
http://rcin.org.pl

AMAS COURSE ON RANDOM MATERIAL MICROSTRUCTURES 

RMM'04- (PP.223-281) -WARSAW, FEBRUARY 2-4, 2004 

Statistics of the structure and properties 
of inhomogeneous materials 

M.T. TODINOV 

Cranfield University 
Reliability Engineering and Risk Management Centre, SIMS 

Building 56b, Cranfield, Bedford, MK43 OAL, UK 
m.t.todinovmcranfieLd.ac.uk 

Variability of material properties is often attributable to inhomogeneity of the 
microstructure. Many materials are inhomogeneous, for example ferrous and non
ferrous alloys, composites, ceramics, plastics and biological materials. Determi
ning the probability bounds on the variation of properties due to inhomogeneity 
is an important issue for structural integrity assessments. 
The influence of the microstructural inhomogeneity is particularly strong for frac
ture properties as compared to other properties (e.g., the material's moduli). The 
reason, is that the fracture criteria are particularly sensitive to microstructural 
heterogeneities which lead to local zones of weak resistance to crack extension. 
Often, ahead of crack fronts in composite materials or in materials containing 
defects, the number density of the defects varies locally which is another manifes
tation of the microstructural inhomogeneity. Depending on the microstructural 
constituents or the local number density of the defects ahead of the crack front, 
the local fracture toughness varies widely. As a result, the uncertainty (variability) 
of properties associated with inhomogeneous structures is intrinsic. It is not due 
for example to a measurement imprecision or inability to control the experiment 
and therefore cannot be reduced or eliminated. 
The statistics of structure and properties of inhomogeneous materials is an in
terplay of Materials Science and Applied Statistics. The intersections defined by 
the key words 'Statistics', 'Structure' and 'Properties', determine key research 
directions as shown in Fig. 1. 

1. Statistics of random flaws in one-dimensional components 

1.1. Introduction 

In many industries, a strong emphasis is increasingly placed on reliability 
requirements which eliminate early-life failures (e.g. the offshore, aerospace 
and automotive industry). The early-life failures are often the result of poor 
manufacturing and inadequate design. A substantial proportion of the early-
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FIGURE 1. Statistics and Structure, Statistics and Properties and Structure and 
Properties. An important topic from the research direction 'Statistics and Struc
ture' is the spatial statistics of flaws in one-dimensional components and the 
spatial statistics of duplex structures. 

life failures are also due to variation of the strength which is a complex 
function of the material properties, design configuration and dimensions. An 
important factor affecting the strength of fibres and wires in particular, is 
the presence of flaws due to processing or manufacturing. The homogeneous 
Poisson process (Ross , 2000; Thompson, 1988) is often used as a statisti
cal model for random flaws. Its main characteristics are: (i) the numbers of 
flaws in non-overlapping intervals are statistically independent; (ii) the pro
bability of a flaw in intervals of the same length is the same. It depends 
only on the length of the interval, not on its location along the fibre / wire; 
(iii) the probability of more than one flaw in a very small interval is negli
gible. For random flaws following a homogeneous Poisson process with con
stant density A = const the cumulative distribution function of the distances 
x between adjacent flaws is given by the exponential distribution function 
F(x) = 1- e-~x. 

1.2. Specifying the upper bound of the flaw number density to 
guarantee a probability of failure initiated by defects below 
a maximum acceptable level 

Each flaw (defect) is associated with a probability of initiating failure at 
a particular stress level [66]. The type of the flaws has a strong influence 
on the probability of failure initiation. Due to tensile tessellation stresses 
for example, alumina or silicon-based inclusions in steel wire are more likely 
to become initiators of failure compared to sulphide inclusions of the same 
diameter and numbers. In another example, sharp crack-like defects are cha
racterised by a larger probability of triggering fracture compared to blunt 
defects. Furthermore, crack-like defects with a plane perpendicular to the 
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direction of the acting stress are more likely to initiate failure than cracks 
oriented along the direction of the acting stress. Consequently, an impor
tant problem is determining the maximum acceptable flaw density (the flaw 
density envelope) which limits the probability of triggering of failure by the 
flaws. 

Suppose that a piece of length L, which has been cut from wire containing 
flaws with number density .A, is stressed to a tensile stress a. It is assumed 
that flaws from a single type exist which follow a homogeneous Poisson pro
cess in the length L and, each of the flaws is characterised by a probability 
F(a) of initiating failure at the stress level a. 

Random flaws 
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FIGURE 2. 

The probability of initiating failure at a stress level a by any of the flaws 
can be determined by subtracting from unity the probability of the comple
mentary event that no failure will be initiated by the flaws. The probability 
P(r) of the compound event: 'exactly r flaws exist in the length L and none 
of them initiates failure at the stress level a' is given by: 

o (.AL r e->.L r 
P(r) = 1 [1 - F(a)] , 

r. 
(1.1) 

where .A denotes the flaw number density. This probability is a product of the 
probabilities of two independent events: (i) exactly r flaws reside in the piece 
of length L, the probability of which is given by the Poisson distribution 
(.ALt exp( -.AL)jr! and (ii) the event that none of the r flaws will initiate 
failure, the probability of which is given by [1- F( a) t. The event 'no failure 
will be initiated at a stress level a' is a union of the disjoint events P(r) and 

its probability p0 is a sum of the probabilities defined by Eq. (1.1): 

0 = ~ 0 = ~ (.ALt exp( -.AL) [ _ F( )]r 
P ~P(r) ~ 1 1 a , 

r=O r=O r. 
(1.2) 

which can be simplified to 

PO= e->.L ~ [.AL (1- F(a))t = e->.Le>.L[l-F(a)] = e->.LF(a), (1.3) 
~ r! 
r=O 
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and the probability p(T of triggering failure at a stress level a becomes 

p(T = 1 - po = 1 - e->-.LF(CT). (1.4) 

By solving Eq. (1.4) numerically regarding A (given a specified maximum 
acceptable probability of failure p(T max at a stress level a, the upper bound 
(the flaw density envelope) A; can be determined: 

(1.5) 

The flaw density envelope guarantees that whenever the flaw number density 
A is within it (A ~ A;) the probability of triggering failure is smaller than 

PCTmax· 

Figure 3 gives the dependence of the flaw number density envelope A; 
from PCTmax for different values of LF(a) in case of 'weak' flaws (F(a) ~ 1). 
In the vicinity of p(T max = 0, the dependencies can be approximated by 
straight lines with slopes equal to 1/ L. Equation (1.4) can also be rewritten 
in the following way: 

PCT = 1- e->-.'L, (1.6) 

where A1 = AF(a). Equation (1.6) provides a convenient formalism interpre
ting flaws with a number density A, initiating failure with probability F(a) 

Flaw number density envelope, 'A: a mm·1 
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as 'critical' flaws with number density >..' = >.F( a) initiating failure with cer
tainty (F(a) = 1). According to this formalism, the probability of no failure 
is simply equal to the probability that a critical flaw will not be present in 
the piece of length L. The product >.' = >.F(a) is an important invariant 
associated with materials containing flaws. The same probability of failure 
at a stress level a can characterise two components one of which has a high 
density of flaws which trigger failure with small probability and the other is 
characterised by a low density of flaws which trigger fracture with high pro
bability. The condition is the product (invariant) >..' = >.F( a) characterising 
the components to be the same. 

Equation (1.5) specifies the flaw number density envelope necessary to 
guarantee with a specified probability no failure initiated by flaws. For weak 
flaws (e.g. carbides in steels) which trigger cleavage easily at the stress level 
a, the probability of triggering failure at the stress level a can be assumed 
to be approximately unity F( a) ~ 1. In this case, the probability of failure 
of the loaded length L becomes equal to the probability that at least one 
flaw will be present in the length L: Pa = 1 - exp(->.L). In the general 
case however, the probability F(a) of triggering failure from individual flaws 
will be a number between zero and unity. It can for example be determined 
theoretically, using fracture mechanics criteria (Ewalds and Wanhill, 1989)) 
or empirically, from tests at a specified stress level. Suppose that N tests 
have been conducted at a stress level a involving multiple pieces of length L 
cut from wire (fibre) with known flaw number density >.. If NJ is the number 
of failures caused by flaws, the probability F( a) of triggering failure by the 
flaws can be determined by solving N1/N = 1-exp(->.LF(a)) with respect 
to F(a). 

It must be pointed out that Eq. (1.4) can be generalised for a 3D or 2D 
components. In the three-dimensional case the equation becomes: 

Pa = 1- PO= 1- e-.>.VF(a)' (1.7) 

where V is the volume subjected to a stress a and >.is the number density of 
the defects (per unit volume). From Eq. (1.7), it follows that the smaller the 
stressed volume V is the smaller is the probability of failure. Equation (1.7) 
for example, provides one of the reasons why between two strings of different 
length, from the same material, the longer string is less reliable. 

1.3. Clustering of flaws following a homogeneous Poisson process 
in wires and fibres of finite length 

Often, in thin fibres and wires, a configuration where two or more flaws 
are closer than a critical distance s cannot be tolerated during loading be-
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FIGURE 4. 

cause clusters of two or more flaws within a critical distance act as single 
larger flaw. Clustering of two defects (flaws) within a critical distance 8 de
creases dangerously the load-bearing cross section and is associated with 
a substantial stress concentration which decreases the load-bearing capacity. 
As a result, the probability of failure during loading is strongly correlated 
with the probability of clustering of flaws over a critical small distance 8 (Fi
gure 4). 

For a piece of length L, cut from wire containing defects following a ho
mogeneous Poisson process, where the number of defects n is known over the 
length L, the successive coordinates of then defects are uniformly distributed 
over the length L. This is a well-known property of the homogeneous Poisson 
process, discussed for example in (Ross, 2000; Thompson, 1988). For the case 
related to a known number of flaws in wire of length L, the equation 

( 

n-1 ) n 

P= 1-±L8i,i+I 
t=1 

(1.8) 

has been derived in [58) for the probability P of existence of gaps greater than 
specified minimum gaps 8i,i+1 between adjacent uniformly distributed flaws 
in the finite length L. For four specified minimum gaps 812, 823, 856, and 867 

between four pairs of adjacent flaws, according to Eq. (1.8) the probability 
that the minimum specified gaps will exist is given by 

p = ( 1 _ 8]2 + 823; 856 + 867) g' (1.9) 

where n = 9 is the number of flaws. 
Indeed, suppose that nine flaws are uniformly distributed in a one

dimensional component with length L 
Assume that the locations of the flaws are 'generated' to be uniformly dis

tributed along the component and only 'successful' realisations are counted, 
i.e., realisations where the distances between the specified adjacent flaws are 
greater than the specified gaps 8i,i+ 1 . For all such 'successful realisations' 
(Fig. 5), the specified minimum distances 8i,i+1 can be 'cut out' from the 
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actual flaw-free intervals Si,i+l between the selected k pairs of adjacent flaws 
and 'moved' towards the end of the component, as shown in Fig. 6. 

Now, there exists a one-to-one correspondence between the successful 
realisations, in Fig. 5 (where the distances between the selected k pairs of 
adjacent flaws are at least s12, s23, S55, and S67) and the 'successful reali
sations ' in Fig. 6 where 9 uniformly distributed flaws are generated over 
the entire length L and all fall over the shorter length L' = L - 2:: si,i+ 1 

(L' = L- (s12 + s23 + S55 + s57 ) , Fig. 6). Indeed, from all successful realisa
tions of nine uniformly generated flaws over the length L (Fig. 5) with gaps 
greater than the specified minimum gaps between the selected adjacent flaws 
we can get all successful realisations of nine random flaw locations falling in 
the shorter length L'. This can be done by 'cutting out' the specified mini
mum distances Si,i+l between the corresponding adjacent pairs of defects and 
'sticking' the cuts (Fig. 6). Conversely, from all successful realisations of nine 
uniformly generated flaws 'falling' only on the shorter length L' (Fig. 6) , we 
can obtain all successful realisations in Fig. 5 (with the specified minimum 
distances Si,i+l between the selected pairs of flaws) simply by 'inserting' the 
specified minimum gaps Si,i+l, between the corresponding adjacent flaws on 
the shorter length L'. In this way, the initial problem has been transformed 
into a simpler problem. Correspondingly, the probability of existence of the 
specified minimum gaps between the selected pairs of flaws is equal to the 
probability that from nine flaw locations generated uniformly over the length 
L, all locations will be within the shorter length L' only. Since the latter pro
bability is given by Eq. (1.9) this is also the solution of our initial problem. 

