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I INTRODUCTION

The purpose of statistics, like that of geometry or phy-
sics, 1s to describe certain real phenomena. The objects of
the real world can never be described in such a complete and
exact way tkat they could form the basls of an exact theory.
We have to replace them by some i1dealized objects, defined ex-
plicitly or implicitly by a system of axiboms. For insteance, in
geometry we define the basic notions "point," "straight line,"
and "plane" implicitly by a system of axioms. They take the
place of empirical points, straight lines eand planes which are
not capable of exact definition. 1In order to apply the theory
to real phenomena, we need some rules for establishing the cor-
respondence between the idealized objects of the theory and
those of the real world. These rules will always be somewhat
vague and can never form a part of the theory itself.

The purpose of statistics 1s to describe certain aspects
of mass phenomena and repetitive events. The fundamental
notion used is that of "probability." 1In the theory it is de-
fined either explicitly or implicitly by a system of axlioms.
For instance, Misesl) defines the probability of an event as
the 1imit of the relative frequency of this event in an infin-
ite sequence of trials satisfylng certain conditions. This is
an explicit definition of probability., Kolmogoroff<) defines

probability as a set functlon which satisfies a certaln system

1) See references 10 and 11

2) See reference 9



of axioms. These idealized mathematical definitions are re-
lated to the applications of the theory by translating the
statement "the event E has the probability p" into the state-
ment "the relative frequency of the event E in a long sequence
of triels 1s approximately equal to p." This translation of a
theoretical statement into an empirical statement is necessar-
11y somewhat vague, for we have sald nothing about the meanings
of the words "long" or "approximately." But such vagueness 1is
always associated with the application of theory to real phen-
cmena.

It should be remarked that instead of the above translation
of the word "probability" 1t 1s satisfactory to use the follow-
ing somewhat simpler one: "The event E has a probability near
to one" is translated into "it is practically certain that the
event E will occur in a single trial." 1In fact, if an event
E has the probability p then, according to a theorem of Ber-
noulli, the probebility that the relative frequency of E in a
sequence of trials will be in a small neighborhood of p is
arbitrarily near to 1 for a sufficiently long sequence of
trials. If we traﬁslate the expression "probabllity nearly 1"
into "practical certainty," we obtain the statement "1t 1is
practically certain that the relative frequency of E in a long
sequence of trials will be in a small nelghborhood of \pe"

In statistics we always construct some probabllity schemes
which we believe to be adequate to describe certaln real phen-
omena. For instance, we describe the situation concerning the
possible outcomes in tossing a coln by saying that the probabi-

1ity of obtalning a head in one toss 1s 1/2, for in a long se-



quence of trials we would expect to have about half as many
heads as total tosses. Or, i1f we measure the length of a bar
by some instruuent, we sometimes assume that the result is a
normally distributed random variable. The notions of a random
variasble and a distribution function are defined as follows:
if P(x) 18 a function expressing the probability thet a real
variable X < x, we say that X is a randam variable and that

F(x) is the probability distribution of X. Then, if F(x) is

given by the formula

2
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we say that X 1s normally distributed. The quantities o and p

are real parameters. Thus, if in measuring the length of a bar
by some instrument we assume that the outcome of the measure-
ment 1s & normally distributed random variable, we may express
the probability that a measurement will be less than a given
value x by (1).

If X3, X2, X3,¢.+, X represent n random variables and
X1, X2,+00, X any set of real numbers, we use the symbol
P(x), X2,000, Xn) to express the probability of the composite
event that X; < x,, Xp < Xg,e00, X, < X, simultaneously. This
function will be called the Joint probability distribution of

the n random variables. We shall say that n random variables

are independently distributed if the function F(x3, Xg,..., Xp)

is the product of n functions such that only x; is involved in
the first, only Xo in the second, and so on. That is

F(x) = £3(x))fp(xp) et (x,)e



For example, if n measurements Xy, Xgyeesy, X, of a bar are in-
dependently and normally distributed with the ssme normal dis-
tribution, we would obtain

() F(xy, Xg,eee, x,) =

2] X2 Xn
Ry SN2 "Z‘Ilz '(I’ﬂlz
1 235 20 20
dy (-] dy eee e dy

sy op- Yl
() " o
-0 -0

If we measure the length of a bar n times by same instru-
ment, we sometimes find it appropriate to adopt the probability
scheme that the results of the n measurements have a joint pro-
bability distribution given by (2).

One of the fundamental problems of statistical inference
is that of testing statistical hypotheses. Theé most general
form of a statistical hypothesis we have to deal with in

statistical theory may be expressed as follows. Let Xj,...,Xp
be a finite set of random variables and let F(Xxy,...,X,) be its
Joint probability distribution function. Then the statistical
hypothesis is the statement that the unknown distribution func-
tion F(xl,...,xn) 18 an element of a certain class w of distri-
bution functions. For instance, 1if xl,...xn are successive
measurements on the length of a bar, we may consider the hypo-
thesis that xl,...,xn are independently distributed with the
same normal distribution. In this case w 18 a two parameter
family given by (2), o being any positive number and p any real

number.



If we consider the hypothesis that Xy5+e,X, are normally,
independently distributed with zero means (p=0) and unit vari-
ances (02=1), then w consists of & single element. When the
class w consists of a single element, we shall say that the

hypothesis we are considering 1s a simple hypothesis. Other-

wise, 1t will be called composite.

The question of testing a given hypothesis may be formu-
lated in the following manner. We should like to know, on the
basis of n observations X1, +09,X, where Xq is the observed veue
of the random variable X, (a=l,...,n), whether to adcept or re-
Ject the hypothesls H, that the unknown distribution function
F(xl,...,xn) belongs to the class w. The set of n observations
can be represented by & point E of n-dimensional Cartesian
space, called the sample space. To test the hypothesis H, on
the basis of n observations we must choose a subset R of the
sample space eand then reject the hypothesis Hy, if the sample
point E falls within R. Otherwise, we maintain the hypothesis.
It 18 evident that the fundemental problem here is the choice

of the subset R, which we shall call the critical region. The

solution of this problem depends, to scme extent, upon any

a priorl knowledge we may have about the unknown distribution

function F(xl,...,xn). One of the most important and most fre-
quent a priori assumptions is that the random varisbles xl,...,ng
are independently distributed, each having the same distribu-

tion. Thus, we have the assumption that F 1s of the form
n
F(Xy,e00,%,) = '&T%(xi) where ?1 = C/JJ tor all L) 3.

Such a priori knowledge about our unknown distribution

function can always be expressed by saying that the function



F(xl,...,xn) is an element of a certain class QO of distribu-
tion functions. The class w which is being considered 1s then
always a subclass of () . We shall see that the choice of the
¢ritical reglon R for testing the hypothesis Hy, will depend
upon the a priorl knowledge O\ _.

It 18 now seen that the problem of testing hypotheses can

be formulated as follows: Taking for granted that the unlknown

distribution function F is an element of & class Q1 _, we wish

to test the hypothesis that F belongs to a certain subclass w

of L1 . The problem to be solved is the question of how the

critical region in the semple space should be chosen.

For instance, () may be defined by the statement that
Xy,.+9,X, are 1ndependently and normally distributed each of
them having the same distribution, and w may be the subclass of
L1 _ defined by the additional restriction that the mean values
of Xy,e..,X, are zero. 1In this case, according to certain
standards we will discuss later, the adequate critical region

is given by the inequality

X/A .
8
2
2 (xq-X)
- oo ot =
where x = fl————~£5 and 82 = } ne

n

and ¢ is a certain constant. If, however,() 1s a much broader

class defined by the statement that Xj;,...,X, are independently
distributed each having the same distribution, the above criti-
cal region for testing Hy, 1s not adequate, and some other criti-

cal reglon has to be chosen.



