classes and methods allowing seamless integration of the object-oriented and 
graph-grammar-specific parts of the system. 

People knowing the UML easily understand story diagrams. Class diagrams that 
allow the user to define attributes, methods and relations between classes represent 
graphs. Methods are implemented be means of story diagrams. Each story diagram 
may ha,ve formal parameters for passing attribute values and object references. Story 
diagrams follow the UML-notation of activity diagrams to represent graphically the 
control flow. Thus, the basic structure of a story diagram consists of a number of ac­
tivities shown by rectangles with rounded left and right sides. Activities are connected 
by transitions that specify the execution sequence. The execution of the story diagram 
starts at the unique start activity represented by a filled circle. It proceeds by following 
the outgoing transition(s). Multiple outgoing transitions are guarded by mutually exclu­
sive Boolean expressions shown in square brackets. Diamond-shaped activities express 
branching. 

The first step in describing the specification of an object is constructing a class di­
agram where the objects that will be transformed and the relations between them are 
defined. The class diagram relevant for the specification of the single-family house is 
shown in Fig. 6. The most important class in this specification is the class House that 
represents the entire building. The class Area is the base class for the subclasses Sleepin­
gArea, CommunicationArea, RelaxationArea, EatingArea, GuestArea , CleaningArea. 
These subclasses bear the main functions of the house. The class Room is the base 
class for subclasses BedRoom, BathRoom, WCBathRoom, WC, Kitchen, DinningRoom, 
Hall, LivingRoom that represent physical decomposition of the building. Finally, the 
class User is the base class for subclasses Adult, Child, Guest that represent types of 
inhabitants. 

The following relations are defined between classes: 

1. HouseContainsArea - between House and Area, 

2. AreaContainsRoom- between Area and Room, 

3. Uses between User and Room, 

4. AreaAccessibility between Area_1 and Area_ 2, 

5. RoomAccessibility between Room_1 and Room_ 2 
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FIGURE 6. Class diagram of single-family house in FUJABA. 
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Until now we deliberately stripped our objects Wf the geometry: they were dimen­
sionless and the only thing that matters were their mutual functional relations. After 
this phase of the design process is accomplished, one needs to proceed with the second 
phase: the generation of the drawing of designed object. In our case this means the 
drawing of the floor plan of the house. 

The layout generator should take into consideration important requirements that 
were not covered by the functional graph and the structural graph. Some of them, 
taken from the guides on design in architecture [31] and [29), are listed below: 

1. The outer contour of the house may be influenced either by the shape and dimen­
sion of the available piece of land or by the preferences of the client; 

2. The orientation of the house with respect to the north-south axis must be taken 
into account when placing the rooms best location of the room in the house with 
regard to world directions (e.g., a living room should be located in the south, 
whereas a kitchen in the north); 

3. There are minimal values of areas for particular types of rooms (e.g., the a'rea of 
living room should not be less than 18m2); 

4. Most rooms should be kept as close as possible to square shape (exceptions are 
communication areas and special purpose units); 
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5. Main dimensions of the building, like the distances between load carrying walls, 
the height of the floors , etc ., are standardized and must follow certain modular 
system; 

6. Components like doors or windows are taken from the library and also have mod­
ular dimensions . 

The present prototype of floor layout generator works under the assumption of 
"rectangular world": the outer contour of the building is a rectangle and the house 
consists of rectangular rooms. This assumption simplifies the strategy of composing the 
floor layout. It will be abandoned in the next version of the program. The advanced 
version of the floor generator will include also the positioning of the house over the 
land piece and its orientation with respect to the north-south direction. At present this 
orientation and the choice of the position of main entrance are done manually. 

The floor layout generator scans the structural graph of the house node by node and 
creates "embryos" of rooms: the objects that have already walls but are of square shape 
with minimum allowable area. Such embryos are placed inside the preliminary contour 
of the floor according to heuristic rules. Then they are allowed to expand until there 
is no free space between adjacent rooms. The preliminary outer contour is allowed to 
adjust itself in order to accommodate all necessary rooms. 

