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Abstract

Nanoscale self-assembly is a process in which initially disordered particles sponta-

neously organize into thermodynamically stable patterns. In the bulk, structure and

symmetries of the patterns are determined only by the interaction potential between

the components, while in the case of confined systems the impact of the system size

and component-wall interaction play an important role. In the thesis we study these

effects of boundary conditions on the self-assembly at nanoscale.

We start the study with comparison between two classes of self-assembling systems

in the bulk. The first class consists of systems with spherically symmetric particles

which interact via an isotropic potential with competing short range attraction and

long range repulsion (SALR). Such interactions can be observed in e. g. colloidal

suspensions, protein solutions or between quantum dots. The second class is charac-

terized by amphiphilic interactions, that is anisotropic interactions present between

e. g. lipids which have hydrophilic heads and hydrophobic tails, or block copoly-

mers with building blocks of different chemical properties. We solve the two models

exactly by the transfer matrix method in one dimension, perform Monte Carlo sim-

ulations and numerical calculations of the mean-field type. The comparison made

between the equations of state, correlation functions, heat capacities and the ground

states indicates striking similarities between these systems and significant differ-

ences between them and simple fluids. Thus, further studies in a two dimensional

(2d) space were carried out only for the model with the SALR potential. In 2d we

have obtained the first complete phase diagram for the system with SALR type of

potential. In particular, we have discovered the “molten lamella” phase which was

not previously included in the phase diagrams of systems with the SALR potential.

Knowing the bulk properties of the SALR system, we have focused further studies

on the effects of confinement. We have assumed that the system has geometry of

a slit and considered one- and two-dimensional models. In the case of 1d model

with permeable walls we have found exact solutions for the density profiles and

the effective interactions between the walls, i. e. the solvation potential. In the

case of impervious walls we have studied density profiles and equation of state by
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Monte Carlo simulations. In both cases rigid and elastic walls were considered. In

the case of rigid walls the impact of the system size which is not favorable for the

bulk ground state structures has been analyzed. In particular, we have discovered

anomalies which do not occur in simple fluids, and qualitative differences between

cluster distributions in canonical and grand canonical ensembles for the same ther-

modynamic conditions. The study of elastic confinement led us to discovery of a

new way in which a complex system may spontaneously change its size. Namely, we

have found that if the system self-assembles into periodic structures, then the fluid

induced force between the walls may compete with the elastic force of the confine-

ment in such a way, that two system sizes can be equally probable. Moreover, the

two stable sizes may differ by as much as a period of the ground state pattern.

The 2d model with slit geometry revealed the ordering effects of the confinement.

In contrast to the bulk, in which the ground state is strongly degenerated, in the

case of confined system the ground state patterns are unique. We have found that

the presence of walls may induce defects in the bulk patterns either locally (in the

close neighborhood of the walls in the cluster phase), or globally (across the whole

slit in the lamellar phase). Interestingly, the defects appear in an organized manner

not only at zero temperature, but also at low temperatures.
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Chapter 1

Introduction

1.1 The self-assembly phenomena

In the fluid state of matter particles can freely diffuse without any constraints put

on their positions or orientation, while in the solid state only vibrations about fixed

average positions are allowed. The class of soft condensed matter systems lays in

the middle between the solid and the fluid states - it is characterized by large groups

of particles (aggregates) which can move only collectively. Spontaneous formation

of such aggregates, termed self-assembly, is a process in which initially disordered

components spontaneously organize into thermodynamically stable structures, often

of very complex nature. It occurs at all the length scales and it is ubiquitous in chem-

istry, biology or material science [1, 2]. Typical examples of self-assembling systems

are colloidal crystals [3, 4], microphase-separated or ionic layered polymers [5],

lipid bilayers and films [6], globular proteins [7] (e. g. insulin [8]), block copoly-

mers [9], lyotropic liquid crystals [10] or almost monodisperse mixed aggregates

of polyelectrolytes and surfactants [11]. Exemplary spontaneously formed patterns

are presented in Fig. 1.1.

Because of the ubiquity, the term “self-assembly” is not uniquely defined among

different scientific fields. It is sometimes used in a broaden sense, which includes

17
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Chapter 1. Introduction 18

FIG. 1.1: This figure is taken from Ref. [12] and it presents lamellar and bub-
ble phases in organic systems. Left panels show monomolecular two dimensional
organic Langmuir film seen by fluorescence microscope. Panels C and D present
solvent-cast film of block copolymers imaged by transimission electron microscopy.
The periods of the observed structures are ∼3.5µm (panel A) and ∼20µm (panel
B),∼40 nm (panel C) and∼16 nm (panel D). The panels are adapted from [13–17].