Before we proceed farther it might be well for us to list
a few of the mathematical terms used together with their
meanings in statistics. We can do this in tabular form.

MATHEMATICAL TERMINOLOGY STATISTICAL INTERPRETATION

n space, E, (semple space) Pg::ible outcome of n obser-
vations.

£, class of functions on E, Class of possible probability
distributions.

w, subclass of The statistical hypothesis.
The true distribution is a
member of w.

R, (eritical region), a Criterion for rejecting the
subset of E, hypothesls that the true dis-
tribution is a member of w.
Association of R with QL Choice of the critical region
and w. A for testing the hypothesis.

The problem of testing hypotheses 1s only one of the prob-
lems of statistical inference. Another is the problem of es-
timation. Given that the unknown distribution function F be-
longs to a certain class () _of distribution functions, how can
we choose a function Cf(E) defined for all points E of E, such
that the value of @P(E) 1s always an element of {2 and can be
considered a "good" estimate of the unknown distribution func-
tion F? We may say that P(E) 1s a "good statistical estimate"

of F 1f the probability is as large as possible that q(E) is
in a small neighborhood of F. We will formulate this principle
more precisely in chapter III.

If, for instance, M1 _is given by the statement that
Xy5¢+0,X, are independently and normally distributed with the
same means and unit variances, then () is a one parameter
family of distribution functions and an element of QL is com-
Pletely specified by specifying the value of the unknown mean p.



Hence, to estimate the unknown distribution function F is the
same as to estimate the unknown mean p. In this case the pro-
blem of estimation is the problem of finding a real function
GP(E) defined for all points E of the sample space such that
CP(E) cen be considered as a statistical estimate of the un-
known mean p. The classical solution of this problem in this

particular case is given by

P (E) = X]4eootXp :
n

The two types of problems of statistical inference men-
tioned so far do not cover all possible problema?) The fol-
lowing problem, for exemple, is neither a problem of testing a
hypothesis nor one of estimation: Consider three subclasses
W, W, wz of the class (M _of distribution functions, and de-
note by Hmi the hypothesis that the unknown distribution F is
an element of wy. The problem considered i1s to decide on the
basis of the n observations which of the three hypotheses
should be accepted (assume that the sum of the three subclasses
wy, wp, wz is equal to_ (). Such a situation may arise, for
instance, in the case of a manufacturer who has to keep the
quality of his product between two limits, and wants to test,
by sampling, whether the quality 1s actually between these
limits, below the lower limit, or above the upper limit. (As-
aume that the quality is measurable and can be represented by &

real number.)

3) See in this connection 16, pp 299-300.



The reasons why suck a "trilemma®™ is a problem different
from testing & hypothesis or estimation can only be indicated
here. It will be seen that there are many approaches to esach
problem of inference, and that the theory provides means of
choosing smong them by decliding that certain approaches are
"better" than certain others. Now, one might suggest the re-
duction of the above "trilemma® to a problem of, say, estima-
tion by estimating the unknown distribution function F and ac-
cepting that hypothesis which corresponds to the subclass in
which the estimate of F 1s contained. This would be one ans-
wer to the trilemma, but by no means the "best" answer accord-
ing to the standards developed.

The most general formulation of the problem of statisti-

cal inference 1s this: Let S be a system of subclasses of the

class () of distribution functions. For each element 8 of §,

consider the hypothesis Hg which stetes that the unknown dis-

tribution F 1s an element of s; denote by Hg the system of all

such hypotheses; the problem is to decide, by means of & samplg

which element of Hg should be accepted.

The problems enumerated before are special cases of this
general problem. If S consists of two elements only, one being
a subclass w of (3 and the other its complement in .Q., the
problem 1s the same as that of testing the hypothesis that the
true distribution function F is an element of w. If 8 is the
system of all elements of (1, we have the problem of estima-
tion. If 8 consists of three classes wy, W, Wy with the sum

L., we have the trilemma.



T T A TSTATISTIOAL HYPOTHESES 41

The principles of statistical inference as developed ln tlre
lest two decades by R.A.Fisher, Neyman and Pearson deal with the
problem of testing a hypothesis and with the problem of estima-
tion but not with the general problem of statistical inference
as 1t has been formulated in the foregoing pages. A further re-
striction in these theories is that they deal only with the cease
that_Q._1s & k-parameter famlly of distribution functions, 1i.e.,
that the true but unknown distribution function F 1s known to be
an element of a k-parameter family of functions

F(x3, Xg,eee,Xp, ©7, 83, 00,0))

where 67,...,0) are parameters. In this case the specification
of the values of the parsmeters specifies completely the distri-
bution function F.

A set of parameter velues can be represented by a point in

a k-dimensional Euclidesn space celled a parsmeter space. Be-

cause of the one-to-one correspondence between elements (6§ g ) b
and points of the parsmeter space we can identify Ll with the
parageter space. If for example, xl,...,xn are normally and in-
dependently distributed, each having the same distribution
(equation(2)), then the parasmeter space 1is a half plane where
81 = p = mean value, and 0 € 9o = o = standard deviation.

A hypothesis concerning F 1s expressed by the statement
that the true parameter point lies in a certain subset w of the
parameter spacef).. As we have done before, we shall call the

hypothesis a simple one i1f w consists of a single point.

4) See, in this connection, references 12,13 and 14

10
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Otherwise, 1t is called a composite hypothesis. 1In the above
exsmple the statement that p = 0, 0 = 1 1s a simple hypothesis,
while merely stating that p = O without specifying o is a com-
posite hypothesis.

For the sake of simplicity we shall confine ourselves to
the case of a single unknown parameter since this suffices to
1llustrate the basic ideas of the theories of Fisher, Neyman
and Pearson. First, we shall deal with the Neyman-Pearson
theory of testing a statistical hypothesis.

We assume that the unknown distribution function 1s known
to be an element of a one-parameter family F(xj, Xp,ese,Xp, ©)
and we wish to test the hypothesis e = @,.

A simple example for this case is the focllowing: Let it
be known that X;,...,X, are independently and normally distri-
buted with the same mean and unit variances, i.e., QL 18 the

one-parameter family of distributions
2
=(v-9) -(v-0 2
F(xl:oot'x ’ 9) WS dV ...S

and assume that we wish to teat the hypothesia that & = 0.
According to the classical theory we reject this hypothesis if
and only if

Xy +eoot x.n

|;I¥c; (x = = )

where ¢ denotes a certain constant. The value of ¢ is chosen
in such a way that the probability ofli‘)c under the assumption
that the hypothesis @ = 0 1s true, is so small that we are
willing to reject the hypothesis., If we want this probability

1,96
to be 5 percent, then ¢ = o .

n
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If, in the same example, we have made only two observa-
tions Xy, Xp, 80 that the sample space 1s the Euclidian plane,

the critical region consists of all points for which %(x1+x.2)>

1.96 ak -1.96
~—= and all points for which Z(x.+ < « If the point
7z P (x14%2) < T

representing the observations falls within the critical region

(1.e.,if the arithmetic mean of the two observations 1s larger
1.96 -1.96

han == aller than —==) we shall reject the hypothesls

than or sm Yaa ) J yp

that the mean value 1s zero.

s

+
x
N
3

»X1

.
X

<

But the classical theory does not suggest why this critical
region should be used. It merely proves that the probability
for the observation point to fall within the critical region
1s five percent when the initial hypothesis is fulfilled. But
there are inflnitely many regions which enjoy the same property,
and the classical theory does not give any reasons why just the
one region mentioned should be chosen.