The initial placement of room embryos follows three predefined patterns. The choice 
of pattern depends upon the global area of the house requested by the client. The 
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FIGURE 7. Generated layout of house . 
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rooms in small houses are placed around a corridor leading from the main entrance. 
For medium size houses this corridor is replaced by a hall and for big houses - by an 
internal garden or atrium. 

After the position and the size of each room have been found, the generator begins to 
place doors and wall openings. These elements are located according to the accessibility 
edges given in the structural graph. Additional requirements coming from the codes 
of practice are also taken into account. Finally the windows are placed in the outer 
walls. Their size and position follows from the illumination requirements for rooms of 
the specific size and function. 

Figure 7 shows the floor layout obtained by means of the prototype generator. Usu­
ally the floor layout generated automatically serves only as a raw material for further 
improvement. At present the architect itself within the ArchiCAD must do all changes. 
Our aim is to equip the next version of the system with a possibility of transferring 
changes back to the level of graph-based functional-structural description. This will 
significantly improve the flexibility and the assisting power of the tool. 

4. Structural optimization 

4.1. Formulation of problem 

The problem of structural optimization is usually formulated as follows: given a set of 
design variables and a set of constraints find a structure that is optimal in certain sense 
and simultaneously feasible. The condition of optimality is fulfilled if a given function of 
the design variables attains its extreme (scalar optimization) or if a compromise betwe~n 
several conflicting design goals is found (vector optimization). The feasibility condition 
requires the design variables to satisfy all constraints imposed of the structure. 

Depending upon the type of design variables two alternative approaches to the con­
sidered problem can be distinguished. In the smooth or continuum approach (Fig. 8a) 
one looks for an optimum shape and, possibly, for optimum distribution of internal 
properties of the body. In this case the design variables are smooth functions of the 
coordinates, the constraints may include differential equations and the design goal is 
usually expressed in the form of integral over the body. Finding a function that brings 
an integral over a given domain to its extreme is the well known problem of the variation 
calculus. Unfortunately, few practically important problems can be solved this way. 

An alternative is to consider the structure being composed of a finite number of 
components. The truss shown in Fig. 8b is a natural example: it consists of 6 nodes 

(a) .,.-·----- --...:.--

FIGURE 8. Alternative approaches in optimum structural design: (a) smooth; (b) discrete. 
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connected by 9 bars. The design variables are this time pure numbers and the design 
goals can be expressed in terms of functions as opposed to functionals present in the 
smooth formulation. 

Simplicity of the discrete case is misleading: discrete problems are computationally 
expensive due to their combinatorial nature. The full formulation of such problems 
should cover the following levels of optimization: 

1. the layout2) level, 

2. the geometry level, 

3. the member level. 

At the layout level one has to decide how many components are to be used and 
how these components are to be interconnected. The natural formalism for expressing 
structural layouts is the graph theory. It allows the user to construct, evaluate and 
manipulate graphs that bear all necessary information. 

At the geometry level we assume the layout to be fixed and we consider the best 
positioning of individual components. In the case of truss depicted in Fig. 8b this means 
looking for the optimum positions of the nodes. Certain constraints may appear at this 
level: usually the supports have given a priori positions, sometimes the contour of the 
structure must conform to certain pattern, etc. 

The lowest level is related to the properties of individual members. Given the layout 
and the geometry, one may still look for the best sizes of cross sections or for the most 
suitable distribution of material properties (the Young module, the yield stress, etc.). 

If one considers only the levels 2 and 3, i.e. if one optimizes the geometry and the 
structural components under the given layout, then the problem falls into the class of 
mathematical programming problems [6]: 

(2) 

and can be solved by means of a suitable numerical method [36]. Here the design goal is 
to minimize the function f(xk)called the cost function, Xk stand for the design variables 
and the constraints gz include not only the design variables but the state variables Yj as 
well. This type of structural optimum design has very rich literature and can regarded 
as more or less exhausted as a topic of research. 