Copyright 1995 American Association for the Advancement of Science.

also systems out of the thermodynamic equilibrium [1]. In such sense, systems which

dissipate energy, like e. g. oscillating reaction-diffusion systems, are also referred

as self-assembling. However, such systems are said to self-assemble in a dynamic

manner (or to self-organize). In that sense the object of the thesis is a static self-

assembly, in which a system is at global or local equilibrium and does not dissipate

energy.

The process of self-assembly is observed along all length scales, but we focus on

nano- and microscale systems e.g. when ions adsorb on solid substrates, colloid

particles self organize on interfaces between two fluid phases or ligands bind to bio-

logical membrane receptors. In that case spontaneous organization is possible only

if the components interact with one another and can diffuse. While the diffusion

simply results from the thermal fluctuations, the shape of the effective pair inter-

action potential is often a sum of many different factors with lyophobic, Van der

Waals, entropic or electrostatic interactions among them. The effective interactions

uniquely determine morphology and symmetries of the aggregated structures in a

httt://rcin.org.pl



Chapter 1. Introduction 19

given thermodynamic state, but only if the process takes place in the bulk, i.e. the

boundaries of the system do not influence the self-assembled structure. However, if

for example the confinement and the self-assembled structure have different sym-

metries, or incommensurability between characteristic lengths of the ordered phase

and the system size occurs, then one should expect that the boundaries will have a

significant effect on the self-assembly. Possible effects of boundary conditions on the

self-assembly are e. g. stabilization of new morphologies, anomalies in the equation

of state, or in the case of elastic boundaries a bistability in the system size distribu-

tion. The study of these effects, preceded by a proper description of self-assembling

systems in the bulk, are the aims of the thesis.

In Sec. 1.2 we will present theoretical and computer simulation studies aimed at

description of self-assembling systems. We will focus on two classes of effective pair

interaction potentials which lead to self-assembly into inhomogeneous structures,

namely amphiphilic potentials (Sec. 1.2.1) and isotropic potentials with competing

interactions (Sec. 1.2.2). In Sec. 1.3 we will discuss the known similarities between

these two systems and show their possible origin. In Sec. 1.4 the current state of

knowledge on effects of boundary conditions on the self-assembly will be presented,

and finally in Sec. 1.5 the remaining open questions and the specific aim of the

thesis will be formulated.

1.2 Self-assembly into inhomogeneous patterns in the

bulk

In this section we will discuss two classes of pair interaction potentials which lead

to self-assembly into inhomogeneous structures. Firstly, based on Ref. [9, 18] we

will discuss self-assembly of amphiphilic molecules as a representative example of

components with anisotropic interactions. Secondly, we will focus on isotropic inter-

action with competition between a short-range attraction part leading to aggrega-

tion of the particles, and a long-range repulsion term which induces separation of

the aggregates.
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Chapter 1. Introduction 20

1.2.1 Amphiphilic interaction potentials

Amphiphiles are chemical compounds in which two separate building blocks with

different chemical properties can be distinguished. In water solution usually one

of the blocks is hydrophilic while the other one is hydrophobic. A typical example

of an amphiphilic molecule is a block copolymer, that is a molecule which consists

of at least two chemically joined blocks of different monomers (Fig. 1.4). Because

of the immiscibility of the blocks, the system spontaneously tends to separate the

monomers of different kind. The tendency to minimize the contact between the

monomers of a different kind leads to self-assembly of the components into struc-

tures well organized in space. On the other hand, such energy minimization is

inhibited by the associated loss of entropy, and thus either defects in the ordered

structures occur, or different morphologies are stabilized.

FIG. 1.2: Schematic representation of a diblock copolymer.

The competition between entropy and energy is a common origin of inhomogeneities

in the self-assembled structures for all amphiphilic systems with solutions of lipids

in water [19] and Janus particles [20] among them. The common origin and similar

chemical structure of the components result in topologically equivalent mean-field

phase diagrams (Upper left panel of Fig. 1.3). The possible origin of such universal-

ity within the class of systems characterized by amphiphilic interactions, is that all of

them can by described by the same Landau-Brazovskii functional [12, 21–24]. In the

context of amphiphilic systems the free energy density LB[φ] is a functional of a lo-

cal difference between concentrations of hydrophilic and hydrophobic components.