In order to arrive at a distinction between various criti-
cal reglons, Neyman and Pearson advance the following considera-

tions. 1In making a statement of acceptance or rejection of a
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hypothesis, we may commit two types of errors: rejecting the
hypothesls although 1t is true (error of type I), or failing
to reject it although it 1s false (error of type II). If the
hypothesis consists in saylng that the unknown parameter & has
a given value 6,, the situation may be summarized as follows:

Truth or Falsehood of Statement
Concerning the Hypothesis © = ©

o
True Statement Advanced
Situation o= 6, o # 8

0 = 8q Correct Type I error

8 # 6, Type II error Correct

By size of the critical reglon we mean the probability that the

point representing the observations will fall within the criti-
cal region, where the probability in question is calculated
under the assumption that the hypothesis is true. (Thus, in
the example used before, the size of the critical region was
five percent.) This may be expressed by saying that the size
of the critical region 1s equal to the probability of commit-
ting a type I error.

The general idea underlying the theory of Neyman and Pear-

son is to minimize the probability of type II errors while keep-

ing the probability of type I errors constant.
If R 1s any region in the sample space, and E is the point
of the sample space which represents the observations, we shall

denote by P(RIOI) the probability of E lying in R calculated
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under the assumption that ©; 1s the true value of the unknown
parameter 8, that is to say, P(Rlel) is equal to the Stieltjes
integral /k dF(xl,...,xn, 91) over the region R. Thus, if we
make the hypothesis © = 8, and choose R as a critical region
for this hypothesis, the size of the critical region will be
given by the expression P(Rleo). If the hypothesis 1is wrong
and the true value of ¢ 1is 67, then the probability of avoiding
an error of type II is P(R|e;).

The expression P(Rlel), l.e., one minus the probability of
an error of type II, 1s called the power of the critical region

R with respect to the alternative hypothesis ¢ = 6.

The expression P(R{8) 1s a function of ©. It may be plot-
ted as a curve, the ordinate of which is equal to the size of R
if the abscissa 1s @,, and equal to the power of R with respect
to the alternative © = @; 1f the sbscissa 1s any value 6; # 6,.
This curve 1s called the power curve of the region R.

In the former example, in which the distribution was nor-
mal with unknown mean and unit variance, and the critical re-
gion chosen was |§|>.%¢g? (where X is the arithmetic mean of
the observations xl,xz,?..,xn), the power curve can easily be

calculated and has the form shown below:

A P(RIO)

8
e
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1.96
In order to compare the test >==22 with other possible
VT
tests, we have to compare the above power curve with the power
curves of other critical regions which have the same size, five
percent.

In general, if we have two critical reglons R and R', both
of which have the desired size, and if the power curve of R' is
above that of R for the value & = 91, then the critical region
R' 1s better than R for testing the hypothesls 1f the true value
of 6 happens to be @,. For the probability of committing a type
I error is the same whether R or R' 1s used, while the probsabi-
1ity of committing & type II error when using R' is smaller then
when using R. If the power curve of R' is above that of R for
each © (except 6, for which the two curves coincide by assump-

tion), then R' will be called uniformly more powerful than R.

The test using the critical region R 1s called non-admissible

because its use is,under all circumstances, less favorable than
the use of R'.

In order to make this clear, let us assume that a large
number of samples 1s drawn, each of which consiests of N indivi-
dual observations. Let M be the number of such samples and let
two statisticlans, whom we will call S and S', test the same
hypothesis, using each of the M samples. Assume that S uses the
critical regilon R for testing while S' bases his tests on the
region R'. S and 8' will each obtain M enswers to the question
as to whether the null hypothesis (the hypothesis to be tested)
should be rejected. Some of these answers will be right, others
will be wrong. Let us compare the records of S and 8'. We have
to distingulsh between the case that the null hypothesis is true

and the case that it 1s false., a)In the first case, the answers
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obtalned by each statisticlan may either be that the hypothesis
is to be accepted - these answers are right; or that it should
be rejected - these answers are errors of type I. The probabi-
11ty of committing a type I error by testing the null hypothesis
from & sample drawn at random is equal to the size of the eriti-
cal region used In testing. If M is large, it 1s practlcally
certain that the relative frequency of type I errors will be ap-
proximately equal to their probability, i.e., to the size of the
critical reglon. Since R end R' have, by assumption, equal sisms,
each of the two statisticlans will commit approximately the

ssme number of errors. b)If the null hypothesis 18 false, some
of the M answers obtalned by each statisticlian will correctly
rejJect 1t, while others will accept it, thus committing errors
of type II. If M is large, the relative frequency of correct
answers will be approximately equal to the power of the test
used which we have pointed out is the probability of avolding a
type II error. By assumptlion, the power of R' 1is greater than
that of R, regardless of what the true value of 6 is, provided
only that 6 1s different from ©,. Therefore, the relative fre-
quency of wrong answers obtalned by § will tend to be greater
than the relative frequency of wrong answers obtained by S'.
Thus, if the null hypothesis is felse (no matter what the true
value of © 1s), it i1s practicaldy certaln that S will make more
false estatements; while 1f the null hypothesis is true, 8 and

8' will commit an approximately equal number of false statemsnts.
The method used by S', 1.e., the application of the critical re-
gion R', is therefore superior te the method used by S, ie., the
application of the critical region R.
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These considerations decide the cholce between two criti-
cal regions of equal size if one of them is uniformly more
powerful than the other, 1.e., if the power curve of the former
is above that of the latter for all values of 6 except €5 (for
which the power curves coincide). On the other hand, if the
power curve of R!' is above that of R for some values of €, but
below it for other values of @, then we cannot choose one of
the two regions without introducing further principles on which
to base the cholce.

If, for all values of 8§, the power curve of a region R is
never below that of any other region R' of equal size, then R

1s cdlled a uniformly most powerful region, and the test cor-

responding to R a uniformly most powerful test.

The first principle for selecting & test 1s this: whenever

we can find a uniformly most powerful test, we shall prefer it

to all other tests using regions of the same size. Unfortun-
ately, uniformly most powerful tests do not exist in most cases.
In the exemple which we have used on page 11 let us consid
er the reglon R' determined by the inequality X > 1:84 ., 1t
can easily be shown that R' (like the region R con::rzered be-
fore) has the size .05. The power curves of R and R' are shown

below:

- ——
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We can see that for all € >0, R' is more powerful than R,
and vice versa for © €0. 1In such cases further principles have
to be formulated on which the choice should be based. It is
clear that the choice we make will depend on our a priori de-
gree of belief In the truth of the different possible values of
€. For instance, 1f we know a priori that © cannot be negative,
then we shall prefer R!

Moreover, it can be shown that R' 1s uniformly most power-
ful if the parameter space is restricted to non-negative values '
of 8. If negative and positive values of @ are considered a
priori as equally possible we will most 1likely prefer R to R'.

This example shows also that the choice of the critical
region depends essentially on.nN.. If__consists of all non-
negative values of 6 then the region R' is a uniformly most
powerful test. If_Q consists of all non-positive values €, then
the region R'' given by 'i'(-'—lv_-fl_gi is a uniformly best region.
Finally, 1f Q consists of all real values @, then the use of the
region R seems to be more reasonable than that of R' or R''.

Since uniformly most powerful regions rarely exist, Neyman
and Pearson introduced a further principle on which the choice
of the critical region should be based, namely, the principle
of unbiasedness. A test 1s called unbiased if the power func-
tion of the test has a relative minimum at the value 6 = o,
where 8, is the hypothesis to be tested.