The distribution of the gap length x between any two adjacent flaws is 
given by 

F(x) = 1- (1- x/L)n , (1.10) 
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which is a special case of Eq. (1.8). As can be verified easily, for a small 
ratio xj L or a large n, Eq. (1.10) transforms into the classical exponential 
distribution 

F(x) = 1 - exp[-(n/ L )x] (1.11) 

which, in this case, is a very good approximation of the true distribution 
function (1.10). In the general case however, discrepancies exist between the 
results from Eq. (1.10) and (1.11) which are particularly large for large ratios 
x / L and a small number of flaws n. 

Although, the case of a fixed number of random variables in a finite 
interval L has a number of useful practical applications (e.g. a fixed number 
of consumers connecting randomly during a day to a supply system which 
needs a minimum time interval s to recover [56]), of significant practical 
importance is the case where the number of flaws in the finite length L is 
a random variable (not known), (56]. 

1.4. Specifying the upper bound of the number density of Poisson
distributed flaws to guarantee probability of clustering below 
a maximum acceptable level 

In most practical applications, the number of flaws in wire/ fibre with fi
nite length L is a random variable (unknown). If the distribution of flaws is 
a homogeneous Poisson process with intensity ..\ (flaw number density), the 
probability of a flaw-free length x is given by the classical formula (Mont
gomery et al., 2001) 

p = exp( -..\x). (1.12) 

The distribution of the gaps x between the flaws is given by the classical 
exponential distribution (Parzen, 1960): F(x) = 1- exp( -..\x). 

If the flaw locations follow a homogeneous Poisson process in the length 
L (the number of flaws in the finite length Lis a random variable), Eq. (1.8) 
combined with the Poisson distribution can be used to derive the probability 
PMFFG of a specified minimum flaw-free gap with lengths between adjacent 
random flaws (Fig. 7). 
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Indeed, assume that the flaws follow a homogeneous Poisson process in 
the length L. The probability of k flaws in the finite length L is given by 
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the Poisson distribution (AL)k exp( -AL)/k!, k = 0, 1, 2 ... , where AL is the 
mean number of flaws in the finite length L (A is the constant number density 
characterising the random flaws). According to the total probability theorem 
(Parzen, 1960), the probability that all adjacent flaws will be at distances 
greater than a specified minimum distance s apart from one-another is a sum 
of the probabilities of the mutually exclusive events 'k flaws are located in 
the finite length L and all of the adjacent flaws are at distances greater than 
the specified minimum distance s. The maximum number of flaw-free gaps 
of length s which can be accommodated in the finite length L is denoted by 
r (r = [L/ s] + 1), where [L/ s] is the greatest integer which does not exceed 
the ratio L/ s. The probability that between k adjacent flaws in the length 
L, there will be gaps greater than the specified minimum gap s is given by 
Eq. (1.8). Then, the probabilities that k random flaws will exist in the finite 
length L and between them there will be gaps greater than the specified 

minimum gap length s are: (.XLt e~f( -.XL) x ( 1 - (k~l)s) k for 1 ::; k ::; r; 

exp(- AL) x 1 for k = 0 and (.XL t e~r< -.XL) x 0 = 0, for k > r. The probability 
PMFFG (probability of a minimum flaw-free gap) that wire with flaw density 
A will not contain flaws clustering within a critical distance s (Fig. 7) then 
becomes, [56] 

_ -.XL ( \L A2 (L- s) 2 Ar[L- (r- 1)st) 
PMFFG- e 1 +"' + 21 + · · · + I ' . r. 

(1.13) 

where r = [L/ s] + 1. Correspondingly, the probability of clustering of two or 
more random flaws within a critical distance s is (Fig. 4): 

_ 1 _ -.XL ( \L A2 (L- s) 2 Ar[L- (r- 1)st) 
Pc - e 1 + "' + I + ... + I ' 2. r. 

(1.14) 

where r = [L/ s] + 1. 
By solving Eq. (1.14) numerically regarding A (given a specified maxi

mum acceptable probability of clustering Pc max, the upper bound (the flaw 
density envelope) A~ can be determined. The flaw number density envelope 
guarantees that whenever the flaw number density A is within it (A ::; A~) 
the specified minimum flaw-free gap s will exist with minimum probability 
PMFFG = 1- Pcmax or, in other words, the probability of clustering will be 
smaller than the maximum acceptable value Pc max. 

In an illustrative example, the lineal density envelope will be determined 
which guarantees no clustering of flaws within a critical distance of 0.5 mm 
over a fibre of length 100 mm. The maximum acceptable probability of clus
tering has been specified to be Pcmax = 0.1. The upper bound of the flaw 
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number density is obtained by solving Eq. (1.13) with respect to the hazard 
rate A where PMFFG = 1- Pcmax = 0.9. The obtained flaw density envelope 
is A~ = 0.0467. Whenever the flaw number density A is within the number 
density envelope (A ~ 0.0467), the probability of clustering within a crit
ical distance of 0.5 mm will be smaller than 0.1. Monte Carlo simulations 
(1000000 trials) of a homogeneous Poisson process with density A* = 0.0467 
yielded 0.1 for the probability of clustering which illustrates the validity of 
Eqs. (1.13) and (1.14). 

This result also means that for a mean number density 5 flaws in 100 mm 
length, the probability of clustering within a small distance of 0.5 mm is 
substantial (0.1). Even for the small mean number density of 2 flaws in 
100 mm length, the calculations from Eq. (1.14) and the simulations show 
that there is still approximately 2% chance of clustering. 

Figure 8 gives the dependence of the probability of clustering of flaws 
within a critical distance of s = 1 mm (L = 100 mm) for different values of the 
flaw number density. As can be verified from Fig. 8 for a flaw number density 
A = 0.014 corresponding to 14 mean number of flaws per 100 mm length, 
the probability of clustering within a critical distance of 1mm is already 
80%. This indicates that the probability of clustering increases quickly with 
increasing the flaw number density. These unexpected results demonstrate 
clearly that the probability of clustering of flaws following a homogeneous 
Poisson process in a finite interval is substantial and should always be taken 
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into consideration in risk assessments. Solving Eq. (1.14) regarding the flaw 
number density, in fact specifies requirements regarding the maximum levels 
of material and manufacturing flaws which guarantee that the probability 
of failure due to clustering remains below a maximum acceptable level. The 
upper bound of the flaw number density (the flaw number density envelope) 
guarantees that whenever the actual flaw number density is within it, the 
probability of failure due to clustering remains below a maximum acceptable 
level. 

2. Analysis of inhomogeneous microstructures using random 
transects 

A powerful method of investigating inhomogeneous structures is by using 
random transects (point, linear and areal transects). These have been used 
in the quantitative microscopy for estimating a volume fraction and surface 
area of various microstructural constituents. Random transects for example, 
have been used in stereology for estimating the volume fraction of inhomoge
neous microstructures (Weibel, 1980; Underwood, 1969). A line transect for 
example can be defined as a segment AB of given length L 'cast' in a ran
dom fashion (with an uniform distribution of the orientation angler and the 
coordinates of the mid point M) over a microstructural image (Fig. 9). 

The ratio L(3/ L of the length of the transect Lf3 lying in one of the mi
crostructural constituents (e.g. {3) to the entire length L of the transect is 

s 

FIGURE 9. 
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referred to as intercept. For a three-dimensional transect, the intercept is 
defined as the ratio V.e/Vr of the volume V.e intercepted from one of the 
microstructural constituents (e.g. {3) to the entire volume Vr of the transect. 
The distribution of the intercept is an important characteristic of duplex 
structures. For a duplex material containing two phases characterised by dif
ferent density for example, the density distribution of a sample (transect) 
taken from the material will mirror the distribution of the intercept from the 
microstructural constituents. 

The importance of the line transects for example can be illustrated by 
the Charpy V-notch test for determining the impact energy of steels. It has 
been demonstrated (67) that the type of microstructure in which the Charpy 
V-notch (line transect) is located during Charpy impact tests of multi-run 
C-Mn welds, has a crucial role on the distribution of the impact energy. If 
Charpy impact energy from inhomogeneous welds is examined, depending 
on the position of the notch on the sample, i.e. depending on which mi
crostructural zone is sampled, distinct empirical cumulative distributions of 
the impact toughness are obtained, each characterising some of the existing 
microstructural zones. For structural integrity assessments, it is of particular 
interest to know the probability that the impact toughness will be within 
specified limits. 

In many engineering structures, unexpected failures can often be at
tributed to the presence of crack-like defects located in microstructural re
gions characterised by low resistance to crack extension. Depending on the 
microstructural constituents or the local number density of the defects ahead 
of a crack front , the resistance to crack extension (the fracture toughness) 
varies widely. 

2.1. Empirical cumulative distribution of the intercepts 

The random variable X referred to as intercepted fraction or simply in
tercept, which accepts values x = Le/ L, where the index 'c' stands for one 
of the existing structural constituents (e.g. a or {3) is an important tool for 
analysing inhomogeneous media. While the expected value E(X) of the in
tercept X does not depend on the size of the transect (length, area, volume) , 
its variance is a function of the transect size. The means of the intercepted 
fractions from one of the constituents (e.g. a), associated with transects of 
different size L are all unbiased estimates of the areal j volume fraction ~o: of 
the a-constituent: E(X) = ~o:; ~a+ ~.6 = 1. 

Indeed, let the transect with size L be divided into equal very small 
elements 1::1£1 ( 1::1£1 = 1::1£2 = ... = 1::1£), so small that it can be safely as
sumed that the probability of a particular 1::1£1 sampling the a-constituent is 
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P(~Lj E a) :::::::: ~o: (the probability that ~L will not sample a is 1- ~o: = ~13). 
Consequently, each small element ~Lj is associated with a random variable 
Uj indicating whether the element samples a-constituent or not. Therefore, 
the variables Uj have Bernouli distribution (DeGroot, 1989) defined as fol
lows: Uj accepts '1 ' with probability ~o: and '0' with probability ~/3· Any line 
transect of arbitrary size L can be divided into q sufficiently small segments 
with lengths ~L, where q = L/ ~L. Then, for a random placement of the 
transect in the microstructure, the random variable 'intercepted fraction X' 
can be presented as 

X= UI~L + U2~L + ... + Uq~L = ~ ~ U·. (2.1) 
q~L q~ J 

]=1 

According to a well known result from the theory of probability (DeGroot, 
1989), the expected value of a sum of random variables is equal to the sum 
of the expected values of the random variables irrespective of whether the 
variables are statistically independent or not (In fact Uj in Eq. (2.1) are 
correlated random variables since for any pair of adjacent small elements 
~Lj, and ~Lj+b if ~Lj samples a, ~Lj+ 1 is also likely to sample a . Since 
the expected value of any Uj is E(Uj) = 1 x ~o: + 0 x (1 - ~o:) = ~o:, for the 
expected value E(X) of the intercepted fraction , the expression 

(2 .2) 

is obtained. Consequently, the expected value of the intercepted fraction is 
equal to the areal / volume fraction of the a-constituent and does not depend 
on the length L of the transect. 