The form of LB[φ] suitable for all amphiphilic systems is

LB[φ] =

∫

dr
�

f (φ(r)) +
βV2

2
|∇φ(r)|2 +

βV4

4!

�

∇2φ(r)
�2�

, (1.1)

where V2 < 0 and V4 > 0, β = 1/(kB T ), kB is the Boltzmann constant and T is the

temperature. The inhomogeneous structure is favored and disfavored by the second

and the third term in (1.1) respectively. Competition between these terms leads to

a finite length scale of inhomogeneities, 2π/kb, with k2
b = −6V2/V4 [25].
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Chapter 1. Introduction 21

FIG. 1.3: Phase diagrams of diblock copolymer system (adapted from Ref.[9]).
Left upper panel presents theoretical results based on calculations within the self-
consistent mean-field theory. The theoretical phase diagram predicts stability of
four different morphologies which change with the value of the composition pa-
rameter fA and the combination parameter χN , where χ is the segment-segment
interaction energy in kB T units, and N is the number of all monomers per macro-
molecule. With increasing fA and for intermediate values of χN the following mor-
phologies are stable: spherical (S), cylindrical (C), gyroid (G) and lamellar (L).
Right upper panel presents experimental phase diagram obtained in [26] for sys-
tem of poly(isoprene-styrene) diblock copolymers. The lower panel shows schemat-
ically equilibrium structures for different values of fA with blue color corresponding

to monomers of type A, and red color to monomers of type B.

What is more, the theoretical phase diagram reproduces very well the experimental

results (Upper right panel of Fig. 1.3). In both cases the lamellar (L) phase stabilizes

when the copolymer blocks are composed of nearly the same number of monomers.

If one type of monomers significantly dominates, than the system self-assembles into

structures with shorter blocks of copolymers packed together, what ensures more

configurational space for the longer blocks, and thus maximizes the entropy. At

low temperatures and with increasing fraction of monomers of one type the copoly-

mers form the following phases: hexagonally packed cylinders (C), body-centered

cubic spheres (S) and finally close-packed spheres (CPS). Apart from these phases

at intermediate temperatures a periodic bicontinuous gyroid phase (G) stabilizes.

Unlike the other phases present at the block copolymers phase diagram, the gyroid

phase is characterized by domain boundaries with negative Gauss curvature (saddle

shape surfaces). Even though its mathematical description seems uncommon, the
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Chapter 1. Introduction 22

structure of the gyroid phase is ubiquitous in soft condensed matter systems.

The theoretical phase diagram is only an approximation, thus discrepancies between

the theory and experiment occur. First of all, the phase diagram for a poly(isoprene-

styrene) block copolymers presented in Fig. 1.3 is not symmetric, mostly because

the monomers in the two blocks have different size and shape. Another important

difference is the presence of the perforated layers (PL) phase in the experimental

phase diagram. However, it turned out that this discrepancy is just an artifact of the

method, since it was shown later both theoretically [27] and experimentally [28]

that the PL phase is metastable. The last discrepancy we need to mention concerns

the border region of stability of the disordered phase. The theoretical results predict

that all transition lines meet in a critical point and thus the disordered phase coexists

only with the CPS phase, while the experimental phase diagram clearly shows that

transitions from the disordered phase to various ordered phases are possible. This

difference occurs because in the mean-field approximation one neglects fluctuations

of the composition, which in the case of inhomogeneous systems tend to destroy the

periodic order [25].

For experimentalists block copolymers are of great importance because of the poten-

tial use in the semiconductor industry, for which miniaturization is an everlasting

issue. Currently, the well established procedures with highly optimized costs use

the “top-down” photolitography, hence their use at nano scale is limited by optical

diffraction. A possible way to overcome such limitation is a “bottom-up” strategy

based on self-assembling materials. In 2007 a first-ever application of self-assembly

to chip manufacturing was reported [29] - the researchers of the IBM used self-

assembly of poly(styrene-b-methyl methacrylate) block copolymers to fabricate a

nanoporous template with trillions of uniform holes with 20 nanometers in diameter.