4.2. Previous attempts on layout optimization 

Contrary to that, it is still an open question how to find the best structural layout. 
Many researchers devoted their effort to it (compare, e.g. , the reviews (30] and (42]) 
but the results are still far from being satisfactory. Perhaps the best method for today, 
called adaptive optimization [3] , was inspired by the living nature. A bone is the main 
load carrying component of the human body. It develops its sophisticated and highly 
efficient internal structure (Fig. 9) during the phase of growth. The external surface 
remains smooth and resembles a tube whereas the internal skeleton follows the lines of 
principal stresses. Notably, this process is reversible: the astronauts suffer from their 
bones becoming weaker after a long stay in the space. At the absence of loading the 
unnecessary material is removed from the bone. 

2)Many authors substitute ''topology" for the layout . This should not be done since mathematicians 
already use the term "topology" for different purpose. 
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FIGURE 9. Structure of bone. 

Figure 10 taken from the paper by K.-U. Bletzinger, S. Kimmich and E. Ramm [4] 
shows typical result of the adaptive optimization. The solid block visible at the left side 
was taken as an initial guess for the cantilever loaded by a single vertical force. The 
hollow shape at the right is the final result. Notably, this result requires heuristic post 
processing since the adaptive process itself ends up with a discrete truss-like structure, 
as can be seen in the lower part of the figure. 

The adaptive method circumvents the difficulty in solving directly the layout op­
timization problem. It starts with a homogeneous solid of an arbitrary simple shape 
and relies upon the users ability to extract optimum topology from the truss-like skele­
ton. Another interesting indirect method has been proposed by D.M. Stal and G.M. 
Turkiyyah [38]. This method introduces the notion of the structural backbone that is 
allowed to develop in the gradual optimization process. 

Probably the first direct method of the layout optimization was the ground structure 
concept developed in early 1960's by W. S. Dorn, R. E. Gomory and H. J. Greenberg [16]. 
It was applicable only for trusses and excluded optimization of nodes. Figure 11 shows 
the ground structure for the rectangular truss. The positions of all nodes are fixed and 
all possible connections between them are taken into account. Such ground structure 
serves as an initial solution for the numerical optimizer - the simplex method of linear 
programming - with the cross sectional areas of the bars as the design variables. The 
optimum solution includes bars with cross sectional areas close to zero. Removing them 
one obtains the optimum layout. Though simple in principle, this method proved to be 
numerically unstable and is not used today. 



http://rcin.org.pl

164 

81ep: s 

A. BORKOWSKI 

100"11> Objc:ctiY&: .Sirain Energy 

l1enlion 

====== 'l'opo&ISY Optin1ir.u.1iOD ======:> 

Step: 15 

,.... 
I 
I 
I 
I 

I 
I 
I 
I 
I 

Slcp: ~ 

FIGURE 10. Example of adaptive optimization. 

FIGURE 11. Example of adaptive optimization. 
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A novel concept of topological derivative was proposed recently by Z. Mr6z and 
D. Bojczuk (35]. They define a set of basic transformations like introducing a new 
node (Fig. 12a) or splitting an existing node (Fig. 12b) and consider the influence of 
such transformation upon the cost function. The derivative with respect to the design 
variable Sj gives the user information about the slope of the cost surface and allows him 
to look for the optimum by means of the gradient-based search. 

Mr6z and Bojczuk adopted gradual growth of the structural length as the main 
strategy. They were able to show that at certain characteristic values of the length 
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FIGURE 12. Concept of topological derivative. 
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FIGURE 13. Topological bifurcations. 
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the optimum layout changes and called this phenomenon the topological bifurcation 
(Fig. 13). Changes in the layout may introduce discontinuities in the cost function. 
Therefore the topological derivative must be understood in the generalized sense. 

The Mr6z-Bojczuk method leads to interesting and practically meaningful results. 
Figure 14 shows the evolution of cantilever truss optimum in the sense of minimum 
compliance. The buckling constraints were neglected in this case. After introducing 
them and changing the design goal to the minimum weight, one obtains substantially 
different evolution depicted in Fig. 15. 