Some rationalization of this principle can be given: Sup-
pose & test 1s blased, then for some value ©;, in the neighbor-
hood of 8,, the power of the test is less than the size of the
region. But this means that the probability of rejecting the
hypothesis 6 = 8, 1s larger if 6, is true than 1f @) is true,
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which is not a desirable situation.
In general, an infinity of unbiased tests exist, hence we
need a further principle in order to select a proper test from

smong them. We define as a uniformly most powerful unbiased

test one which 1s at least as powerful or more powerful, with
respect to all alternate hypotheses, than any other unbiased
region of equal size. If a uniformly most powerful unbiased
test exists, and 1f we accept the principle of unbiasedness,
then it is obvious that it is the most advantageous test to
use. Neyman and Pearson called a critical region corresponding
to a uniformly most powerful unblased test & critical region of

type A3,

Referring to the example previously considered, the criti-
cal region given by |§|> ¢ is a region of type A; for testing
the hypothesis in question. Another example of a region of
type Al i1s the following: Let Xj,...,X, be independently and
normally distributed with zero mesns and a common varisnce.
Then, for testing the hypothesis that the common variance o2 is

2

equal to 0,“, the critical region consisting of all points of

the semple space which satisfy at least one of the inequalities
112 4 00 ¢ 232301 or 2 el ¢ x %<0z,

is a critical region of type Al if the constants ¢y and cg are
properly chosen.

The region of type'Al exists in an important, but very re-
stricted, class of cases; there are many instances in which it
does not exist. Therefore, Neyman and Pearson have introduced
& third type of region, known as & region of type A. The re-
glon R 1s sald to be of type A if its power function P(W/6) is
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such that
1) aPSRlO! =0
30
0°="9,
and

39%

2 2
2y 2R(Rle) 7 pgnz'[oz I
20

9390 =0y

for all regions R' which satisfy 1) and have the same size as R.
The first condition restricts the region to be unbiased. The
second requires the power function of a region of type A to have
a greater curvature than that of eny other unblased region of
the same size. To put it crudely, it means that the region 1is
most powerful in the neighborhood of €.

A critical region of type A exists under very weak condi-
tions which are fulfilled in most of the practical cases. How-
ever, the objection can be raised against a region of type A
that we are much more concerned with the behavior of the power
function for alternatives © which are far fram @, than for thame
in the neighborhood of 8,. In spite of this, as we will see, &
good justification of the use of a type A region can be given

in the 1light of some recent results.



IIT R. A. FISHER'S THEORY OF ESTIMATIONs)

The problem of estimation of the unknown parameter o 1s
the problem of finding a function t(xl,...,xn) of the observa-
tions such that t can be considered in a certain sense as a
"good" or "best" estimate of 6. Since the estimate t(xy,000,%,)
is a random variable, we cannot expect that its value should
coincide with that of the unknown parameter, but we will try to
choose t(xl,...,xn) in such a way as to make as great as pos-
sible the probability of the value of t lying as near as pos-
sible to the value of the unknown parameter o.

This 18 a somewhat vague formulation of the requirement
for a "good" or "best" statistical estimate. It can be made
precise in different ways. Harkofre), for instance, defines

the notion of a "best" estimate as follows: A statistic t (we

shall call any function of the observations a statistic) is a
best estimate of € 1f
(1) t 1s an unblased estimate of @, 1.e.,Eg(t) = 6 1den-
tically in 6 where Eg(t) denotes the expected value of
t under the assumption that 6 1s the true value of the
parameter.
(2) Eo(c-e)zc Ee(t'-e)2 identically in @ for all t' which
satisfy (1).
This definition of a "best estimate" seems to be a reasonsble
and acceptable one since, in general, the smaller the variance

of ¢t the greater 1s the probability that t will lie in a small

5) S8ee references 3 - 6

68) 8ee reference 15, p.344
21
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neighborhood of ©. It should be remarked that although (by
virtue of Tshebisheff's inequality) smallness of the variance
implies that the probability of t lying in a small neighbor-
hood of © is small, the converse 1s not necessarily true. It
may happen that a statistic t has a large varlance and, never-
theless, the probability of t lying in a small neighborhood of
© 18 high. This circumstance constitutes some argument against
Markofft's definition. A more serious difficulty is, however,
the fact that a best estimate in Markoff's sense seldom exists.
R. A. Fisher's theory of estimation 1s hased on the prin-
ciple of the maximum likelihood. It 1s assumed that a probabil-

1lity density
P(Xy,e00,X,, ©)
exists in the sample space, i.e.,for any measurable subset W of
the sample space
P(W|e) = fy Plxy,eee,xy, ©) dx.
In particular, the cumulative distribution function is

given by

P(X),000,Xp, 0) =j i f (vl,...,vn, G)dv PERRY. ) A

=00 =00
The maximum likelihood estimate On(xl,...,xn) is defined as

that value of 6 for which p(xl,...,xn,e) becomes a maximum.
Now assume that Xj,...,X, are n independently distributed ran-
dom variasbles each having the same distribution. This cen al-
8o be expressed by saying that x;,...,x, are n independent ob-
servations on the same random variable X. The maln result of
Fisher's theory of estimation can be stated as follows: If
X1,e+¢,Xn 8re n independent observations (n = 1,..., ad inf,)

on the same random variable X and if the distribution of X
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satisfies certain conditions (which are not too restrictive amd
in practicel application are frequently fulfilled), then Gn is
an efficient estimate. The definition of an efficient estimate

is given as follows:

A sequence (tnk (n=1,..0, 8d inf.) of statistics 1is
called an efficient estimate of © (the subscript n indicates
the number of observations of which t, is a function) 1if

(1)the 1limit distribution ofvm (‘lzn -0) 1s a
normal distribution with zero mean and finite
variance, and

(2)for any sequence {tr'l} of statistics which satis-
fies (1)

02/0'2 =1

where o2 = 1im EG [ﬁ (tn - 9)] 2

end o'2 = 1m £, [VR (8} - e)j2
The ratio o /o' 1s called the efficiency of {tx!x}
which 1s always &1.

Vaguely speaking, in large samples the maximum likelihood
estimate has the smallest variance compared with any other
statistic which 1s in the limit normally distributed. The re-
striction of the comparison to statistics which are in the
limit normally distributed seems to be a serious one. However,
a8 recent results show, the maximum likelihood estimate has &
much stronger property than efficiency, end it can be con-
sidered as a "best" large sample estimate of 6 compared even

7
with statistics which are not normally distributed in the limit.)

7) See reference 20
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The question of consistency and 1imit distribution of the
maximum likelihood estimate has been treated by H. Hotelling,7.
A complete proof has been given by J. L. Doob, 1.

As an example, let Xyseee, Xy be n independent observations
on & normally distributed variate X with unknown mean and unit
variance. It can easily be verified that the maximum 1likeli-
hood estimate of 6 is given by

Oy, een,my) = 222t 0
Let t;(xy,...,Xx,) be the median of the observations XyseeesXpe
It can be shown that the limit distribution ofVW (t, - @) 1is

normal with zero mean and variance _;. . Hence, the efficiency

of the medlan for estimating @ is equal to 2= 0.6366...
g



IV THE THEORY OF CONFIDENCE INTERVALS

The procedure of estimation, as I formulated it here, is
also called estimation by a point. For practical appllications

the estimation by intervals seems to be much more important.

That is to say, we have to construct two functions of the ob-
servations @ (E) and @ (E), where E denotes a point of the sam-
ple space, and we estimate the parameter to be within the in-
terval §(E) = [ @ (E), § (E)]. In connection with the theory
of interval estimation,R. A. Flsher introduced the notion of
fiducial probability and flduciel 1limits, while Neymans) dev-
eloped the theory of interval estimation based on the classical
theory of probability. I shall give here a brief outline of
ﬁeyman's theory.