The cumulative distribution function of the intercepted fraction F(x, L) 
and the corresponding probability density function f(x, L) = 8F(x, L)/8x 
at a specified size L of the transect are important characteristics of inho
mogeneous structures sampled by transects. Both functions depend on the 
size L of the transect. 

Using the probability density function f(x , L ), Eq. (2.2) can be presented 
as 

1 

E(X) = j xf(x, L)dx =Ea· (2.3) 

0 

Only in trivial cases (e.g. for randomly distributed detached spheres {3 in 
matrix a) can the distribution functions F(x, L) and f(x, L) be obtained 
analytically (Kendall and Moran, 1963) . In the general case (microstructural 
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FIGURE 10. 

constituents with irregular shape), the distributions can only be obtained by 
a Monte Carlo simulation involving sampling of images of the microstructure 
and registering the intercepted fractions. 

Figure 10 is a scanned image of a cast microstructure (ASM, 1985). The 
lamellar eutectic contains dark zones CB-phase, ~{3 = 0.4) and white zones of 
(a-phase, ~a = 0.6) 

The image of the microstructure has been scanned as a bitmap file and 
read (Kay, 1995; Rimmer, 1993) by a computer simulation procedure. The 
longer side of the microstructural section used in the simulation, contains 640 
length units. A random placement (random throw) of the transect was defined 
by three random numbers: two random coordinates of the middle point M 
and a random angle 'Y which the notch subtends with the horizontal axis 
(Fig. 9). The pixels along the line transect were scanned using the Bresenham 
algorithm (Hearn and Baker, 1997; Foley et al. ,1996) and the number ofpixels 
belonging to a, were counted. The intercept from a was calculated by dividing 
this number to the total number of pixels composing the transect. Empirical 
cumulative distributions of the intercepts from /3, for different lengths of the 
line transect ( L = 80, L = 20 and L = 8 units) are given in Fig. 11. 

With increasing the size of the transect , the probability of intercepting 
almost entirely a or f3 decreases. With increasing the transect size, the pro
bability of intercepting fractions far from the mean areal/ volume fraction 
decreases, while the probability of intercepting fractions close to the mean 
areal/ volume fraction increases. In other words, for large transects, the pro
bability density function peaks at ~a and larger transects are associated with 
larger values of the probability density function at ~a· 
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FIGURE 11. 

Suppose for example, that intercepting a small amount x1 by a tran
sect compromises (causes a significant decrease) of the property value (e.g. 
the toughness of a specimen cut from a duplex material containing a though 
matrix and brittle particles which initiate cleavage fracture easily). The com
puter simulation results in Figure 11 show that although the probability that 
a small transect will sample a large amount of {3 is significant, small transects 
are associated with smaller probability of 'compromised toughness' because 
the probability P(x ~ x1) is larger (Fig. 11). Next, suppose that the pro
perty value is compromised substantially only if the line transect intercepts 
a relatively large amount x2 (Figure 11). This is for example the case where 
the yield strength of a specimen cut from duplex material containing hard 
and soft constituents is compromised if too much soft constituent {3 has been 
sampled. 

Then, as can be seen from Figure 11, small size transects are associated 
with a higher probability of intercepting large fractions of {3 and compromised 
yield strength. 

Since the distribution of properties is significantly influenced by the distri
bution of intercepts, the empirical cumulative distribution of the intercepts is 
an important fingerprint of inhomogeneous structures and contains valuable 
information regarding the risk of poor properties. 
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2.2. Intercept variance 

The variance of the intercepted fraction denoted by Vc (X, L), ( c E {a, ,8}) 
is another important characteristic of inhomogeneous media. The variance is 
a function of the size of the transect and for a transect of particular size L , 
it is defined by the integral: 

1 1 

Vc(X, L) = f(x, L)[x- ~c] dx = x f(x, L)dx- ~c ' J 2 J 2 2 (2.4) 

0 0 

obtained using the well-known formula (DeGroot, 1989) for a variance of a 
random variable X with mean p,, V(X) = E(X- p,) 2 = E(X2

)- p,2
. The 

integral in the right hand side of Eq. (2.4) is the expected value of the squared 
intercept (J0

1 x2 f(x, L)dx = E(X2 )). For a transect of zero size (L = 0) which 
consists of a single point, the probability density distribution f(x, 0) of the 
intercept X is the discrete Bernouli distribution with parameter ~a, i.e. , the 
intercepted fraction is '1' with probability ~a and '0', with probability 1- ~a. 

The variance of the intercepted fraction X from a becomes 

(2.5) 

because E(X) = 1 x ~a+ 0 x ~(3 =~a and E(X2
) = 12 x ~a+ 02 x ~(3 =~a · 

For an infinitely large transect L and random microstructure without 
anisotropy, the transect intercepts a constant fraction x = ~c and the va
riance Vc(X, L) from Eq. (2.4) becomes zero. The relationship between the 
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FIGURE 12. 
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variance of the intercepted fraction and the size L of the transect (Fig. 12), 
is an important fingerprint of inhomogeneous microstructures. If for exam
ple, a variance of the intercept smaller than a particular threshold (e.g. 
llth = 0.04 in Fig. 12) causes negligible variation in the property value, the 
material behaves like quasi-homogeneous. Whether the material will behave 
like a quasi-homogeneous or inhomogeneous depends on the size of the tran
sect. The intersection of the horizontal line corresponding to the variance 
threshold llth with the graph of the intercept variance determines a limiting 
transect size Lth (Fig. 12). Accordingly, the same microstructure sampled 
with transects larger or smaller than Lth can exhibit a 'quasi-homogeneous' 
or 'inhomogeneous' behaviour. Thus, the variances of the intercepts cha
racterising the different transect lengths (L = 80, L = 20 and L = 8) in 
Fig. 11 are 0.029, 0.073 and 0.144, respectively. They were calculated from 

N 
V = -k L: (xi- ~!3) 2 , where N is the number of trials (6000 in the simula-

i=l 
tion); Xi is the intercept from {3 at the i-th random placement of the transect; 
~!3 = 0.4 is the areal/volume fraction of the {3-constituent which is also the 
mean of the intercepts Xi. 

An important characteristic of the intercept variance is the average slope 
~V/ ~L (Fig. 12) which measures the change of the intercept variance per 
unit increment of the transect size. The slope is negative since the intercept 
variance decreases monotonically with increasing the size of the transect. If 
the absolute value of the slope of the intercept variance is large (the intercept 
variance decreases quickly with increasing the transect size), relatively small 
transect sizes are sufficient to 'stabilise' the intercept variance at a low level, 
which guarantees consistent intercept and property values. Such type of inter
cept variance function is typical for fine-grained duplex structures (Fig. 13). 

Intercept variance, V(x) 

0.251-------------

Transect size, L 

FIGURE 13. 
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Conversely, if the intercept variance decreases slowly with increasing the 
size of the transect, large transects are necessary to stabilise the intercept 
variance at a low level and obtain consistent intercept and property values. 
Such type of intercept variance function for example, is typical for coarse
grained duplex structures. 

As a result, the graph of the intercept variance has an important ap
plication: calculating the minimum size of the sampler that stabilises the 
variation of the intercept (and the property correlated with the intercept) 
at low values. The intercept variance from sampling any inhomogeneous mi
crostructure varies between the intercept variance of an ideal fine dispersed 
structure (Fig. 13, the vertical line A) and an ideal coarse-grained structure 
(Fig. 13, the horizontal line B). The intercept variances of the fine-grained 
structures are shifted towards the vertical line A, where very small transect 
sizes can stabilise the variance (and the correlated property) at a low level. 
Conversely, intercept variances characterising coarse-grained structures are 
shifted towards the horizontal line B, where relatively large transect sizes are 
needed to stabilise the variance (and the associated property) at a low value. 

The intercept variance depends on the size of the transect and decreases 
monotonically from ~a~f3 to 0, since larger transects are characterised by 
a smaller variance of the intercepted fraction. The intercept variance cannot 
exceed the value ~a~f3 = ~a(1 -~a) and since the maximum of ~a(1 -~a) is 
attained for ~a = 0.5, for any type of duplex structure, the intercept variance 
cannot exceed the absolute upper bound Vmax = 0.25. This is obtained for 
the smallest transects, with zero size, sampling duplex microstructures for 
which ~a ~ 0.5. 

Although all transect sizes produce unbiased estimates of the volume frac
tion of the microstructural constituents, the estimates from large transects 
are characterised by small errors. The scatter of properties depends signifi
cantly on the size of the transect. The common classification of a microstruc
ture into 'quasi-homogeneous' or 'inhomogeneous' is conditional. Depending 
on the size of the transect and on the way of sampling, a 'fine-grained' mi
crostructure can be characterised by a scatter typical for a coarse-grained 
microstructure. Conversely, a coarse inhomogeneous microstructure can be 
characterised by a very small scatter of the properties, typical for a fine
grained inhomogeneous microstructure. 

An important application of the concept 'intercept variance' is the topo
logical optimisation of a microstructure where for a specified probability dis
tribution p(x) of the transect size, the distribution and the shape of the 
second microstructural constituent is varied until the intercept variance in 
Eq. (2.4) is minimised. In another example of a topological optimisation, 
a particular distribution of the second microstructural constituent may be 
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sought which minimises the probability that a random transect of a specified 
size will sample more than a certain fraction from the weaker constituent. 

The empirical cumulative distribution of the intercepts and their variance 
are important fingerprints of inhomogeneous media [59]. They constitute the 
basis of new methods for structural integrity assessment and can be used for 
quantifying levels of acceptable risk which is one of the major challenges to 
the reliability engineering today. 

3. Analysis of inhomogeneous microstructures formed by nu
cleation and growth using random transects 

Transects of different shapes and sizes can be applied to analyse inho
mogeneous microstructures formed by nucleation and growth. The nuclei 
crystallised from one of the constituents do not cover the entire system (par
tially crystallised materials or materials where the rate of crystallisation is 
so slow that they are in fact duplex materials). 

A typical feature of these microstructures is that they are formed by 
nuclei ({3) arising and growing in a matrix (a). The nucleation and growth 
are contained in a system with finite volume V. 

FIGURE 14. 

It is assumed that the growth rate is isotropic (the growth rate is the same 
in any direction). The growth stops at the points of contact of the growing 
nuclei (growth with impingement). Topologically, the duplex structure in 
the finite volume V can be composed of interpenetrating spherical nuclei {3, 
uniformly distributed in the finite volume V. The nuclei arise with a time-
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dependent rate J(r) in the a-phase and grow with a constant radial rate k. 
The number dN of newly formed nuclei in the time interval ( T, T + dr) is 
proportional to the volume of the remaining a-phase: dN = I(r)VadT. 

There exists equivalence between the kinetics of a phase transformation of 
the type 'nucleation and growth with a constant radial rate and the process 
of continuous coverage of space by overlapping spheres growing with a con
stant radial rate , [69]. This allows us , instead of simulating the nucleation 
in a-phase whose volume fraction changes constantly, to simulate the nucle
ation in the system volume V which is constant. Those nuclei , which 'arise' in 
already transformed phase are 'imaginary ' and do not contribute to the quan
tity of transformed phase since, due to the constant growth rate their bound
ary can never cross the boundary of the nucleus into which they 'nucleated'. 
Because of this formalism , the number of real nuclei (those which nucleate 
in a) at any time is proportional to the volume of the remaining a -phase. 
As a result , nucleation and growth with a constant radial rate is mathe
matically equivalent to a coverage of space by overlapping spheres growing 
with a constant radial rate. The number of spherical nuclei appearing in the 
infinitesimal interval T, T + dr is given by dN = I ( T) V dr. 