At that time the top result of the lithography technique was 100 nm. Even though,

the range of structures or symmetries offered by block copolymer self-assembly is

somewhat limited, the promise of low costs of the technique is a key motivation for

its fast development. Different morphologies and shorter length scales (up to ca.

0.5-10 nm) are of course also possible, but they require more complex structure of

the components, which are out of the scope of the thesis.
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1.2.2 Isotropic effective competing interaction potentials

Integral membrane proteins bind to the lipid bilayer by hydrophobic forces which be-

sides adsorbing them to the surface cause the short-range protein-protein attraction.

A mismatch between the shape of the proteins and the surface geometry, or electro-

static interactions can be the origin of the long-range protein-protein repulsion. The

form of the effective interaction potential can vary depending on the proteins, sol-

vent and the membrane structure, but mostly it takes the form of the short-range

attraction and long-range repulsion (SALR) potential [7, 30, 31].

FIG. 1.4: An example of the SALR effective interparticle potential.

The SALR type of potential can also describe the interaction in the colloid suspen-

sions. The colloid particles are often charged, and repel each other with the screened

electrostatic potential. Repulsion is also present when the nanoparticles are covered

with polymeric brushes [31]. The attractive part of the potential consists of the Van

der Waals and the solvophobic forces. Moreover, depletion attraction appears when

nonadsorbing polymers with a much smaller radius of gyration are added to the

solution. In addition, when the particles are amphiphilic, they become adsorbed at

the interface between the polar and organic liquids. By adjusting the charge, solvent

(dielectric constant, solvophobic interactions), the size and concentration of the de-

pletion agents, one can tune the strengths and the ranges of the competing attractive

and repulsive parts of the SALR potential [7, 32]. If there are not too many particles

and the potential is suitably tuned, then the particles can form patterns similar to

the patterns formed by the macromolecules bound to the lipid membrane.

A series of theoretical and simulation studies of self-assembly driven by the SALR

potential started with the report on spontaneous patterning of quantum dots at the
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air-water interface [33]. The quantum dots seen by the Transmission Electron Mi-

croscope (TEM) self-assembled into circular or stripe domains depending on their

concentration. Using Monte Carlo techniques of computer simulation it was shown

that the probable origin of the inhomogeneities is the isotropic pair interaction po-

tential which leads to microsegregation. The proposed model for the effective pair

interactions consisted of a hard core repulsion, and a term of the SALR shape. The

assumption of the hard-core repulsion followed from the inability of the dots to inter-

penetrate, while the SALR part was the effective potential resulting from summation

of the dispersion attraction and the electrostatic repulsion. The SALR potential in

Ref. [33] had the following form of the double Kac potential

u2K(r) = −εaγ
2
aex p(−γar) + εrγ

2
r ex p(−γr r), (1.2)

where εa,εr > 0 and γ−1
r > γ−1

a . Similar interaction potentials were used later in

[34–41] in the context of soft-matter systems, with colloidal suspensions as a typical

example. In the case of three dimensional systems the authors preferred to use the

Yukawa functions

u2Y (r) = −
ε

r
exp (−z1r) +

A
r

exp (−z2r) . (1.3)

The extensive investigation of the SALR systems focused mainly on a determination

of the phase diagram. Because of extremely high complexity of the energy land-

scapes, which for the SALR systems exhibits a large number of local minima, only

approximate results were obtained so far. In the studies presented in [37–42] the

authors used the density functional theory (DFT) which neglects the fluctuations of

density, hence only regions of stability of homogeneous or periodic structures can

be distinguished. It turned out that the topology of the phase diagram is preserved

for values of the interaction potential parameters which assure the same sign of

I ≡
∫

u2K(r) dr. The sign of the parameter I is crucial for the phase diagram topol-

ogy, because it holds the information on how a trial particle would effectively inter-

act with neighboring uniformly distributed particles. Thus the sign of I determines

whether the system tends to expand or shrink.

In the case of I ≥ 0 the phase diagram obtained for the three-dimensional system

is presented in the (ρσ3, kB T/εa) representation in Fig. 1.5. The heterogeneous

phases where found below the bell shaped curve. With increasing density ρ the
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FIG. 1.5: Phase diagram in the SALR-potential system obtained in Refs.[41, 42].
ρ∗ = 6η/π, where η is the volume fraction of particles and I > 0. The structure
of the phases stable in regions separated by the solid, dashed and dotted lines is
illustrated by the corresponding surfaces placed arround the phase diagram. Inside
the regions enclosed by these surfaces the density is enhanced or depleted compared

to ρ∗ when ρ∗ < 0.25 or ρ∗ > 0.25 respectively.

heterogeneous phases are: body centered cubic crystal phase, hexagonally ordered

cylinders phase, the gyroid phase and the lamellar phase. For higher densities analo-

gous “inverse” phases are stabilized, that is the patterns which at low densities were

formed by particles, at high densities are formed by bubbles (regions with depleted

density).