Before the sample has been drawn the point E is a random
variable and, therefore, the values of @ (E) and © (E) are also
random variables. Hence, before the sample has been drawn we
can speak of the probability that

(3) 8 (E)=6 =0 (E)
even 1f @ 1s considered merely as an unknown constant. After
the sample has been drawn and we have obtained a particular
sample point, say E,, it does not make sense to speak of the
probability that

(4) 8 (E,) = 0=0(E,),
if 6 is merely an unknown constant. Each term in the inequal-

ity (4) 1s a fixed constant, and the inequality (4) is either

8) See reference 15
25
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right or wrong for those particular constants. It would be pro-
per to talk about the probability of (4) if © itself could be
considered as a random varlable having a certain probability
distribution, called an a priori probability distribution. 1In
this case we understand by the probability that (4) holds the
conditional probability, called also a posteriori probability,
under the assumption that E = Eg5 occurred. If an a priori dis-
tribution of 6 exists and if it 1s known then, using Bayes'forn-
ule, we can easily calculate the a posteriorl probability dis-
tribution of ©. However, in practical applications we seldom
meét cases where the assumption of the existence of an a priori
probability distribution seems to be Justified; and even in
those rare cases in which the latter assumption can be made, we
usually do not know the shape of the a priori probability dis-
tribution and this makes the application of Bayes' theorem im-
possible. For these reasons the theory of interval estimation
has to be developed in such a way that its validity should not
depend on the existence of an a priori probability distribution.
Hence, in thie theory we shall speak only of the probablility of
(3) but never of the probability of (4).

For any relationship R we will denote by P[élé] the proba-
bility of R calculated under the assumption that @ 1s the true
value of the parameter.

A pair of functions @ (E) and ® (E) is called-a confidence
intervel of 6 if

1) 8 (E)= § (E) for all points of E
2) P[0 (E)= 0=T (E) | 6] =a for all values of o,

where a 18 a fixed constant called the confidence coefficient.
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The practical meaning and importance of the notion of the
confidence interval is this: If a large number of samples are
drawn and if in each case we makse the statement that & 1s in-
cluded in the 1nterva1[:_e_ (E), © (E):’, then the relative fre-
quency of correct statements will approximately be equal to a.

In general, there exist infinitely many confidence inter-
vals corresponding to a fixed confidence coefficient a, and we
have to set up some principle for choosing from among them. It
is obvious that we want the confldence interwval corresponding
to a fixed confidence coefficlent to be as "short" as possible.
We have to give a precise definition of the notion "shortest"

confidence interval.

A confidence interval §(E) =[:_9_ (E), § (EZI is called a
shortest confidence interval corresponding to the confidence
coefficient a if

(a) PI:g (E)= 0= T (£)} 6] =a and
(b) for any confidence interval 4' (E) which satis-
fies (a)
P[g (E) < 0'=% (E)IeasP[g' (E)= o'= 5'(E)|d]
for all values @' and 0" of 6.
If a shortest confidence interval exists, it seems to be the
most advantageous. Unfortunately, shortest confidence inter-
vals exist only in quite exceptional cases. Therefore, we have

to introduce some further principles on which the choice should

be based. Such a principle is the princlple of unbiasedness.

A confidence interval &(E) is called an unbiased confidence
interval corresponding to the confidence coefficient aq 1if
He (8)= 623 (8) | 6]=a
and P[g (E)= 0'=9 (E) | G'il £ g for all values ©'and €.
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A confidence interval J(E) 1s called a shortest unbiased
confidence interval corresponding to the confidence coefficient
a 1f 4S(E) is an unbiased confidence interval with the confiderce
coefficient a and if for any unblased confidence interval d'(E)
with the same confidence coefficient, we have

Pe(B)= 0023 () | "= p[e @)= 0'= @ (E)leﬂ
for all values @' and e".

If we accept the principle of unbiasedness, the shortest
unbiased confidence interval seems to be the most favorable one.
Even shortest unblased confidence intervals exist only in a
restricted, but important, class of cases. If a shortest un-
blased confidence interval does not exist, Neyman proposes the
use of a third type of confidence interval, which he calls

"short unbiased" confidence interval. An unbiased confidence

interval J(E) with the confidence coefficient a 1s called a
short unbiased confidence interval if
32 r = n 82 ' 13 "
e {g(E)se'go(E)le] = P! ()= '3 () | 0"]
e"=g! e"=o!
for ell @' and for all unblased confidence intervals d!'(E) with
the confidence coefficient a.

I have discussed only the case of a single unknown para-
meter. In the case of several unknown parameters some new prob-
lems arise, which do not occur in the case of a single para-
meter. However, I shall not discuss them, since the case of a
single parameter already provides a good illustration of the

basic ideas of the theories of Fisher, Neyman and Pearson.
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As we have seen, if a uniformly most powerful (unbiased)
test and a shortest (unblased) confidence interval exist, they
provide a satisfactory solution of the problem of testing a
hypothesis end the problem of interval estimation. Unfortuna-
tely, they exist only in a restricted class of cases. A8 sub-
stitutes for them the use of a critical region of type A and a
short confidence interval, respectively, have been proposed.
The appropriateness of the region of type A seems somewhat
doubtful, since we are more interested in the behavior of the
power function at values of 6 far from the value 9, to be tested
than at ‘values of © near to 8,5. Similar objections can be
raised to the use of a short confidence interval. Recent in-
vestigations show, however, that the situation i1s much more
favorable than appears at first glance. It is shown that the
difficulties arising because of the non-existence of uniformly
nost powerful unblased tests and shortest unbiased confidence
intervals gradually disappear with increasing size of the
sample, since so-called asymptotically most powerful unbiased
tests and asymptotically shortest unbiased confidence intervals
practically always exist.

We shall assume that the observations xj,...,x, are n in-
dependent observations on the same random variable X whose dis-
tribution function involves a single unknown parameter ©. We
shall also assume that X has a probability density function,

9) See references 17-20 29
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say f(x,8). Since in our discussions the number of observa=-
tions n will not be kept constant, we shall indicate the dimen-
slon of the sample space by proper subscripts. For instance,

a critical region in the n-dimensional sample space will be
denoted by a capital letter with the subscript n. A point of
the n-dimensional sample space will be denoted by E,, and a
confidence interval based on n observations by’Jh(En).

For any reglon U, denote by G(U,) the greatest lower
bound of P(Unle). For any pair of regions U, end T, denote by
L(Un,T,) the least upper bound of

P [Un(o) - P(Ty O-Zl'
A sequence {w } (n=1,...,8d inf.) of regions is said to be

asymptotically most powerful test of the hypothesls & = @,

15 I8

the level of significance g if p(wleo) = g and if for any

sequence {2,] of regions for which P(2,|6,) = e,
11n sup L(Z,,W,) = 0 holds.
A sequence [ } (n—l,...,ad inf.) of regions is said to be
an asymptotically most powerful unbiased test of the hypothesis

@ = @, on the level ii significance a e p(wnle°)=1ﬁg G(Wy,)=a

and 1f for any sequence {Z,jof regions for which P(Z] 8, )=
lim G(2y) = a the inequallty 1lim sup L(Z,,W,) =0 holds.
Let Pn(O a) be defined by
p?e,a) = l.u.b. P(2,]0)

et s e

call P,(6,a) the envelope function corresponding to the level
of significance a. Similarly let Pn (@,a) be the least upper
bound of P(2,l6) with respect to all unbiased critical regions
Zn which have the size a. We will call P} (9,a) the unbiased

envelope functien corresponding to the level of significanc? a.
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The two previously given definitlions are equivalent to the
following two:

A sequence {wn} of regions is sald to be an asymptotically
most powerful test of the hypothesis & = 85 on the level of
significance a if P(W,l6,) = a and
lim {Pn(G,a) - P(wn|o)} =0

n=m
uniformly in 6.