3.1. Analysis of an inhomogeneous microstructure formed by nu
cleation and growth by a random transect of zero length 

The probability that a random transect of zero length (a randomly ~e
lected point) will sample a-phase only is equal to the probability that none 
of the nuclei that have appeared in the time interval (0, T) cover the selected 
point. 

Suppose, that the time at which the microstructure is being analysed is T . 

The probability that none of the nuclei with radii kv that have appeared in 

V 

a 

FIG URE 15. 
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the infinitesimal time interval ( T - v, T - v + dv) cover the transect (point A) 
is given by 

(exp{SIT_11dvln[l-7rk2 v2/S]} in the two-dimensional case; S is the area of 
the system), where IT-v is the nucleation rate at the instant T- v and kv are 
the radii of the nuclei that have appeared at time T- v ( v is a time increment). 
This is essentially the probability that all nuclei which have appeared in the 
time interval (T-v, T-v+dv) will lie outside the exclusion volume Vo(T-v) 
(Fig. 15), in the volume V- V0 . The probability that none of the nuclei that 
have appeared in the time interval (0, T) cover the transect A is a product of 
the probabilities of 'non-coverage' characterising all portions of nuclei that 
have appeared in the time interval (0, T). Hence, the probability ~a that the 
transect A will sample a-phase only is 

~a= exp (/V It-v ln[l- (4/3)rrk3 v3 /V]dv) (3.2) 

in the three-dimensional case, where V is the finite volume of the system (vis 
a dummy integration variable). In the two-dimensional case, the equation 
corresponding to Eq. (3.2) is ~a = exp (J; SIT_11 ln[l - 1rk2 v2 / S]dv), where 
S is the area of the finite system where the nucleation takes place. Since 
~a+ ~!3 = 1, the quantity of the transformed phase is given by [69] 

For a system of finite unit volume (V = 1) Eq. (3.3) transforms into 

and describes kinetics of phase transformation with a constant radial 
growth rate in a system of finite volume. If the nucleation rate is constant 
(IT= I =const), Eq. (3.4) transforms into 
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Often, the quantity of transformed phase (under the same conditions under 
which Eq. (3.5) has been derived) is given by the Kolmogorov- Johnson- Mehl
Avrami equation (Kolmogorov, 1937; Johnson and Mehl, 1939; Avrami , 1939, 
1940, 1941) (KJMA equation): 

(3.6) 

where I is a constant nucleation rate and k is a constant radial growth rate. 

3.2. Limitations of the Kolmogorov-Johnson-Mehl-Avrami equa
tion 

It must be pointed out that for a phase transformation in a finite volume, 
the JMAK equation (3.6) is not exact , and for a small number of growing 
nuclei in the system, the quantity of the transformed phase calculated from 
it shows significant deviations from the Monte Carlo simulations [65). The 
smaller the number of growing nuclei is , the greater is the deviation of the 
transformed fraction predicted by the JMAK equation (3.6) from the true 
transformed fraction given by Eq. (3.5). This can be verified immediately 
from the JMAK equation (3.6) which describes a process which requires 
infinite time T for completion, while the corresponding geometrical process 
of transformation (coverage) is, in fact, finite . 

Indeed, assume that the system where the phase transformation takes 
place, is a sphere of unit volume (V = 1). Suppose that a spherical nu
cleus arises at time T = 0 in the centre of the sphere. It is clear, that 
after the instant T* = ( 1 I k) {/3 I ( 47r) , no untransformed (uncovered) parts 
of the system will exist, i.e. ~{3( T*) = 1 because at time T* the radius of 
the growing nucleus will become equal to the radius of the system. Sub
stituting T* in Eq. (3.6) however, results in a quantity less than unity: 
~f3(T*) = 1 - exp[-J {/31(47r)l(4k)] < 1, which contradicts to the above 
simple geometrical consideration. This contradiction is due to the restricted 
applicability of the JMAK equation. It gives a good approximation only in 
cases where the number of growing nuclei in the system is large or for the 
stages of the transformation where the ratios of the volumes of the growing 
nuclei to the volume of the system are small. If the volume ratios of the 
growing nuclei are small, the JMAK equation approximates very well the 
true transformed fraction and is a special case of the exact equation (3.5). 
This is indeed the case at the beginning of the transformation and when 
the system contains a very large number of nuclei so that the transforma
tion is completed before the nuclei can reach large volume ratios. Indeed, for 
a small volume fraction (413)7rk3 v31V , ln[1- (413)7rk3 v3] ~ -(4l3)7rk3 v 3 
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and Eq. (3.5) transforms into the JMAK equation (3.6). If the system con
tains a small number of nuclei with relatively large volume ratios however, no 
matter how large the volume of the system is, the predictions from the JMAK 
equation deviate from the true transformed fraction given by Eq. (3.5). In this 
case, the exact equation (3.5) should be applied instead of the JMAK equa
tion (3.6). Equation (3.5) is particularly useful for calculating transformed 
fraction from growth of very small number of nuclei in a finite volume V. 

3.3. Illustrative examples 

For the simplified example where n nuclei start their growth at timeT= 0, 
and no other nuclei arise subsequently, the transformed fraction ~{3( T) at any 
time T is equal to the probability ~{3( T) that for any fixed point A , at least 
a single nucleus has nucleated inside a sphere of radius k T. This probability 
is given by: 

C ( ) _ 1 ( V - ( 4/3) 1T' k
3 

T
3 

) n _ { l [ ( 4/3) 7r k
3 

T
3

] } 
""{3 T - - V - 1 - exp n n 1 - --'---'--V--

which can also be presented as 

(3.7) 

where 7/J(T) = (4/3)nk3T3 /V. Equation (3.7) is an analogue of Eq. (3.5). It 
also describes the covered fraction by n overlapping objects of equal volume 
ratios 7/J(T). (For a random coverage with overlapping objects , the covered 
volume fraction ~ ( T) in Eq. ( 3. 7) depends only on the volume ratio 7jJ ( T) and 
does not depend on the shape of the objects). In case of a small volume ratio 
7/J( T), the approximation 

(3.8) 

is possible and Eq. (3. 7) transforms into 

(3.9) 

which is a version of the JMAK equations (3.5). If the number of nuclei 
n in the controlled volume V is large, the transformation terminates ( ~{3 ap
proaches unity) at relatively small nuclei volumes ( 4/3)nk3T 3 . As a result, 
the volume ratio 7/J( T) = ( 4/3)nk3T3 /V remains small during the transfor
mation and approximation (3.9) is possible. However, if the number of nuclei 
in V is small, after the initial stage of the transformation , the volume ratio of 
the nuclei 7/J( T) = ( 4/3)nk3T3 /V is no longer small. Due to the sparse nuclei , 
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at some instant T the volume ( 4/3)7rk3T3 of the growing nuclei will become 
comparable with V. Consequently, approximation (3.8) is no longer possible 
and Eq. (3.7) instead of Eq. (3.9) should be applied. 

The difference between Eqs. (3.7) and (3.9) (also between Eqs. (3.5) and 
(3.6)) becomes apparent if their graphs are compared for n = 3 (Fig. 16(a)), 
n = 7 (Fig. 16(b)), and n = 13 (Fig.16(c)). In all three graphs, the vo
lume fraction is plotted versus the volume ratio 'ljJ of the nuclei. As can 
be verified, the difference between the graphs of Eq. (3.7) and Eq. (3.9) di
minishes substantially for small volume ratios and also for a large number 
of nuclei. Indeed, the difference between the right hand parts of Eqs. (3. 7) 
and (3.9) is ~ = exp[nln(1- 'ljJ(T)] - exp[-n'l/J(T)] and for small 'ljJ(T), 
exp(nln(1- 'ljJ(T)] ~ exp[-n'l/J(T)] and~ ~ 0. For large n, both terms in 
the difference are very small (exp(nln(1- 'ljJ(T)] ~ 0 and exp[-n'l/J(T)] ~ 0) 
and again ~ ~ 0. For a small number of nuclei, (e.g. n = 3) the differences 
are substantial. 

It must be pointed out, that the discrepancies in the predictions from 
the JMAK equation depend on the number of growing nuclei and do not 
depend directly on the nucleation and growth rate. Thus, at fixed nucleation 
and growth rates, if the controlled volume is such that it contains a small 
number of growing nuclei, discrepancies will exist. If the controlled volume is 
being increased progressively so that it contains more growing nuclei, better 
agreement will be obtained between the predictions from the JMAK equation 
and the true transformed fraction. Beyond a certain number of nuclei in the 
controlled volume, the agreement will be almost perfect. 

3.4. Probability of sampling matrix phase only by a line transect 
of finite length 

Similar to the derivation in Sec. 3.1, the probability that a randomly cast 
linear segment (line transect) with length x will sample only a-phase is equal 
to the probability that none of the nuclei that have appeared in the time 
interval (0, T) intersects the line transect. 

The probability that none of the nuclei with radii kv that have appeared 
in the infinitesimal time interval ( T- v, T- v + dv) intersects the line transect 
is given by 

{1 - [7rk2v2x + ( 4/3)7rk3 v3]/V)} V lt-vdv 

= exp{V IT-vdv ln[1- (1rk 2v 2x + (4/3)7rk3 v3 )jV]}, 

(exp{S IT-vdv ln[1- (1rk2v2 +2kvx)j S]} in the two-dimensional case), where 
IT-v is the nucleation rate at the instant T - v and kv is the radius of the 
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V 

FIGURE 17. 

nuclei that have nucleated at time T - v ( v is a time increment). This is 
again the probability that all nuclei which have appeared in the time interval 
(T- v,T- v + dv) will lie outside the exclusion volume Vo(T- v) (Fig.17), 
in the volume V - Vo. The probability that none of the nuclei that have 
appeared in the time interval ( 0, T) intersects the line transect is a product of 
the probabilities of 'non-intersection' characterising all portions of nuclei that 
have appeared in the time interval (0, T). Assuming a unit volume V = 1, 
the probability T(x) that the line transect with length x will sample a-phase 
only is [53]: 

(3.10) 

in the three-dimensional case, where V is the finite volume of the system (vis 
a dummy integration variable). In the two-dimensional case, the equation cor
responding to Eq. (3.10) is T(x) = exp (J; IT-v ln[1- (1rk2v2 + 2kxv)]dv) 
where the finite area of the system where the nucleation takes place has 
been taken to be unity. The probability that the transect with length x will 
be intersected by at least a single nucleus is 1 - T(x). For a transect with 
zero length x = 0 (a single-point transect), the expression for T ( x) gives the 
volume fraction ~a of the a-phase. and Eq. (3.10) transforms into Eq. (3.4). 

3.5. Probability of sampling matrix phase only by a transect (2D, 
3D) of arbitrary shape 

The equation giving the probability that a random transect (2D or 3D) 
of arbitrary shape will intercept matrix phase only is given by 
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T(x) = exp (/ It-v ln[l- ,P(v)]dv) , (3.11) 

where '1/J (v) is the volume fraction of the exclusion zone Vo(T- v) for nuclei 
which appeared in the infinitesimal time interval (T- v , T- v + dv) , Fig.18. 

V 

a 

FIGURE 18. 

The derivation is similar to the derivation of Eq. (3.10). The probability 
that none of the nuclei with radii kv that have appeared in the infinitesimal 
time interval ( T - v, T - v + dv) will intersect the 3D-transect is 

{1- Vo(T)/V}V1t- vdv = exp{VIr-vdvln[1- Vo(T- v)/V]} , 

where Ir - v is the nucleation rate at the instant T - v and Vo ( T - v) is the 
volume of the exclusion zone for nuclei that have nucleated at timeT- v (vis 
a time increment). This is essentially the probability that all nuclei which 
have appeared in the time interval ( T - v, T - v + dv) will lie outside the 
exclusion volume Vo(T- v) (Fig.18) , in the volume V- Vo. The probability 
that none of the nuclei that have appeared in the time interval (0, T) will 
intersect the transect is a product of the probabilities of 'non-intersection' 
characterising all portions of nuclei that have arisen in the time interval 
(0, T). Denoting '1/J (v) = Vo(T- v)/V and assuming a unit volume V= 1, the 
probability T(x) that the line transect will sample a-phase only is given by 
Eq. (3.11). 

