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Discrete models for describing the live bridge load caused by a traffic flow is 
considered. A few situations of load localization on the bridge, which give the 
maximal structure response in a long-term exploitation are analyzed. The prob­
abilistic characteristics of the extreme loads, which are the most important ones 
while the reliability treated as the first crossing problem is estimated are deter­
mined. 
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1. Introduction 

On~ of the most difficult problems in the estimation of bridge reliability is 
elaborating an appropriate theoretical model of loads. Vehicles moving along 
the bridge act on the structure dynamically and cause coupling vibrations 
of the system: structure - vehicle [1). Furthermore, the structure elements 
weights, dimensions, equipments and also the vehicles weights, the velocity 
of their movement, the distances between them all are variable quantities of 
a random type. This is the reason that for modelling the bridge loads the 
random variables and also the stochastic processes should be used. In general, 
the bridge loads can be divided into following types: 

• the dead load following from the structures weight and equipment, 

• live loads due to the traffic flow, which can act statically or dynamically, 

• climatic loads such as wind load, snow or icing load, thermal load, 

• non-mechanical loads, for example the imperfection of the structure 
such as the crakes in the concrete, and 

• incidental loads which follow for example from collisions of vehicles. 
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The problem of describing and modelling the bridges loads has been consid­
ered in many papers [1-13]. Two groups of load models can be distinguished. 
The first group form the discrete models and the second one pertains to 
the continuous models of the loads. In the discrete models each vehicle or 
the pressure on the bridge of each axis is presented as a point force. In the 
continuous models the loads caused by a single vehicle are not distinguished 
but replaced by a stochastic process of known probabilistic characteristics. In 
most cases the normal stochastic process is assumed as a continuous model of 
the load. The theoretical model of the load depends on many factors such as 
the type of the bridge: short, medium or long-span, the type of the load: static 
or dynamic, the type of the limit condition used in the reliability estimation: 
the first crossing condition in the ultimate limit state or in the serviceability 
limit state or the fatigue limit condition. In all this cases another parame­
ters of the acting load play the greatest role, for example in estimating the 
bridge reliability treated as the first crossing problem in the ultimate limit 
state and in the serviceability limit state the most important role play the 
heaviest vehicles and in estimating the fatigue reliability very important is 
the knowledge of the whole traffic flow, as it is needed for calculating the 
cumulative damage. 

In the presented work we focused our attention on the discrete models 
for describing the live bridge loads caused by a traffic flow . The following 
components of the load are taken into account: the characteristics of the 
particular class of the vehicles, the structure of the traffic flow, i.e. the per­
centage part of each vehicle class in the whole stream, the distances between 
the vehicles, and also their velocities, in the dynamic case. The probabilis­
tic characteristics of the extreme loads, which are the most important ones 
while the reliability is treated as the first crossing problem, are determined. 
The probability density function of the weight of the heaviest vehicles of the 
truck or trailer type is calculated. In the reliability analysis the exploitation 
time is replaced by the expected number of vehicles which pass the bridge 
in a given time. For calculating the probability density function of the load, 
which causes the extreme value of the structure response in the effort or dis­
placement state of the bridge a few extreme situations are considered. They 
include: 

• the passage of the bridge by a heaviest vehicle in a given time, 

• the selection of all events in which two or more (depending on the 
bridge span) successive vehicles of the truck type arrive on a single 
traffic line, which results in the maximal load, 

• the events when, in any time, two heavy vehicles are present simulta­
neously on corresponding (parallel) traffic lanes. 
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Below the basic quantities constituting the presented load model are de­
scribed. 

2. Model of load caused by a single vehicle 

The vehicles in a traffic flow can be divided into a few classes. In general, 
one can distinguish more than ten classes of vehicles, but most often only five 
classes are distinguished [7] (Fig. 1): (I) cars, (II) small trucks, (III) two-axis 
large trucks, (IV) three-axis trucks, (V) four-axis trucks (in [8] five-axis, so 
called semi- trailer truck). 

We assume that the vehicle dimensions are deterministic variables and the 
vehicle weight Q is a random variable. From the investigations of the vehicle 
weight follows that it can be described by a random variable the probability 
density function of which is of the lognormal shifted distribution type [7], the 
truncated lognormal distribution or the beta distribution. 

I) 

H 
11) 1\ Ill) 

H m .am 
0.5 Q 5 Q 0.6Q 0 .4Q 

IV) V) 

FIGURE 1. Classes of vehicles. 

3. Model of traffic flow 

For describing the traffic flow various models depending on the type of 
the move- free or forced move (Fig. 2) - are used. 