A sequence {wn} of reglons is saild to be an asymptotically
most powerful unbiased test of the hypothesis © = 6 .on the
level of significance a 1f P(Wy| 6,) = a and

1n {PXe,a) - P(wnle)} =0
n=Q

uniformly in 6.

Let ©,(%y,+..,%,) be the maximum likelihood estimate of ©
in the n-dimensional semple space. That 1s to say, 6,, denotes
the value of © for which the product’fl_rl f(xq,0) becomes a maxi-
mum. Let W} be the region defined b;_the inequality
Vv (8, = 8,)=c} , WY defined by the inequality /f (8,-6,) <c]}
end let W, be defined by the inequality |v& (8,- o] ®d,. Tne
constants dp, c}, c} are chosen in such a way that

P(W! 16, ) = P(W! | @,) = P(W |8,) = a.
It has been shown that under certeain restrictions on the proba-
bility density f(x,0) the sequence {wl!l} is an asymptotically
most powerful test of the hypothesis @ = @, if © takes only
values 2 9,. Similarly {Wx"'l} is an asywptotically most powerful
test 1f © tekes only values<6,. Finally {Wy} 1s en asympto-

tically most powerful unbiased test if @ can take any real vslue.
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There are also other asymptotically most powerful tests.
Let W} be the region defined by the inequality

n
§3_

1]
421 3 log f(xa, ec)aczn A

RN

w;; defined by the inequality

A < ot
g ey log f(x,, 8,) = -

»

eI

end W, defined by the lnequality

|/_ aoZ:log;f‘(xu,e)ac

where the constants c,, c} and cj are chosen in such a way that
& " = =
B(Wile.) = P(wnloo) = P(Wp|0,) = a

Then (wﬁ}is an asymptotically most powerful test of the hypo-
thesis @ = eo if o takes only values36,. Similarly,{w}“ is an
asymptotically most powerful test if @ takes only valuesaé,.
Finally {wn} is an asymptotically most powerful unblased test
if @ can take any real value.

The sequence (An(eo)} is an asynptotically most powerful
unbiased test of the hypothesis & = 6,, whers An(oo) denotes
the critical region of type A for testing the hypothesis © = @,

S8ince there are many asymptotically most powerful tests,
the question arises whether they are all equally good or
whether one can be preferred to another. It is clear that if
{wn} md{wr"} are two asymptotically most powerful unblased tests,
then for sufficiently large n they are equally good. In fact,
for sufficiently large n both power functions P(wnle) and
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P(W!|6) are in a small neighborhood of P (8,a) [f:(e,a{].
However, they may behave differently in the sense that with in-
creasing n one power function, say P(wnle) approaches the en-
velope function faster than P(W}|6) does. In such a case 1t
seems preferable to use Wp, especielly if the semple 1s only
moderately large. If the sample is so large that both power
functions are in a small neighborhood of the envelope function,
then 1t 1s immaterial whether we use W, or Wi.

These consliderations lead to the idea that it is prefershle
to use that asymptotically most powerful (unbiased) test {wn}
for which the approach of P(W,hl@) to the envelope function is,
In a certain sense, fastest.

A region W, 1s called a most stringent test of size q for

testing the hypothesis 6 = g5 1f P(wnleo) = q and

l.g.b.E’n(O,a)—P(wnIO):I jgl.\el.b.En(Q,a)-P(znleﬂ

for all 2, for which P(Z,|6,) = a. The abbreviation l.g.b.
means "least upper bound with respect to @."

If W, 1s for each n a most stringent test, its power func-
tion will approach the envelope function, in a certain sense,
faster than any other power function. It seems, therefore,
desirable to use a most stringent test. A region of type A 1s
not exactly a most stringent test, but probably it 1s quite
near to it (this question has yet to be investigated), and
this would provide a very good justification for the use of a
type A region. The mathematical difficultles in finding ex-

plicitly a most stringent test are considerable.
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Let 4 ,(Ey) =Egn(En), 'é'n(Ena be an intervel function and
denote by P[d pn(Ep) ce'|e" | the probabllity that dp(En) will

cover @' under the assumption that e" is the true value of the

parameter.

A sequence of interval functions{crn(En)} (n=1,2,.¢..,8d i)

1s called an asymptotically shortest confidence interval of 6

1f the following two conditions are fulfilled:

(a)
(b)

PEJn(En) cela = q for all values of ©
For any sequence of interval functions
{J;](En)} (n=1,2,..., ad inf.) which satisfies
(a), the least upper bound of

PEfn(En) cevleﬂ - PE!}(E,,) ce'lezl
with respect to @' and @" converges to zero

with n 0.

A sequence of interval functions {Jn(En)} (n=1,2,ee., &d inf)

is called an asymptotically shortest unblased confidence in-

terval of @ if the following three conditions are fulfilled:

(a)
(v)

(c)

P[Jn(En) CGIG] = q for all values of ©
The least upper bound of P[d,(E,) ceo'le"] with
respect to ' and e" converges to a with n-ywm
For any sequence of interval functlons {Jﬁ(En)}
which satisfies the conditions (a) and (b), the
least upper bound of

p[ 4 (s) corlen] - P[81(E,) cerle"]
with respect to €'and ", converges to zero with

n-»0o.

Let C,(®8) be a positive function of @ such that the proba-

bility that

1 &
v g 36 108 f(xg,0)l=C (o) 1s equal to &
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constant a under the assumption that 6 is the true value of the

parameter. Denote by g(En) the root ir. 8 of the equation

10 3 =

- L and by 6(E the root of

7 e é log f(xp,o) Cn(e) y 6(Ep)

1.8 2 log f(x‘;,e) = =Cp(0). It has been shown that under
w38 g

some restrictions on f(x,8) the interval J(En) =E_G_(En),'5(Enﬂ
is an asymptotically shortest unbiased confidence interval of
@ corresponding to the confidence coefficient a. This con-
fidence intervel 1s ldentical with that given by Wilksl0).

The definition of a shortest confidence interval underlying
Wilks' investigations is somewhat different from that of Ney-
man's, which has been used here. According to Wilks, a con-
fidence interval 4(E) 1s called shortest in the average if the
expectation of the length of J(E) 1s a minimum. The main re-
sult obtained bty Wilks can be formulated as follows: The con-
fidence intervsel in question 1s asymptotically shortest in the
average compared with all confidence intervals the endpoints of

which are roots of an equation of the following type:

: h(xg, 8) = % Cn(0).

In the present investigation such a restriction is not made.
The confidence interval in consideration 1s shown to be asymp-
totically shortest compared with any unbiased confidence in-
terval,

Now let C,(@) be a positive function of 6 such that the
probability that |6n - Gl =£C,(0) 1s equal to a constant g under

10) See reference 22



the assumption that © is the true value of the paremeter. De-
note by 6(E,) the root in @ of the equation Bh-90= Cnh(0) and
by 8(E,) the root of 65 - @ = -Cph(0). Consider the interval
I (En) =|:g(En), '9'(En):] . Under some restrictions on the den-
sity f(x,8), 1t can be shown that J(En) is an essymptotically
shortest unbiased confidence interval.