3.6. Probability of a minimum free path in the matrix 

For arbitrary two-phase microstructure formed by nuclei following a ho
mogeneous Poisson process , there exists a link between the probability 
P(x) = 1 - F(x) that the free path from a point in the matrix will be 
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FIG URE 19. 

greater or equal than a specified length x and the probability T(x) of sam
pling matrix phase only by a line transect of length x . The link between the 
two probabilities can be found using the following probabilistic argument. 

The probability T(x) is a product of the probabilities of two events. The 
first event: 'a particular selected end of the transect (e.g. the end A in Fig. 19) 
samples a ' is characterised by probability ~a which is the volume fraction of 
the a phase. The probability of the second event 'the continuation of the 
transect will be longer than x given that the end A samples a phase ' is in 
fact the probability P(x) of existence of a free path of minimum length x. 

As a result we get 
(3.12) 

Considering that P(O) = 1, From Eq. (3.12) it follows that T(x = 0) = 
~a x P(x = 0) , from Eq. (3 .12) it follows that T(O) =~a· Equation (3.12) can 
also be presented as: 

P( )=T(x) 
X T(O) (3.13) 

which provides a link between three fundamental characteristics of inhomo
geneity (53]. 

Indeed , consider a case where the second phase f3 is formed by a large 
number of overlapping equal-sized circular nuclei with radii R in a plane 
(Fig. 20). 

The probability P(x) that a path starting in a , will be longer than 
x (Fig. 20) is 

P(x ) = 1- F(x) ~ exp( -2-\xR) , (3.14) 

where A is the areal number density of the nuclei. This is in fact the proba
bility that the centres of all nuclei will lie outside the exclusion zone Z with 
area 2Rx (Fig. 20). Similarly, the probability T(x) that a transect of size 
x will sample a only is given by T(x) ~ exp[--\(2xR + 1rR2)]. The latter 
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FIGURE 20. 

expression can also be rearranged as T(x) = exp( -2>..xR) exp( ->..1rR2) = 

~a exp( -2>..xR) = ~aP(x) (53], which is exactly Eq. (3.12). From Eq. (3.14), 
it follows that microstructures characterised by the same value of the product 
(number density of the nuclei x nuclei projection size on a plane perpendic
ular to the free path, ).. x 2R) are characterised by the same probability P(x) 
that the free path in the matrix will be greater than x. It can be also shown 
that a similar statement is also valid for the three-dimensional case. Indeed 
in the three dimensional case T(x) ~ exp[->..(1rR2x + (4/3)7rR3 )]. Because 
~a = exp[- >..( 4/3)7r R3 ], the expression regarding the transect can be pre
sented as 

(3.15) 

As can be verified from Eq. (3.15) , microstructures characterised by the same 
value of the product (number density of the nuclei x nuclei projection area on 
a plane perpendicular to the free path, ).. x 1r R 2) are characterised by the same 
probability P(x) that the free path in the matrix will be greater than x [53). 

It can be shown also that for arbitrary nuclei sizes, increasing the number 
density of the nuclei and decreasing the size of the mean projection of the 
nuclei (on a plane perpendicular to the free path) by the same factor does not 
affect the mean and the variance of the free paths in the matrix phase (53). 
For an arbitrary convex shape of the nuclei it has been shown in (53) that 
the probability that a transect of size x will lie in a phase is given by 

T(x) = exp[->..(tx + s)], (3.16) 

where lis the mean calliper diameter of a single 2D-nucleus or the mean pro
jection area of a single 3D-nucleus on a plane perpendicular to the direction 
of the transect in the 3D-case. In Eq. (3.16) , ).. is the number density of the 
nuclei and s is the area of a single nuclei. 
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4. Statistics of properties of inhomogeneous materials 

4.1. The importance of the shape of the lower tail of material pro
perty distributions 

A common framework for predicting structural/ mechanical reliability 
at a component level is the load-strength (demand-capacity) interference 
(Freudenthal, 1954; Carter, 1986) which deals with the interaction of the 
load distribution with the strength distribution. 

Probability 
density 

FIGURE 21. 

Numerous failure modes can be described conveniently in the context of 
the load-strength interference (Freudenthal, 1954; Carter, 1986). Such are for 
example all cases where failure occurs whenever the load exceeds resistance. 
The reliability in this case is determined by the probability that the load 
L will be smaller than the strengthS (P(L < S)). The strength variation is 
a complex function of material properties, design configuration and geometry. 
A long and thick lower tail in the material property distribution usually 
yields a long and thick lower tail of the strength distribution which entails 
low reliability. Low values of the material property exert stronger influence 
on reliability than do high or intermediate values. 

f(P) ! region that 
affects 
reliability 

FIGURE 22. 

p 
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An adequate model of the material properties should faithfully represent 
the lower tail of the corresponding distribution. 

An important reliability parameter for load and strength following the 
normal ( Gaussian) distribution is the safety margin {3 defined by 

{3 _ 1-LS- J-lL 

- Ju~ + ul ' 
( 4.1) 

where J-lS and J-lL are the mean strength and the mean load and us and U£ 

are the standard deviations of the strength and the load , correspondingly. 
Reliability (the probability that the load will be smaller than the strength) 
is determined from (Christensen and Baker, 1982) 

R = 1 - <I> (- {3) , (4.2) 

where <I>( •) denotes the cumulative distribution function of the standard 
normal distribution. The safety margin is a measure of the relative separation 
of the load and strength is an important reliability parameter for normally 
distributed load and strength and. The larger the difference J-lS- J.-LL and the 
smaller the standard deviations of the strength and the load , the larger is 
the reliability R. It must be pointed out however , that the safety margin is 
valid only for normally distributed load and strength. The normal distribution 
however rarely describes satisfactorily the material property variation in the 
distribution tails. Some of the more obvious reasons are: 

• the distribution of materials properties is usually asymmetric, skewed 
to the right while the normal distribution is symmetric, 

• the normal distribution is unbounded on the left , while the material 
property distribution is always bounded on the left. A probabilistic de
sign analysis based on a normal model for the material property P can 
be inaccurate. The Weibull model and the Log-normal model are often 
suitable models for the variation of materials properties but often the 
material property distribution is in effect a distribution mixture. 

For non-normally distributed load and strength, the safety margin is mis
leading. Figure 23 illustrates a case where a low safety margin {3 = ~ 

er s+crL 

exists (J-ls - 11 L is small and u~ + ul is large) yet the reliability is high. 
The next figure (Fig. 24) is obtained by reflecting symmetrically the dis

tributions in Fig. 23. Since a mirror reflection does not change the variances 
of the distributions, the only difference is the larger difference of the means 
J-ls - J.-L~ > J-ls - f-lL· As a result, a new, larger safety margin {3' is obtained: 

{3' = ~ > {3 = ~ despite the fact that the reliability associa-
crs+crL crs+crL 

ted with the distributions in Fig. 24 is smaller than the reliability associated 
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with the distributions in Fig. 23. This example shows that the safety margin 
concept applied without considering the shape of the interacting distribution 
tails is completely misleading. 

The discussion so far shows that the most important aspect of the load
strength interaction is the interaction of the upper tail of the load distribution 
with the lower tail of the strength distribution (Fig. 25). 
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4.2. Approximating the lower tail of material properties monoto
nically dependent on the amount of the intercepted fraction 
from one of the microstructural constituents 

Efficient probability bounds of the property values can be obtained in the 
case where the property y is solely determined by the amount of the inter
cepted quantity from one of the constituents (e.g. density). In this case, the 
property value y can be expressed by a functional relationship y(x) between 
the property value y (e.g. density, yield strength) and the intercept x from 
one of the structural constituents. Despite the fact that the functional rela
tionship between the property value y and the intercept xis usually unknown, 
it can be shown that provided that y(x) is monotonic, efficient probability 
bounds can be constructed regarding the property under certain conditions. 
The probability bounds are determined using precise estimates of the ex
pected order statistics of the intercepts and approximate estimates of the 
expected order statistics of the property, obtained from a relatively small 
number of data sets. The expected order statistics of the intercepts can for 
example be obtained by sampling images of the microstructure. 

Assume that estimates ih < fh < ... < Yn of the n expected order statis
tics of the property are available from m ordered data sets (each consisting 
of n measurements/ samples) . 

m 

Each value Yr is an average Yr = ~ L Yj,n T = 1, n of the values with 
j=l 

the same rank in the m data sets: 

Yl,l < Yl,2 < · · · < Yl,n 

Y2,1 < Y2,2 < · · · < Y2,n 

Ym,l < Ym,2 < · · · < Ym,n· 

The estimates of the expected order-statistics x1 < x2 < . . . < Xn of 
the intercepts are formed in a similar fashion: each value Xr is an average 

Q 
Xr = b L Xj,r, T = 1, n of the values with the same rank in Q ordered sets 

j=l 

of intercepts ( Q >> m): 

X1,1 < X1,2 < · · · < XI,n 

X2,1 < X2,2 < · · · < X2,n 

XQ,l < XQ,2 < . . . < XQ,n· 

Each data set of intercepts consists of n random placements (throws) of 
the transect in the microstructure. 
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It can be shown however, that if the variance of the estimated order statis
tic Xr of the intercepts is relatively small , the probability that the property 
Y will be smaller than any of its expected order statistics Yr is approxi
mately equal to the probability that the intercept X will be smaller than the 
corresponding expected order statistic ir of the intercepts, i.e: 

(4.3) 

and also 
( 4.4) 

where r and s stand for the indices of any two order statistics. 
If the variance of the estimated mean order statistic ir is large however, 

relationships ( 4.3) and ( 4.4) are no longer valid. The bounds ( 4.3) and ( 4.4) 
regarding the property can be determined using the mean order statistics 
of the intercepts and their variances directly, from Monte Carlo simulations. 
The first step is to ensure by a Monte Carlo simulation that the estimated 
mean intercept order statistic ir that has been selected is characterised by 
a small variance. If this is the case, the probability that the property Y will 
be smaller than the estimated mean order statistic Yr is approximately equal 
to the probability that the intercept will be smaller than its corresponding 
estimated mean order statistic ir , i.e. relationship ( 4.3) is valid. Accordingly, 
the probability that the property will lie between any two estimated order 
statistics Yr and Ys whose corresponding intercept order statistics Xr and is 
are characterised by small variances, can be determined from relationship 
(4.4). 

The order statistics in the right hand side of Eqs. ( 4.3) and ( 4.4) can be 
estimated precisely by Monte Carlo simulations as described earlier. Unlike 
collecting data sets regarding the property values, collecting data sets regard
ing the order statistics of the intercepts is 'cheaper'. The number of data sets 

. Q used to estimate the order statistics of the intercepts, can be much larger 
than the number m of data sets used to estimate the expected order statistics 
Yr of the property. As a result, the expected order statistics of the intercepts 
can be estimated very precisely. 

In order to estimate the probability bound in Eq. ( 4.3) for example, the 
number Nr of random placements of the transect for which the intercept is 
smaller than ir is divided to the total number N of random placements of 
the transect: P(Y ~ Yr) ~ P(X ~ ir) = Nr/N. 