(1) 

(2) 

FIGURE 14. Evolution of truss optimal in sense of minimum compliance: (1) initial stage; 
(2) continuation . 

It is well known that the problem of layout optimization for a minimum compli­
ance has been solved analytically by A.G.M. Michell [34] already in 1904. His solution 
disregards buckling and consists of an infinite number of logarithmic spirals that split 
into two buckets originating at the supports. The discretized form of this solution is 
shown in Fig. 16. The solution obtained by Mr6z and Bojczuk differs from the Michell's 
truss. The probable cause of this discrepancy is the non-differentiability of the cost 
function in the layout optimization problem. The generalized derivative introduced in 
the Mr6z-Bojczuk method may lead to sub optimal solutions. 
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(1) 

a) b) 
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I• •I I• .. I 
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I· 1=3a 

1=4a 

FIGURE 15. Evolution of truss optimal in sense of minimum weight : (1) initial stage; (2) continuation . 
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FIGURE 16. Michell's truss. 

4.3. Graph-based approach combined with genetic search 

Since the optimization of layout leads to discontinuities of the cost function, natural 
candidates for numerical optimizers are methods that do not rely on the gradient of 
that function. A broad class of such methods is available in the theory of optimization, 
most of them including the component of random search in the space of solutions. The 
genetic algorithms (compare, e.g. the excellent monograph by Z. Michalewicz [33]) that 
became popular recently belong to this class. 

The concept of genetic algorithm has been borrowed from the Darwin's evolution 
theory. In the classical form proposed by J .H. Holland [28] the properties of an op­
timized object are coded in the form of binary string called chromosome. Generating 
chromosomes at random forms an initial population of objects. The iterative process of 
evolution consists of mating objects taken from the current population (the parents), 
producing their off springs and allowing the best of them to form the next population. 
The objects are evaluated by the fitness function that resembles the cost function in 
conventional optimization. 

Nowadays the theory of genetic search is quite elaborate: many ways were pro­
posed regarding coding conventions for chromosomes, genetic operations that produce 
off springs, selection strategies, etc. Taking advantage of those proposals several authors 
applied the genetic search to the structural optimization (compare, e.g., the papers by 
T. Burczynski [12], K. De Jong and T. Arciszewski [15], H. Eschenauer and A. Schu­
macher [17] or P. Hajela and J . Lee [26]). 

Despite the difference in the optimization tool, most of those papers followed the 
methodology of adaptive optimization proposed by Bendsoe and Kikuchi. This means 
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that the layout was neither explicitly represented nor explicitly optimized. For example, 
the bubble method proposed in [17] starts with a random number of cavities (bubbles) 
introduced into a homogeneous solid and let those cavities evolve into the final layout. 

The research project started recently by the author of present paper in the collabo­
ration with E. Grabska aims at exploiting the advantages of graphs as the language for 
representing structural layouts. Figure 17 shows the graph grammar for Michell's truss. 
Similarly as it was done with the floor layouts, one can build a graph-based generative 
system that will produce plausible initial populations of structural layouts. Applying 
genetic evolution to such populations one may expect interesting optimal or sub opti­
mal layouts to emerge. The first attempts made in the domain of industrial design [27] 
indicate that this approach may be quite successful. 

FIGURE 17. Michell's truss. 

5. Conclusions 

In this article we have concentrated on the passage from the functional requirements 
of a designed object to the object structure. We restricted our consideration to a rather 
simple example of designing a house since the methodology remains valid for any ob­
ject. In our example it is easy to distinguish various kinds of areas, rooms and relations 
between them and to show that graphs and graph transformations are useful as knowl­
edge representation in computer aided design. The presented methodology seems to be 
appropriate for architects because they often use graphs - sometimes being unaware 
of it. 

The second part of the paper is devoted to the difficult problem of structural layout 
optimization. Having compared different indirect and direct methods proposed so far, 
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we argue that the graph-oriented representation combined with the genetic search may 
lead to efficient methodology. At present this approach is at the preliminary phase and 
much effort is still needed before reaching the maturity for practical applications. 
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