In the case of I = 0 described in [35, 39] for a two-dimensional system, with in-

creasing ρ the order in which the stable phases were found is: homogeneous phase

of low density - hexagonally ordered clusters - stripes - hexagonally ordered voids -

homogeneous phase of high density. In [39] the authors used the DFT method, while

in [35] Monte Carlo simulations were performed. Unfortunately, in a presence of

thermal fluctuations it was not trivial to distinguish the disordered and the ordered

phases when structural defects were present in the latter. It was assumed that at the

transition between the disordered and the ordered phases the specific heat assumes

a maximum. The ordered phases were distinguished on the basis of the form of the

structure factor. The obtained sketch of the phase diagram (Fig. 1.6) was similar to

the DFT result. The main differences are: (i) a stability of a disordered cluster phase

between the ordered cluster phase and the homogeneous fluid (ii) a reentrant melt-

ing of the ordered cluster phase upon increasing density for high temperatures, and
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the ordered clusters – disordered – stripes transitions instead of the ordered clusters

– stripes transition obtained in the DFT.

FIG. 1.6: Phase diagram in the SALR-potential system obtained in Ref.[35] with
I = 0, by Monte Carlo simulations. The transition points correspond to a maximum

of the specific heat.

The case of I < 0 was analyzed in Ref. [40] within the DFT and Landau theory.

The authors used the same double Yukawa potential as in Refs. [35, 39], but they

assumed that the density profile varies only in one spatial dimension, hence all the

ordered phases were treated as a single periodic phase. The obtained phase diagram

differed from the previous ones as it predicted a gas-liquid transition below a certain

temperature Tt (Fig. 1.7).

Note that the case of I > 0 corresponding to formation of small clusters, was inves-

tigated only by approximate theories and only in three-dimensional space. For this

reason in Chapter 2 we will consider the case of I > 0 in two-dimensional space

using both the mean-field theory and the Monte Carlo simulation techniques (see

Fig. 2.52).

In comparison to amphiphilic self-assembly, spontaneous pattern formation of systems

with the SALR potential is still barely understood and described. The so far obtained

results for the phase diagram of the SALR systems are only sketches based on unverified

assumptions1 or are obtained within an approximate theory which neglects fluctuations

crucial for a proper description of the phase diagram topology. One of the goals of the

1In Sec. 2.1.1.5 we show that a maximum of the specific heat for the SALR systems not necessarily
indicates a phase transition, as was assumed to obtain the phase diagram presented in Fig. 1.6.
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thesis is to obtain the first complete and accurate phase diagram of the SALR system in

the bulk.

FIG. 1.7: Effectively one-dimensional phase diagrams for the SALR-potential system
obtained in Ref.[40] with I < 0. The panels refer to different values of parameter

A in Eq. 1.3. Left panel: A= 0.5, right panel A= 0.1.

1.3 Similarities between amphiphilic and colloidal self-

assembly

Although the amphiphilic and the SALR systems from the first sight seem to have

nothing in common, some striking similarities between these two systems have been

noticed. In this section we will present results of q theoretical study on these similar-

ities. We suggest that once a mapping between the mathematical models describing

the systems is established, one can take advantage of a variety of the results obtained

earlier for the amphiphilic system in studies of colloidal systems with competing in-

teractions.

Most of the results discussed in this section were published in [43] and concern off-

lattice systems. Although the thesis focuses on the lattice models, we present the

studies in detail, because they strongly support the universality of the main disser-

tation results.

1.3.1 The origin of similarities

Interactions between amphiphilic molecules are strongly orientation-dependent, whereas

effective interactions between spherical colloid particles usually depend only on the
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distance between their centers. The purpose of the research presented in this sec-

tion was to understand why despite different interaction potentials phase diagrams

of amphiphilic systems and of systems interacting with the SALR type potentials are

very similar (Figs. 1.3 and 1.5 respectively). We focused on the question why the

pattern formation and the sequence of ordered phases in quite different self-assembling

systems are nearly the same.