4.3. A numerical example 

The image of the microstructural cross section in Fig. 10 was sampled by 
line transects of length 40 units. [The longer side of the microstructural sec-
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tion contains 640 length units). The values of the property X characterising 
the pure microstructural constituents a and (3 were assumed to be Yf3 = 10 
and Ya = 60, respectively. With increasing the intercept x = La/ L from 
the microstructural constituent a, the property y was assumed to increase 
according to the exemplary non-linear dependence: 

(4.5) 

The mean order statistics of the intercepts and the property were determined 
for different numbers n of order statistics. 

For a single order statistic ( n = 1) the expected value of the intercept 
order statistic and the property order statistic are in fact the means of the in
tercept and property values, respectively. The simulation yielded £1 = 0.6058 
for the mean of the intercepts with variance 0.041 and fh = 30.41 for the 
mean of the property. As can be seen, due to the non-linear dependence (4.5) 
and the large variance (0.041) of the mean of the intercept, no reliable pre
dictions from Eq. ( 4.2) can be made. For n = 10 order statistics, and for the 
same non-linear relationship ( 4.5) , t~e corresponding expected order statis
tics of the intercepts calculated from the Monte Carlo simulation are given 
in Table 1. 

TABLE 1. Mean order statistics of the intercepts x from the a-constituent from 
data sets each containing n = 10 measurements. The order statistics were calcu
lated from a Monte Carlo simulation. 

1 2 3 4 5 6 7 8 9 10 
X 0.279 0.412 0.486 0.538 0.584 0.629 0.678 0.737 0.807 0.908 

Suppose that the relationship property-intercept y(x) is unknown and 
only four data sets are available, each containing ten measurements of the 
property. The estimated mean order statistics of the property from four data 
sets only are given in Table 2. 

TABLE 2. Estimated mean order statistics Yi of the property y from m= 4 data 
sets, each containing n = 10 measurements. 

Ys YB Y10 
15.04 20.83 23.64 25.25 26.81 29.31 32.72 37.51 47.17 48.62 

Although the actual property-intercept relationship y(x) is unknown, the 
probability that the property will be smaller than its sixth order statistics 
(Y6 = 29.31) for example, can be estimated easily because the Monte Carlo 



http://rcin.org.pl

258 M.T. TODINOV 

simulation showed that the sixth order statistic of the intercepts is characte
rised by a small variance (0.0057). The probability that the property will be 
smaller than its sixth estimated mean order statistic is approximately equal 
to the probability that the intercept will be smaller than its sixth expected 
order statistic: 

(4.6) 

Estimating the probability P(X ~ i6) in the right hand side of Eq. ( 4.6) by 
a Monte Carlo simulation gives P(X ~ i6) = 0.53 and the probability bound 
for the property becomes P(Y ~ Y6) ~ 0.53. The true probability estimated 
by a Monte Carlo simulation (now using the non-linear dependence ( 4.5)) 
is P(Y ~ Y6) = 0.55. In a similar fashion , other probability bounds can be 
estimated, e.g. P(Y ~ Yr) and P(yr ~ Y ~ y8 ), as long as the corresponding 
i 1• and is are characterised by small variances. The variance of the tenth 
order statistics of the intercepts however (0.048) is too large and no reliable 
predictions can be made from Eq. (4.4). 

Simulated sampling of microstructural images by transects is a powerful 
method to build the lower tail of properties distributions strongly dependent 
on the amount of intercepted fraction from one of the structural constituents. 
One of the advantages of the method is that the probability bounds of the 
property are determined without prior knowledge of the functional relation
ship between the property and the intercepts from the structural constituents. 
A large number of properties vary monotonically with the intercept from one 
of the structural constituents. The proposed model can be applied whenever 
the investigated property depends monotonically on the intercept from one 
of the structural constituents, provided that the selected order statistic of 
the intercepts is characterised by a small variance. No assumptions of a pro
bability distribution function regarding the property are needed , which is 
a significant advantage compared to other methods. 

The method can even be applied for single-phase microstructures whose 
grain-size varies substantially (inhomogeneous in terms of a grain size dis
tribution). If the investigated property is a monotonic function of the grain 
size, the proposed method can be applied. 

Suppose that the investigated property depends monotonically on the 
number of intercepted grains W by transect. Then if the estimates 
w1 < w2 < . . . of the mean order statistics of the number of intercepted 
grains are build and also the corresponding estimates Y1 < 'Y2 < . . . of the 
mean order statistics of the investigated property, Eqs. ( 4.2) and ( 4.4) will 
be valid if the estimated mean order statistics of the number of intercepted 
grains are characterised by small variances. The probability P(Y ~ Yr) that 
the property will be smaller than its r-th estimated mean order statistic Yr 



http://rcin.org.pl

STATISTICS OF THE STRUCTURE AND PROPERTIES ... 259 

is approximately equal to the probability that the number of intercepted 
grains W will be smaller than its r-th estimated mean order statistic Wr: 

P(Y ( Yr) ~ P(W ( wr)· 

5. Modelling the uncertainty associated with mechanical 
properties of inhomogeneous microstructures 

5.1. Modelling uncertainty of mechanical properties using mixture 
distributions 

A typical inhomogeneous microstructure is the microstructure of C-Mn 
multi-run welds (Fig. 26). 

a 

b 

Intermediate zone 

Intermediate zone 

FIGURE 26. 

Position of the 
Charpy V-notch 

It consists of a central zone, characterised by a poor impact toughness, re
heated zone characterised by a relatively high impact toughness and an inter
mediate zone, characterised by an intermediate impact toughness. Each sub
sequent weld bead, grain refines (normalises) part of the previous weld metal 
underneath (Easterling, 1983) and refinements in microstructure result in im
proved toughness compared to the microstructure not affected by reheating. 
For a Charpy V-notch positioned entirely in a specific microstructural zone, 
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the measured impact energy will also be influenced by the other microstruc
tural zones . Despite this dependence however, the specific microstructural 
zone in which the Charpy V-notch has been cut has a crucial influence on 
the distribution of the impact energy [67]. At each Charpy test , the notch 
on the specimen is parallel to the weld beads and resides entirely in a single 
microstructural zone (Fig. 26). The strong influence of the microstructural 
zone where the notch is located is illustrated by the well separated distinct 
empirical cumulative distributions of the impact energy characterising each 
zone (Fig. 27). 
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FIGURE 27. 

Suppose that M microstructural zones (i = 1, M) are sampled by a tran
M 

sect with probabilities Pl,P2 , ... ,pM, L Pi= 1. It is assumed that a single 
i=l 

microstructural zone is sampled at any placement of the transect . Thus, the 
probability F(x) = P(X :::;; x) that the mechanical property X(e.g. Charpy 
impact energy) , will be smaller or equal than a specified value x can be pre
sented as an union of the following mutually exclusive and exhaustive events: 
(i) the first microstructural zone is sampled and the property is smaller than 
x (the probability of this compound event is given by p1F1 (x)); (ii) the se
cond microstructural zone is sampled and the property is smaller than x 
(the probability of this compound event is given by p2F2(x)); ... ; the M-th 
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microstructural zone is sampled and the property is smaller than x (the pro
bability of this compound event is given by pM FM ( x)). The probability of 
an union of mutually exclusive events is equal to the sum of the probabilities 
of the separate events and as a result: 

M 

F(x) = LPkFk(x). (5.1) 
k=l 

As a result , the probability distribution F(x) = P(X ~ x) of the mechani
cal property X is a mixture of the probability distribution functions Fk(x) 
characterising the individual microstructural zones, scaled by the probabi-

M 

lities Pk, k = 1, M with which they are sampled, where I: Pk = 1. After 
k=l 

differentiating Eq.(5.1), a relationship between the probability densities is 
obtained: 

M 

f(x) = LPkfk(x). (5.2) 
k=l 

Multiplying both sides of Eq.(5.2) by x and integrating: 

+oo M +oo J xf(x)dx = LPk J xfk(x)dx 
-oo k=l -oo 

gives 

(5.3) 

It must be pointed out that assumptions of a random distribution of the 
property can probably be justified only in cases where the same (relatively 
homogeneous) microstructural zone is sampled. Numerous normal probabi
lity plots of Charpy impact energy data related to the case where the Charpy 
V-notch samples different microstructural zones have been produced in [67]. 
The systematic deviations of the plotted data from a straight line demon
strated that the impact energy distribution at a specified test temperature 
for multi-run welds is not described by a normal (Gaussian) model. 

The variance V of the mixture distribution (5.2) for continuous probabi
lity density functions fk(x) characterising the existing microstructural con-
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stituents can be derived as follows 

M 

V= j(x- J-t) 2 f(x)dx = j(x- J-tk + J-tk- J-t) 2 LPkfk(x)dx = 
k=l 

M 

= L Pk (! (x- J-tk) 2 fk(x)dx+ J 2(x - J-tk)(J-tk - J-t)fk(x )dx 
k=l 

+ J(J-tk-J-t) 2 fk(x)dx). 

Because the middle integral in the expansion is zero: 

J 2(x- J-tk)(J-tk- J-t)fk(x)dx = 0, 

the expression for the variance becomes: 

M 

"" 2 V= L...t Pk[Vk +(I-lk- !-l) ], 
k=l 

(5.4) 
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where Vk , k = 1, M are the variances characterising the M individual dis
tributions. Although Eq. (5.4) has a simple form, the grand mean of the 
distribution mixture J-l given by Eq.(5.3) is a function of the means J-lk of 
the individual distributions. An expression for the variance can be derived 
as a function only of the pairwise differences between the means J-lk of the 
individual distributions. Indeed, substituting expression (5.3) for the mean 

M 

of a distribution mixture into the term 2: Pk(J-lk- J-t? of Eq. (5.4) gives 
k=I 

M M (M )2 
~Pk(J.Lk- J.L? = ~PkJ.L~- ~PkJ.Lk (5.5) 

The variance of the distribution mixture can then be expressed only in terms 
of the pairwise differences between the means of the individual distributions. 
Indeed, expanding the right part of Eq. (5.5) results in: 

~ PkJ.L~ - (~ PkJ.Lk) 

2 

= PIJ.Li + P2J.L~ + · · · +PM J.L'ivt - PiJ.Li 
M i -I 

- P~J-l~ - ... - p~ J-l~ - 2 L L PiPj/-li/-lj =PI (P2 + P3 + ... +PM )J.Li 
i=2 j=I 

+ P2(PI + P3 +···+PM )J-t~ + · · · + PM(PI + P2 + · · · + PM-I)J.L~ 
- 2 LPiPj/-li/-lj = LPiPj(J.Li - J.Lj)

2 

i<j i<j 

since 1 -PI = P2 + P3 + ... +pM, 1 - P2 = PI + P3 + ... +pM, etc. As a result, 
the variance of the distribution mixture (5.4) becomes 

M M 

V= LPk[Vk + (J-tk- J-£) 2] = LPkVk + LPiPj(J-li- J.Lj)
2
. .(5.6) 

k=I k=I i<j 

The expansion of 2: PiPj(J-li - /-lj) 2 has M(M- 1)/2 number of terms, 
i<j 

equal to the number of different pairs (combinations) of indices among M 
indices. For M= 2 individual distributions, Eq. (5.6) becomes 

V= pVI + (1- p)V2 + p(1- p)(J-ti- J-£2) 2. (5.7) 

For M = 3, Eq. (5.6) becomes 

V =PI VI + P2 V2 + P3 V3 + PIP2(J-li - J-£2)
2 + P2P3(J.L2 - J-£3)

2 

+ PIP3(J-li - J-£3)
2 · (5.8) 
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Determining the variance of the distribution mixture from sampling dif
ferent microstructural zones is closely related to the probability bounds of 
the mechanical properties associated with these zones , which is an important 
task of the structural reliability assessment. 

Equation (5.6) does not require the type of the individual distributions 
to be known and has universal validity. Distribution mixtures arising from 
sampling inhomogeneous structural zones are characterised by large variances 
and this is illustrated by the box plots in Fig. 29 representing the scatter 
of the Charpy impact energy from sampling the individual microstructural 
zones and from sampling all zones. 