The most frequently applied traffic models are: the regular stream (Fig. 3), 
binomial (Fig. 4) or Poisson stochastic process (Fig. 5), renewal stochastic 
process with Erlang distribution of the distances between the vehicles, gamma 
stochastic process and others. In the figures below each vehicle is presented 
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FIGURE 2. Theoretical relationship between the motion intensity and the mean velocity 
of the vehicles. 

FIGURE 3. Regular model of traffic flow. 

FIGURE 4. Binomial model of traffic flow. 

FIGURE 5. Poisson model of traffic flow. 
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as one point force and the models describe the cases when, in a given time 
period between n vehicles, only one of them is of the heaviest type. 

4. Distribution of maximal quantities 

For different models of traffic flow such as regular stream, binomial stream 
or Poisson stochastic process one can show that the probability density func­
tion fmax.(q, n) for the maximum value of vehicle weight of a subset of n 
vehicles is 

f max. ( q, n) = ( n - 1) f Q ( q) exp [ - ( n - 1 )( 1 - F Q ( q))] ( 4.1) 

where !Q(q) and FQ(q) are the probability density function and the cumu­
lative distribution function of a single vehicle, respectively. For the Poisson 
model of the traffic flow the symbol n denotes the mean number of vehicles 
in a given time period. 

In Figs. 6 and 7 the cumulative distribution function and the probabil­
ity density function of the maximum value of vehicle weight for the shifted 
lognormal distribution of the vehicle weight and different number of vehicles 
are presented. The calculations have been done for the data taken from [7]: 
qmin =51 kN ~ q < oo and E[Q] = 219kN, aQ = 84kN. 

In practice, both values: the lower as determined minimal values qmin and 
higher as determined by maximal values qmax loads are unrealistic. Therefore, 
the more adequate distribution for the vehicle weight seems to be a truncated 
(qmin ~ Q ~ qmax.) lognormal distribution or the beta distribution. 
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FIGURE 6. Cumulative distribution functions . 
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FIGURE 7. Probability density functions. 

For the first case the cumulative distribution function and the probability 
density function for the heaviest vehicles are equal to: 

where 

1 
Fmax[n, q] = n(1 F[q-qminl)' 

e a 

f [ ] 
nf[q- qmin] 

max n, q = --( n---1--'-) -:-( 1--~F=(q---q-m-jn~J) ' 
ae a 

Qmax Qmax -Qmin 

a = J f[q] dq = J f[q - Qmin) dq. 

Qmin 0 

(4.2) 

(4.3) 

In Figs. 8 and 9 the cumulative distribution function and the probability 
density function of the maximum value of vehicle weight for the truncated 
lognormal distribution of the vehicle weight and different number of vehicles 
are shown. The results have been obtained for qmin = 51 kN ::::;; q ::::;; qmax = 

557kN and E[Q] = 219kN, aQ = 84kN [7). 
From Fig. 9 follows that when the number of vehicles tends to be infi­

nite ( n --+ oo) the probability density function f max ( q, n) tends to the one­
point distribution at the point qmax· Therefore, an important question is 
how to predict the maximal value qmax for a large number (n > 106 ) of ve­
hicles, which can appear in a long time period of the bridge exploitation. 
The quantity Qmax can be treated as a random value. Hence, the cumula­
tive distribution function and probability density function of the maximum 
value of vehicle weight can be determined as conditional characteristics, i.e. 

Fmax(qmax, niQmaJ and fmax(qmax 2 niQmaJ and the non-conditional proba-
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FIGURE 8. Cumulative distribution functions. 
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FIGURE 9. Probability density functions. 

bility density function of these can be determined from the formula 

fma.x(Qma.x, n) = J f( QmaxiQ> n) fQm~(q) dq. 

Q 

345 

( 4.4) 

The question appears how to calculate the probability density function 
!Qmax(q) while the empirical data from the future are not known. It can be 
done only by extrapolating the increase of vehicles load in a recent time 
period. Let us remind that the quantity Qmax and hence !Qmax(q) depend on 
the predicted time of bridge exploitation, and indirectly on the number n of 
vehicles moving during this time along the bridge. 

From the investigations follows that the beta distribution is a good one 
for describing empirical data. Therefore in Figs. 10 and 11 we show also the 
cumulative distribution function and the probability density function of the 

http://rcin.org.pl



346 P . SNIADY, R. SIENIAWSKA and S. ZUKOWSKI 

0.8 
,.-... 