This 18 a much stronger property of the maximum likeli-
hood estimate than its efficlency and gives a justification of
the use of the maximum likelihood estimate also in the light of

Neyman's theory of estimatlon.



VI OUTLINE OF A GENERAL THEORY OF STATISTICAL INFERENCE

The theories of Fisher, Neyman and Pearson are restricted
in two respects. First, they consider only the problem of
testing a hypothesis and that of estimation by point or in-
terval. The second restriction is that only the case 1in which
N _1s & k-parameter family of distribution functions is in-
vestigated. Both restrictions are serious from the point of
view of applications.

There are many important statistical problems which are
neither problems of testing & hypothesis, nor problems of es-
timation. We haveé glready given such an example in Section 1.
As a further illustration, let us consider the following case:
Let xly...,xp be p independently and normelly distributed ran-
dom variables with unit variances and unknown me&ans ©3,...8p.
Furthermore, let Xjij,..4X;, be n independent observations on
X4(1=1,2,...,p). Suppose we test the hypothesis that
6] = eeo = 6p = 0, and decide to reject this hypothesis on the
basis of the pn observations xy.(a = 1,2,...,n; 1 = 25 eeiaty D) s
In such cases we are usually interested in knowing which mean
values are not zero, i.e.,we wish to subdivide the set of p
mean values 91""’9p into two subsets, such that one of them
contains the mean values which are zero and the other the mean
values which are not zero. This subdivision has to be done, of
course, on the basis of the pn observations Xyq+ More pre-
cisely, we have to deal with the following statistical problem:
There exist 2F different subsets of the set (91,..,,0P). De~

note these subsets by mi""’sz' respectively. Let Hk
37
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(k = l,...,2P) be the hypothesis that the mean values contained
in the set wy are equal to zero and all other mean values are
unequal to zero. On the basis of the pn observations we have
to decide which hypothesis H, from the set of the 2P possible
hypotheses should be accepted. This problem cannot be con-
sidered as a problem of testing & hypothesis nor a problem of
estimation.

A similar problem arises if we wish to classify a set of
regression coefficients into the class of non-zero and the
class of zero regression coefficients. In problems of regres-
sion we often take 1t for granted that the regression in ques-
tion 1s a polynomial and we have to determine on the basis of
the observations the degree of the polynomial to be fitted.
That is to say, we have to decide on the basls of the observa-
tions which hypothesis of the sequence of hypotheses
Hy, Hp, Hzyeoe, Hp,eee should be accepted. The symbol Hp
(n =1,2,...) denotes the hypothesis that the regression 1is a
polynomial of n-th degree. These examples 1llustrate suffici-
ently the necessity of the extension of the theory of statis-
tical inference to the general case as formulated ln Section 1.

The case in whichflcannot be represented as a k-parameter
family of distribution functions 1s quite important. As an
1llustration, consider the following problem: Let (xl,yl),...
(xn,yn) be n independent peirs of observations on a pair (X,Y)
of random varisbles. Suppose we wish to test the hypothesls
that X and Y are independently distributed and we do not have
any a priori knowledge about the joint distribution of X and Y.

In this case () consists of all distribution functions
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F(xl,yl,...,xn,yn) which can be written in the formm
F(X1,¥1500¢) = E %y, ya)stane § (Xn,In)

where §-may be an arbitrary function. The subclass w consists
of all distribution functions F(Xy,¥y,¢.+,Xn,¥,) which can be
written in the form

F(X1,775 0% ¥n) = @(x1) ¥ (71) @(x2)¥ (72) e oo P(x3)¥ () -
Hence, L1l cannot be represented as a k-paremeter family of
functions.

The problem given above as &an illustration has been treat-
ed by H. Hotelling and Margaret Pabst (see reference 8). An-
other problem, where ) is the class of all contindous distri-
butions, has been considered in paper (see reference 21). We
shall give here an outline of a theory of statlstical inference
dealing with the following general problemll)z

Let X3,e..,X, be a set of n randam variables. It is knowm
that the joint probability distribution function F(Xy,...,X,)
of X3,++0,X, 18 an element of a certeln class £l of distribu-
tion functions. Let S be a system of subclasses of .. For
each element w of S denote by Hy, the hypothesis that the true
distribution F(xl,...,xn) of X1,¢++,Xn 1s an element of w.
Denote by Hg the system of all hypotheses corresponding to all
elements of S. Let x; be the observed value of X; (=215 o folsis N)ie
We have to decide by means of the observed sample point
Enp = (Xg,+00,X,) which hypothesis of the system Hg of hypo-
theses should be accepted. That is to say, for each hypothesis
H, we have to determine a region of acceptance My in the n-

dimensional sample space. The hypothesis H  will be accepted

11) This theory has been developed in reference 16
for the case that 1s a k-parameter family
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if and only if the sanmple point falls in the region My. The

regions M, and My are, of course, disjoint for o # w'. Fur-

thermore, Z M is equal to the whole sample space. The statis-
®

tical problem is that of the proper choice of the system Mg of

the regions of acceptance.

The cholce of the system Mg of reglons of acceptance is
equivalent to the cholce of a function w(E,) defined over all
points E, of the sample space. The velue of the function
w(En) is an element of & determined as follows: Since the ele-
ments of Mg are disjoint and since g M, 18 equal to the whole
sample space, for each polnt En'there exists exact}y one ele-
ment ® of S such that E, 1s contained in M,. The value of the
function w(En) is that element w of S for which E, is an ele-
ment of My,. Hence, we cen replace Mg by the function w(Ep)
and for each sample point E, we decide to accept the hypothesis
Hy(Ep). We will call w(En) the statistical decision function.

Hence, the ststistical problem 1s that of choosing the statis-

tlcal decision function w(Ep).

The cholce of w(E,) will essentially be affected by the
relative importance of the different possible errors we may
commit. We commit an error whenever we accept a hypothesis Hj
and the true distribution 1s not an element of w. We introduce

a weight function for the possible errors. The welght function

w[F,Q] is a real valued non-negative function defined for all
elements F of . and all elements w of 8, expressing the re-
lative importance of the error committed by accepting H, when
F i1s true. If F 1s an element of w then w[F,w] = 0, otherwise
w F,0]> 0. The question as to how the form of the weight func-

tion w[F,d] should be chosen is notamathematicel nor statistical
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one. The statisticlan who wants to test certalin hypotheses
must first determine the relative importance of all possible
errors and this will depend on the special purposes of his in-
vestigation. If this 1s done, we shall in general be able to
give a more satisfactory answer to the qQuestion as to how the
statistlical decision function should be chosen. In many cases,
especlally in statistlical questions concerning industrisl pro=-
duction, we are able to express the importance of an error in
monetary terms, that 1s, we can express the loss caused by the
error considered in terms of money. We shall also say that
w [suuﬂ i1s the loss caused by accepting H, when F 1s true.
Suppose that we make our decisions according to a statis-
tical decision function w(E,), and that the true distribution
is the element F(Xj,...,X,) of 2. Then the expected value of
the loss 18 obviously given by the Stiéltjes integral

(5) [w[F,w(EnﬂdF(xl,...,xn) =r[F],

n
where the integration is to be taken over the whole sample space

Mp. We shall call the expression (5) the risk of accepting a
false hypothesis when F 1s the true distribution function.
Since we do not know the true distribution F we shall have to
study the risk r[ F ] as a function of F. We shall call this
function the risk function. Hence, the risk function is defined
over all elements F of N_.. The form of the risk function de-
pends on the statistical decision function w(E,) and on the
welght function wl:F,w] « In order to express this fact, we
shall denote the risk function associated with the statistical
decision function w(Ep) and the weight Function w[?,@]alao by
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r {Flw (En), wl'_'F,w]}

We introduce the following definitions:

Definition 1. Denote by w(E,) end w'(E,) two statistical
decision functions for the same system Hg of hypotheses. We
shall say that w(E,) and w'(E,) are equivalent relative to the
weight w[F,w] 1f the risk function r {Flw(En), w[F, w:]}
is identically equal to the risk function r {Flw'(En),w[F,(a}
1.e.4for any element F of ) we have

r{Flw(En), w[F,u')]} & r{Flw'(En), w[F,w]} A

Definition 2. Denote by w(E,) and w'(E,) two statistical
decision functions for the ssme system Hg of hypotheses. We
shall say that w(E,) 1s uniformly better than w'(E,) relative
to the weight function w[F,u]if w(En) and w'(E,) are not equiva-
lent and for each element F of .Q0 we have

r{FIw(En.), w[F,oZ‘} =r {Flm'(En), w[F,w]} .