Charpy impact energy, J 
1~~--------------------------------------~ 

120 • • 
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80 • • 
60 • 

• 
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20 

Microstructural zones 
or-------.-------.-------~------.-------~ 

Central Intermediate Reheated All zones 
zone zone zone 

FIGURE 29. 

The reason for the large variances, becomes clear from Eq. (5.6) , where 
the variance of a distribution mixture has been decomposed into two ma
jor components. The first component Lf!l Pk vk comprises the terms Pk vk ' 
(the variances of the individual distributions characterising the separate 
sources) and characterises only the variation of properties within the se
parate sources (individual distributions). The second component is the sum 
Li<j PiPj (J.Li - /Lj )2 and characterises the variation of properties between the 
separate sources (individual distributions). Assuming that all individual dis
tributions have the same mean J.L(Pi = Pj = J.L) , the terms PiPj(/Li - /Lj) 2 

in Eq. (5.6) become zero and the total variance becomes V = Lf!1 Pk Vk. 
In other words, the total variation of the property is entirely within-sources 
variation. 
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Assuming that all sources (individual distributions) are characterised by 
very small variances Vk ~ 0, L,f!1 Pk Vk ~ 0 and the total variance becomes 
V = L,i<j PiPj (J-Li - /-lj )2

. In other words, the total variation of the property 
is entirely between-sources variation. 

5.2. Variance upper bound theorem and its applications 

For the case represented in Fig. 31 where small samples are taken ran
domly from a three-component inhomogeneous structure (components A, B 

Random sample 

FIGURE 31. 
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and C) the variance of properties of the samples can be determined easily 
using Eq. 5.8 because the probabilities of sampling the separate microstruc
tural constituents are equal to the volume fractions ~A , ~B and ~c (PI =~A; 
P2 = ~s; P3 =~c) of the microstructural constituents. 

In a numerical example, suppose that the three structural constituents 
A , B and C have volume fractions ~A = 0.55; ~B = 0.35 and ~c = 0.1. 
The mean yield strength of the constituents is as follows: MA = 800 MPa, 
J-lB = 600 MPa, MC = 900 MPa, with standard errors OA = 20 MPa; 
aB = 25 MPa and ac = 10 MPa, correspondingly. 

According to Eq. (5.8), the mean yield strength of the samples from all 
microstructural zones is 

1-l =PAl-lA +PsJ-ts+PcJ-Lc = 0.55 x 800+0.35 x 600+0.10 x 900 = 740MPa 

with a standard deviation 

a= [pAa~ + Psa~ + pcab + PAPB(MA- J-lB)
2 

+ PBPC(MB- J-tc )2 

+ PAPC(MA - 1-lC )
2

)
112 

which, after substituting the numerical values gives a ~ 108.85 MPa. As can 
be verified, the standard error characterising sampling from all microstruc
tural constituents is significantly larger than the standard errors characteri
sing sampling from the separate constituents. 

If the mixing proportions Pk are unknown, the variance V in Eq. (5.8) 
cannot be calculated . Depending on the actual mixing proportions Pk , the 
variance V can vary from the smallest variance a? characterising one of the 
constituents up to the largest possible variance obtained from sampling a 
particular combination of constituents with appropriate probabilities Pi· A 
central question is establishing a tight upper bound for the variance of prop
erties from multiple sources (constituents) irrespective of the mixing pro
portions Pk characterising the sources. In order to determine a uncertainty 
interval for the variance of properties, the exact upper bound of the variance 
with respect to the probabilities of sampling Pi needs to be determined first. 
This can be achieved using the simple numerical algorithm in Appendix A 
which is based on a result of fundamental importance, derived rigorously in 
Appendix B: 

Variance upper bound theorem: The exact upper bound of 
the variance of properties from sampling multiple microstructural 
constituents/ sources is obtained from sampling a single or at most 
two microstructural constituents/ sources. 
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Mathematically, the upper bound variance theorem can be expressed as 

Vmax = Pmax Vk + (1 - Pmax)Vz + Pmax(1 - Pmax)(J-Lk- J-LL)
2

, (5.9) 

where k and l are the indices of the sources for which the maximum variance 
is obtained and 0 ~ Pmax ~ 1 and 1 - Pmax are the probabilities of sampling 
the sources for which the maximum of the variance was obtained. If Pmax = 1, 
the maximum variance is obtained from sampling the k-th source only. 

On the basis of this result, the algorithm for finding the maximum va
riance of the properties in Appendix A consists of checking the variances of 
all individual sources and the variances from sampling all possible pairs of 
sources. In this way finding the upper bound variance of the properties from 
M sources involves only M (M + 1) /2 checks. 

For a large M, determining the upper bound variance by finding the global 
maximum of expression (5.6) regarding the probabilities Pk is a difficult task. 

An important application of the variance upper bound theorem will be 
considered here: producing conservative estimates of the uncertainty associa
ted with material properties from sampling different microstructural zones. 

5.3. A conservative estimate of the scatter of the Charpy impact 
energy at a specified test temperature 

The methodology for determining the upper bound variance of properties 
from multiple sources is particularly useful in the case where the sources are 
microstructural zones and the mixing proportions are the probabilities with 
which these microstructural zones are sampled. In this way, a conservative 
estimate of the scatter of material properties from arbitrary sampling of the 
microstructural zones is obtained since, as a rule, the probabilities Pk with 
which these zones are sampled are unknown. The power of the proposed 
methodology will be illustrated by applying it to determine a conservative 
scatter interval for the Charpy impact energy of multi-run welds. 

Determining the uncertainty related to the Charpy impact energy at 
a specified test temperature is based on experimental data published in [67) 
and on Eq. (5.6) related to a variance of a distribution mixture. The ex
perimental data characterise the Charpy impact energy from sampling the 
central, intermediate and reheated zone [67) of multi-run C-Mn welds at 0°C 
and include 117 Charpy impact energy measurements. The impact energy 
of the central zone is characterised by an individual distribution with mean 
I-Ll = 62.32 and a standard deviation a 1 = 10.49 calculated on the basis of 34 
measurements; the impact energy of the intermediate zone is characterised 
by an empirical distribution with mean J-L2 = 92.22 and a standard deviation 
a2 = 16.02 calculated on the basis of 54 measurements and the impact energy 
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of the reheated zone is characterised by an empirical distribution with mean 
/-L3 = 106.22 and a standard deviation a3 = 13.63 calculated on the basis of 
29 measurements. For M = 3 microstructural zones (central , intermediate 
and reheated), Eq. (5.1) yields a model for the distribution of the Charpy 
impact energy: 

(5.10) 

where PI, P2 and P3 are the probabilities of sampling the central (1) , in
termediate (2) and reheated zone (3) and FI (x) , F2(x) and F3(x) are the 
cumulative distribution functions characterising the Charpy impact energy 
of the three microstructural zones. 

According to Eq. (5.3) the mean of the Charpy impact energy at 0°C is 
given by 

(5.11) 

where 111 = 62.32, 112 = 92.22 and /-L3 = 106.22 are the means of the Charpy 
impact energy characterising the three microstructural zones. For M = 3 
microstructural zones equation Eq. (5.8) gives 

Vo = P1ar + P2a~ + p3a~ + PIP2(J-LI- 112)2 + P2P3(/-L2- 113)
2 

+ PIP3(/-LI - /-L3) 2 (5.12) 

for the variance of the Charpy impact toughness at 0°C, where a1 = 10.49, 
a2 = 16.02 and a3 = 13.63 are the standard deviations associated with the 
Charpy impact energy of the individual microstructural zones. Because the 
probabilities PI , P2 and P3 of sampling the individual microstructural zones 
are unknown, the variance V from Eq. (5.12) cannot be calculated. Depending 
on the actual probabilities with which the microstructural zones are sampled, 
the variance V may vary from the smallest variance ai characterising the 
central zone up to the largest possible variance obtained from sampling a 
particular combination of microstructural zones with particular probabilities 
Pi· In order to determine a conservative uncertainty interval for the variance, 
the exact upper bound of the variance needs to be determined first. 

The global maximum of the variance of a distribution mixture composed 
by the three microstructural zones , regarding the probabilities Pi with which 
they are sampled is Vmax ~ 492.109. The upper bound of the variance in 
Eq. (5.12) has been obtained by maximising V regarding the sampling pro
babilities PI, P2 and P3 using the numerical algorithm in Appendix A. For 
sampling probabilities PI ~ 0.5, P2 = 0 and P3 = 0.5, the numerical algo
rithm determined Vmax ~ 492.109 for the variance upper bound. The mean 
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of the distribution mixture which corresponds to the upper bound of the va
riance of the Charpy impact energy is M= 0.5f1-1 +0.5J..L3 = 84.27. In this way, 
the uncertainty associated with the Charpy impact toughness at a specified 
test temperature (0°C) has been determined and can subsequently be used 
for determining the uncertainty associated with the location of the ductile
to-brittle transition region. As can be verified from Eq. (5.12), the variation 
associated with the Charpy impact energy at a specified test temperature is 
caused by the natural variability of the impact energy from sampling a partic
ular microstructural zone and from sampling multiple microstructural zones. 
According to Eq. (5.12) the variation can be reduced significantly if a single 
microstructural zone (for example the central zone) is sampled. The proba
bilities of sampling then become PI = 1, P2 = 0 and P3 = 0 and Eq. (5.12) 
transforms into Vo = a{ , i.e. the variance coincides with the variance of the 
Charpy impact energy of the central zone. By sampling from a single mi
crostructural zone, the variability associated with the Charpy impact energy 
diminishes because the squared differences "'Li<j PiPj (J..Li - J..lj) 2 in Eq. ( 5. 6) 
disappear. 

5.4. Conservative estimate regarding the uncertainty in the loca
tion of the ductile-to-brittle transition region 

According to the earlier discussion in Sec. 2, the largest scatter of prop
erties associated with sampling of an inhomogeneous microstructure by a 
line transect corresponds to a sampling scheme characterised by the largest 
intercept variance. For multi-run welds this 'conservative sampling scheme' 
corresponds to a sampling with a Charpy V-notch parallel to the weld beads 
(Fig. 26(b)) which yields the largest variance of the Charpy impact energy. 
The Monte Carlo simulations showed that the variance of the 40 J transition 

E, IE, J 
• 

• 

T,K 

FIGURE 32. 
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temperature (the T40J temperature corresponding to 40 J impact energy, se
lected to mark the location of the transition region, Fig. 32) increases with 
increasing the variance of the impact energy at the test temperatures. A large 
scatter in the Charpy impact energy propagates into a large uncertainty 
in the location of the ductile-to-brittle transition region. Consequently, the 
conservative sampling scheme (a Charpy V-notch parallel to the weld beads , 
Fig. 26) can be selected as a basis for producing a conservative estimate of the 
uncertainty associated with the location of the ductile-to-brittle transition 
region. 

The models for determining the uncertainty associated with the Charpy 
impact energy of C-Mn multi-run welds proposed here integrate the following 
basic components: 

(i) A model of the systematic component of the Charpy impact energy 
variation [60]; 

(ii) A model for producing unbiased and precise estimates of the parame
ters of the systematic component of the Charpy impact energy in the 
transition region [ 60]; 

(iii) A model of the variance of the Charpy impact toughness at a specified 
test temperature [57); 

(iv) A simulation model for determining the uncertainty associated with 
the location of the transition region [55) and 

(v) A model for determining the uncertainty associated with the Charpy 
impact energy at a specified test temperature [55]. 