~ 0.6 
~~ 

0.4 

0.2 

0 
100 200 300 400 500 

X 

FIGURE 10. Cumulative distribution functions . 
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FIGURE 11. Probability density functions. 
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FIGURE 12. Expected value of the maximal value of the vehicle weight. 
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maximum value of vehicle weight when the vehicle weight is described by the 
beta distribution with parameters 2 and 4. 

5. Load models for two traffic lane 

Until now we have considered only the load of a single traffic lane. Con­
sider now two traffic lanes in the same traffic direction. Let us consider a 
short or medium-span bridge of the length L when, in any time, each traffic 
lane could be occupied by one heavy vehicle -"truck" (Fig. 13). 
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FIGURE 13. 

Let the traffic intensity on the first traffic lane be equal to -\1 and the 
vehicles speed be equal to v1 and on the second one -\2 and v2, respectively. 
Let the traffic flow on each traffic lane be of the binomial process type. The 
probability that within the time period (t, t+dt) two such vehicles are present 
simultaneously on the corresponding (parallel) traffic lanes is equal to 
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Using the above relationship one can obtain the probability that just two 
vehicles are at the same time on the bridge as 

(5.2) 

From the above considerations follows that for two traffic lanes, apart 
from the event that the vehicle of a maximal weight arrives on one of the 
traffic lines, two additional events shown in Fig. 13 should be considered. In 
these cases 

(5.3) 

and 

(5.4) 

6. Maximal bending moments in a bridge beam 

In the case of the bridge loaded by two trucks the bending moment of the 
bridge beam in a given cross-section can be given in the form 

(6.1) 

The probability density function of the bending moment is equal to 

fm(m) = l<>2~x)l j~ Jq(q) Jq (m ~;~\x) q) dq. (6.2) 

Qmin 

The expression (6.2) allows to calculate the probability density function 
of the maximal bending moment from the n1 pairs of heavy vehicles (trucks) 
which arrive on the bridge among n different vehicles: 

The probability density function of maximal bending moment in a given 
cross-section of the bridge beam can be determined also for two other situa­
tions. 

The second situation is when the bridge is loaded by a pair of two trucks: 
one Q1 = Q and the second of maximal weight Q2 = Qmax(n, q). In this case 

http://rcin.org.pl



MODELLING OF LIVE LOADS IN THE PROBLEM ... 349 

the probability density function of maximal bending moment is given by the 
formula 

The third situation is when the bridge is loaded by two trucks each of 
maximal weight Q1 = Qmax(n, q) and Q2 = Qmax(n, q). In this case the 
probability density function of maximal bending moment is given by the 
formula 

(6.5) 

7. Example 

As an example the reliability index has been calculated for the two-span 
beam bridge with the span length equal to 20 m, live load described by 
the beta distribution, dead load described by the normal distribution with 
parameters E[g] = 12.7 kN /m, V[g] = 0.05, beam capacity described by the 
normal distribution with parameters E[M] = 2000 kNm, V[M] = 0.05. 

For the same data the probability density function and the cumulative 
distribution function of the maximal bending moment in the cross section 
over the middle support have been calculated and shown in Figs. 15 and 16. 
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FIGURE 14. Reliability index of the bridge. 
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FIGURE 15. Probability density function of the maximal bending moment . 
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FIGURE 16. Cumulative probability density function of the maximal bending moment. 

In Figs. 15 and 16 the dashed line has been obtained from Eq. (6.4), the 
solid one from Eq. (6.3) and the last one from Eq. (6.5). 

8. Concluding remarks 

In the algorithm for estimating the bridge reliability it is very important 
to build an appropriate load model based on real experimental data. Such 
a load model should take into account the overall traffic structure, the type 
of the bridge for which the model is being built and the type of the limit 
condition for which the reliability is considered. The investigations of traffic 
flow are made from the point of view of traffic engineering in which the 
structure of vehicle stream, the distances between them, the velocity of their 
move, the traffic intensity, and so on are considered. Results of investigations 
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can be used for setting up a theoretical load model of the bridge, but such 
investigations, particularly in Poland, should be completed by investigation 
of the vehicles weights, distances between the vehicle axes, press of these axes 
onto the bridge etc. 

The presented theoretical model of the live load can be a base for further 
investigations of the bridge load caused by the traffic flow, because it has 
been shown which additional parameters are needed. This model can be used 
for calculating the reliability of the bridge an~ its elements, when the first 
crossing limit reliability condition is applied and after some modifications 
also for calculating the reliability when the limit condition follows from the 
material fatigue. 
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