Definition 3. A statistical decision function w(En) 1s
sald to be admissible relative to the weight function w[F,w]
if no uniformly better statistical decision functlon exists re-
lative to the weight function considered.

First principle for the choice of the statistical decision

function. We choose a statistical decision function which 1is
admissible relative to the weight function considered.

There can scarcely be given any argument ageinst the ac-
ceptance of the above principle for the selection of w(Ep).
However, this principle does not lead in general to a unique
solution. There exist in general many admissible statistical
decision functions. We need a second principle for the choice

of a best adnissible decision function.
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The choice between two admnissible decision functions w(E,)
and o'(E,) may be affected by the degree of our a priori con-
fidence ‘in the truth of the different elements of (.. Suppose,
for instance, that for a certain element Fy of £ we have

r (Fll“’(En)’WE"‘ﬂ} @ir {Fglm'(En),wl:F,w]}
for another element F, of ()L we have

r {lew(En.),w[F,uﬂ} Dt (Fz Iw'(En),wEi‘,m]}
and for any other element F # F;, # Fy we have

r {Flw(En),w EF,(:E]} = r {Flm'(En),w[F,ﬂ} .
If we have much greater a priori confidence in the truth of M
than in that of Fp, we will probably prefer w(Ep) to w'(Ep).
On the other hand, 1f we think a priori that Fo 1s more likely
to be true than F;, we may prefer w!(E,) to w(Ep).

Suppose we can express our a priori degree of confidence
by a non-negative additive set function p(m) defined over a cer-
tain system of subsets m of n , where p(\) = 1. That is to say
the value of p(m) expresses the degree of our a priori belief
that the true distribution is an element of the subset n. In
such a case 1t seems very reasonable to consider a decision
function w¥(Ep) as "best" if the value of the integral

f r{F[ w(Ep), w EF,w]} dp
becomes a minimum ro;\w(En) = uﬂ%En). That is, we consider a
decision function wXEp) as "best" if 1t minimizes a certain
welghted average of the risk fuhction.

However, it 1s doubtful that a set function expressing our
a priorl degree of bellief can meaningfully be constructed.
Therefore, we prefer to furmulate the notion of a "best" dec-

ision function indepehdently of such considerations.
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Denote by r {w(En), N[Pw:]} the least upper bound of
r {FIw(En), wl:F,w]} with respect to F, where F may be any ele-
ment of S,

Definition 4. A decision function «w¥(E,) is sald to be a
"best" decision function if r {w(En), wEF,oE]} becomes & mini-
mun for w(E,) = w*(En). (The weight function wEF,-J_I is con-
sidered fixed.)

This definition of a "best" decision function seems to be
& very reasonable one, although it 1s not the only possible one.
One could reasonably define a decision function as "best" if it
minimizes a certaln weighted average of the risk function.
However, there sre certain properties of the "best" decision
function according to definition 4, which seem to jJustify the
use of that definition. One of the most important properties
of a "best" decision function in the sense of definition 4 1is
that the risk function 1s a constant, 1.e.;1t has the same
value for all elements F of £1.. This has been shown 1n the
case that__1s a k-parameter family of distributions, and the
welght function wEF,q and the distribution functions F satisfy
eertain restrictive conditions. The constancy of the risk func-
tion seems to be very desirable from the point of view of appli-
cations since this property mekes it possible to evaluate the
exact magnitude of the risk assoclated with the statistical de-
cision. 1In the theory of confidence intervals the confldence
coefficient, a, i.e.4the probability that the confidence in-
terval will cover the unknown parameter, is independent of the
value of the unknown parameter. This fact, which 1s consldered

to be of basic importance in the theory of interval-estimation,
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is anelogous to the constancy of the risk function in our gen-
eral theory since l-g¢ cen be considered in & certain sense aa
the risk associated with the interval estimation. (The quan tity
l-a 18 exactly equal to the risk in the sense of our definitim,
1f the weight function takes only the values 0 and 1%9)

Finally, I should like to msake some remarks about the re-
lationship of the general theory as outlined here, to the partl-
cular theory of uniformly most powerful and asymptotically most
powerful tests which were discussed before. In the case of
testing the simple hypothesis that the unknown distribution
F(xl,...,xn) 1s equal to a particular distribution Fo(xy,ec.xp),
the system S of subsets of /1. consists only of two elements oy
end wp where w) contains the single element F, and w, is the
complement of w; in.\.. Hence, the decision function w(En) can
assume merely the values w) and wg. Let My, De the subset of
the sample space consisting of the points Ep for which w(E,)=w
and let sz be the set of points E, for which w(E,)=wp. The
set H% is the complement of M“’ﬁl in the sample space. Obviously
the set "‘*’2 i1s the critical region, in the sense of the Neyman -
Pearson theory. It is easy to see that if for any a(O<a<l) a
uniformly best critical region of size ¢ for testing F = Fy
exists, then for any arbitrary weight function and for any
adnissible (see definition 3) decision function w(Ep), the set
Map will be auniformly best critical region. In particular, the
set n@g corresponding to the "best" decision function (see def-
inition 4) will be & uniformly best critical region. Hence, the
form of the weight function affects merely the size of the re-
gion Hmz associated with the "best" decision function w(Ep),
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but it will always be a uniformly best critical regilon in the
sense of the Neyman-Pearson theory. Similar considerations
hold concerning asymptotically most powerful tests. Let the
sequence {wn} (n=1,2,...,a8d inf.) of critical regions be an as=
ymptotically most powerful test for testing the simple hypothe-
sis F = Fo. Then for sufficiently large n the region W, 1s
practically a uniformly best critical region and, therefore, it
will be an excellent approximation to the region which is "best"
in the sense of definition 4 irrespective of the shape of the
welght function of errors.

As we have seen, for building up a general theory of
statistical inference, the following three steps have to be
made:

1. Formulation of the general problem of statistical
inference.

2. Definition of the "best" procedure for maeking sta-
tistical decisions, 1.e., definition of the "best"
statistical decision function.

3. Solution of the mathematical problem of calculating
the "best" statistical decision function.

The problem of statistical inference, as we have formulated
1t here,seems to be sufficiently broad to cover the problems in
practical applications. The second step will always be, to &
certain extent, arbitrary. The definition of "best" decision
function given here seems to be a satlsfactory one. DMoreover,
under certain restrictive conditions it has the important prop-
erty that the risk function associated with the "best" declsion
function is constant, i.e., i1t has the same value for all ele-

ments of {). However, there may be other definitions of a
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"best" decision function worth investigating. Decision funce
tions which minimize a certain average of the risk function may
be of special interest. Concerning step 3, there are many

mathematical problems as yet unsolved.
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