The general statistical model regarding the variation I E(T) of the Charpy 
impact energy can be presented as 

I E(T) = E(T) + c(T), (5.13) 

where E(T) is the systematic component of the impact energy variation and 
c(T) is the random component (Fig. 32). According to Eq. (5.1), the ran
dom component c(T) of the Charpy impact energy is a mixture of several 
individual distributions. The model of the systematic variation E(T) of the 
Charpy impact energy combines an equation for fitting the systematic vari
ation of the normalised impact energy and involves separate treatment of 
the shelf regions Eu and EL (Fig. 32) and the transition ductile-to-brittle 
region (Fig. 33). A method for producing unbiased and precise estimates of 
the parameters in the systematic variation has been proposed in [60] . 

A conservative estimate of the uncertainty in the location of the ductile
to-brittle region along the temperature axis can be produced using Monte 
Carlo simulations based on fitting multiple sparse data sets obtained from 
conservative sampling. This consists of sampling the individual microstruc-
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tural constituents (at each test temperature) with probabilities which result 
in the largest variance of the Charpy impact energy. Correspondingly, in 
order to produce a conservative estimate of the location of the ductile-to
brittle transition region, at each test temperature Ti, the components in the 
distribution mixture modelling the Charpy impact energy is sampled with 
probabilities which result in the largest Charpy impact energy variance. 

A uniform distribution regarding the scatter of the Charpy impact tough
ness at a specified test temperature is also assumed. This assumption is also 
conservative and is supported by the actual shape of the empirical distribu
tions of the Charpy impact energy (Fig. 30). 

The Monte Carlo simulation algorithm for producing a conservative es
timate of the location of the transition region as a function of the selected 
test temperatures works as follows. Sequentially, the selected input test tem
peratures are scanned and at each test temperature, a random value the 

Charpy impact energy, J 

T4o1 
T,K 

FIGURE 34. 
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Charpy impact energy is generated from the uncertainty interval of the im
pact energy at that test temperature (Fig. 34). In this way, by a single scan 
of all test temperatures, a random sparse data set is generated, containing 
a single impact energy at each test temperature. After generating a set of 
simulated values of the Charpy impact energy at each test temperature, the 
obtained sparse data set is fitted according to the method presented in [60]. 

Next , the T4oJ transition temperature from fitting the sparse data set is 
determined (marking the location of the transition region) , after which ano
ther scan of the test temperatures is performed which results in a new sparse 
data set. The subsequent fitting of the new sparse data set results in another 
estimate of the T4oJ temperature. The Monte Carlo trials continue with gene
rating sparse data sets, fitting the data sets and determining estimates of the 
T4oJ temperature until a sufficient number of estimates are collected. These 
form an empirical statistical distribution, describing the uncertainty asso
ciated with the T4oJ temperature marking the start of the ductile-to-brittle 
transition region (Fig. 34). 

The Monte Carlo simulation routine for investigating the uncertainty as
sociated with the location of the transition region as a function of the number 
of test temperatures, the choice of test temperatures and the magnitude of 
the variance of the impact energy at the test temperatures has been discussed 
in [55]. 

A parametric study based on real Charpy impact data at eight test tem
peratures ( -70°C, -40°C, -20°C, -l0°C, 0°C, l0°C, 20°C, 50°C) has been 
discussed in [55]. The histogram in Fig. 35 represents the uncertainty in the 
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location of the transition region associated with eight test temperatures. The 
histogram in Fig. 36 represent the uncertainty in the location of the transition 
region for the same eight test temperatures but with twice as small standard 
errors of the variation of the Charpy impact energy. As can be verified from 
the histograms, decreasing the uncertainty intervals of the Charpy impact 
energy at the test temperatures significantly diminishes the uncertainty as
sociated with the location of the transition region. 

The uncertainty in the location of the ductile-to-brittle transition region 
depends very strongly on the number of test temperatures and the variance 
of the impact energy at the test temperatures. The large uncertainty in the 
Charpy impact energy from sampling more than one microstructural zone 
combined with a small number of test temperatures propagates into a large 
uncertainty in the location of the ductile-to-brittle transition region. For 
a specified number of test temperatures, the uncertainty in the location of 
the transition region can be reduced by sampling a single microstructural 
zone. Sampling from the central zone only for example, results in a conserva
tive estimate of the location of the transition region, shifted towards higher 
temperatures. 

Appendix A. An algorithm in pseudo-code for determining 
the upper bound of the variance from sampling 
from multiple sources 

The variable max contains the maximum variance at the end of the cal
culations, the constant M is the number of components (sources) composing 
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the mixture distribution. Variables k_max and m_max contain the indices 
of the two sources sampling from which yields the largest variance. If the 
maximum variance is attained at sampling a single source, k_max and m_max 

will both contain the index of this source. Variables pk_max and pm_max 

contain the probabilities of sampling the two sources which have produced 
the largest variance. The operators in braces { opl; op2; op3; ... ;} are 
executed as a single block. As can be verified the internal loop is executed 
only if the condition IV[i] - V[j]l < (J.L[i] - J.L[j])2 is fulfilled, i.e. only if 
a local maximum from sampling the two sources exists. 

max=V[1]; k_max=1; m_max=1; 

for i from 2 to M do 
{ 

if (max<V [i]) then do 
{ 

max=V [i]; k_max=i; 

m_max=i; pk_max=l; pm_max=1; 

} 
for j=l to i do 

{ 

} 

if IV[i]- V[j]l < (J.L[i]- J.L[j]) 2 then do 
{ 
candidate max= V[i] / 2+V[J"] / 2+ (v[~J-V[jJ? + (J.L(i]~J.L[j]) 2 

- 4(J.L[l.]-J.L[J])2 2 

if (max < candidate_max) then do 
{ 
max=candidate_max; k_max=i; m_max= j; 

k _ Q 5 V [i) -V [j] . 
p _max - . + 2 (J.L [i) -J.L [j] )2 , 
pm_max=l-pk_max; 

} 
} 

Appendix B. 

The upper bound Vmax of the variance V of a distribution mixture is 
obtained by maximising the general Eq. (5.6) regarding Pk, k = 1, M: 
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The local extrema of expression (B.1) can be found using Lagrange multi

pliers, because of the equality constraint: g(p1, ... , PM) = ( L:~1 Pk) -1 = 0. 

The necessary condition for an extremum of the variance given by expres
sion (5.6) is: 

8Vj8pk + A.8gj8pk = 0, k = 1, 2, ... , M, (B.2) 

where >.. is the Lagrange multiplier. These M equations together with the 
constraint L:~1 Pk - 1 = 0 form a system of M + 1 linear equations in the 
M+ 1 unknowns Pl, ... ,pM and>..: 

Pl + P2 + · · · + PM = 1, 

A.+ Pl (J-lk - J-l1)
2 + P2(J-lk - M2)

2 + · · · + Pk-1 (J-lk - /-lk-1)
2 

+Pk+l (J-tk - /-lk+1)
2 + · · · + PM(J-lk - J-lM )

2 
= - Vk, 

where k = 1, M. This linear system can also be presented in a vector form: 

Ap=V, 

where 

0 1 
1 0 

A = 1 (M2 - M1? 

p= 

1 1 
(/-ll - /-lM )2 

(M2 - J-lM )2 

0 

(B.3) 

(B.4) 

Matrix A is a Cayley-Menger matrix (Glitzmann and Klee, 1994). The 
determinant of this matrix is at the basis of a method for calculating the vo
lume V of a N -simplex (in the N -dimensional space). Suppose an N -simplex 
has vertices v1, v2, ... , v N + 1 and d%m is the squared distance between vertices 
vk and Vm. Let the matrix A of D = (dkm) be defined as 
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The equation V2 = ~-;,?();,~~ det(A) then gives the volume V of theN-simplex 

(Glitzmann and Klee, 1994; Sommerville, 1958). From this equation it is clear 
that if the Cayley-Menger determinant is zero, the volume of the simplex is 
also zero. The converse is also true, if the volume of the simplex is zero, the 
Cayley-Menger determinant is necessarily zero. 

As can be seen from our matrix A, the means J-li can be considered as first
axis co-ordinates of the vertices of a simplex in an M- !-dimensional space 
with other co-ordinates set to zero. The 'volume' of this simplex is clearly 
zero except in the one-dimensional case (M - 1 = 1) where the 'volume' 
of the simplex is simply the distance IJ.Lt - J.L2I between the two means of 
the individual distributions (sources). As a consequence, the determinant of 
matrix A is always zero for M > 2 and the system (B.3) has no solution. 

We will now prove that no local maximum exists if exactly k > 2 indi
vidual distributions (sources) are sampled from a mixture distribution com
posed by M components (individual distributions). If k individual distribu
tions are sampled, the sampling probabilities of these individual distributions 
must then all be different from zero. Without loss of generality let us assume 
that the first k individual distributions are sampled with probabilities PI =f 0; 
P2 =f 0, ... , Pk =f 0, L::=l Pi = 1, (Pk+l = 0, . .. ,pM = 0). Since the k indi
vidual distributions also form a mixture distribution and k > 2, the linear 
syste1n (B.3) has no solution, therefore no local maximum exists. This means 
that the global maximum is attained somewhere on the boundary of the do
main 0 ~ Pl ~ 1, ... , 0 ~ Pk ~ 1, either for some Ps = 0 or for some Pt = 1. 
The relationship Pt = 1 however, means that the rest of the sampling pro
babilities must be zero (Pi = 0 fori =f t). In both cases , at least one of the 
sampling probabilities PI, P2, ... , Pk must be zero. If k = 2 (one dimensional 
simplex), the matrix Eq. (B.3) becomes 

(B.5) 

Because in this case, the Cayley-Menger determinant is equal to 
2(J.-Lt - J.-L2) 2, a solution of the linear system (B.5) now exists and a local 
maximum may be present. The solution of the linear system (B.5) is 

V1- v2 
Pl =0.5 + 2( )2 , 

/-ll - /-l2 
(B.6) 

V1- v2 
P2 =0.5 - 2( )2 . 

/-ll - /-l2 
(B.7) 
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These values of PI and P2 correspond to a local maximum in the domain 
0 ~PI~ 1, 0 ~ P2 ~ 1, only if lVI- V2l < (J-ti-J-£2)2. If lVI- V2l ~ (J-ti-J-£2)2, 
the maximum is attained at the boundary points of the domain, either for 
PI = 1, P2 = 0 (Vmax = VI) or for PI = 0, P2 = 1 (Vmax = V2), whichever is 
greater (Vmax = max{VI , V2}). If lVI - V2l < (J-ti - J-£2) 2, a local maximum of 
the variance exists for PI and P2 given by the relationships (B.6) and (B. 7). 
The maximum value of the variance corresponding to these values is 

(B.8) 

In short, the global maximum of the right hand side of Eq. (B.3) is at
tained either from sampling a single source/ individual distribution, in which 
case one of the sampling probabilities Pi is unity and the rest are zero (Pi = 1; 
PJt=i = 0) , or from sampling only two individual distributions k and m 
among all individual distributions composing the mixture distribution. In 
this case, Pk =/: 0 and Pm =/: 0 and the rest of the Pi are zero (Pi = 0) 
for i =/: k and i =/: m. If Vmax,k ,m denotes the local maximum of the va
riance from sampling sources/ individual distributions k and m (k =f. m), the 
global maximum Vmax of the right hand side of Eq. (B.3) can be presented 
as Vmax = max{VI, v2, ... 'VM, Vmax ,k,m} where k = 2, M and m= 1, k- 1. 
Since there exist M x (M- 1)/2 possible terms Vmax ,k,m, the global maxi
mum is determined after M+ M x (M- 1)/2 = M(M + 1)/2 checks. As 
can be verified from the algorithm presented in Appendix 5A, the maximum 
of the variance is determined by two nested loops. The control variable i of 
the external loop takes on values from 2 to M (the number of sources) while 
the control variable j of the internal loop takes on values from 1 to i-1. 
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