Case of simple systems

It is well known that the topology of the phase diagrams in systems undergoing

separation into homogeneous phases is the same [44]. This universality is reflected

in the generic free energy density functional [44]

L[φ] =

∫

dr
�

f (φ(r)) +
βV2

2
|∇φ(r)|2

�

, (1.4)

where

f (φ) = (A2/2+ βV0)φ
2 + A4φ

4/4!, (1.5)

V0 < 0 is the measure of attraction, An > 0 and V2 > 0. The term 1
2βV2|∇φ(r)|2

ensures that the equilibrium phases corresponding to the minimum of the functional

(1.4) are homogeneous (∇φ(r) = 0).

Inhomogeneous systems

Because the functional (1.1) describes succesfully various inhomogeneus systems,

it is plausible that the generic model for systems with competing interactions has the

same form, with φ(r) denoting local excess volume fraction of particles. However,

it is not obvious apriori if the functional (1.4) with V2 > 0 or (1.1) with V2 < 0 is

appropriate for a given form of interactions. Thus, it is necessary to find the relation

between the coefficients in the functional and the form of the interaction potential.

Such a relation can be reliably obtained when the functional (1.1) is derived from a

microscopic theory.
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1.3.2 Approximate expressions for the internal energy

Let us focus on the internal energy (configurational part),

U=
1
2

∫

dr

∫

d∆r ρ(r)ρ(r+∆r)V (∆r)g(∆r) (1.6)

where V (∆r) and g(∆r) are the interaction potential and the pair distribution func-

tion for particles located at r and r+∆r, and ρ(r) is the local average density of the

particles. We focus on systems inhomogeneous on a mesoscopic length scale and

on weak ordering, therefore we assume that g depends only on ∆r, and ρ(r) is a

slowly varying function.

We consider short-range interaction potentials, whose moments
∫

drV (r)rn are fi-

nite at least for n = 4. We Taylor expand ρ(r+∆r) about r, integrate by parts (see

Appendix 6.1) and obtain the following approximate expression for the internal en-

ergy (1.6)

U≈
∫

dr
�

V0η(r)
2 +

V2

2
|∇η(r)|2 + ...

�

(1.7)

where η(r) = ρ(r)v is the local volume fraction, v = πσ3/6 is the particle volume,

and

Vn =
2π(−1)n/2

(n+ 1)v2

∫ ∞

0

dr r2+nV (r)g(r). (1.8)

For attractive interactions (V (r) < 0) homogeneous phases are energetically fa-

vored, because V2 > 0, and the second term in (1.7) leads to an increase of U for

∇η(r) 6= 0. Note that g(r) > 0 and either oscillates around 1 in crystals or exhibits

oscillatory decay to 1 in liquids. Thus, repulsion at large distances (V (r) > 0) can

lead to V2 < 0, and hence to a decrease of U for ∇η(r) 6= 0, i.e. to spatial inhomo-

geneities.

For V2 < 0 the Taylor expansion of ρ(r+∆r) should be truncated at the fourth order

term (see Appendix 6.1), and (1.7) should be replaced by

U≈
∫

dr
�

V0η(r)
2 +

V2

2
|∇η(r)|2 +

V4

4!

�

∇2η(r)
�2�

. (1.9)

From (1.8) it follows that V4 > 0 if V2 < 0, and the above functional is stable. Note
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the similarity between the last two terms in Eqs.(1.9) and (1.1). Spatial inhomo-

geneities favored by Eq.(1.9) for V2 < 0 are consistent with preferential formation

of clusters in the case of the SALR potential, with the size and the distance between

the clusters determined by the range of attraction and the range of repulsion respec-

tively.

1.3.3 Derivation of the Landau-Brazovskii functional

In order to find thermal equilibrium we need to compare grand potentials in systems

with and without mesoscopic inhomogeneities. A particular form of the volume

fraction on the mesoscopic scale, η(r), imposes a constraint on the volume occupied

by the particles in mesoscopic regions [41]. Let us consider the grand potential in

the presence of the constraint η(r),

Ωco[η] = U[η]− TS[η]− µ̄
∫

drη(r), (1.10)

where U[η] and S[η] are the configurational parts of the internal energy and the

entropy, µ̄ = [µ− kB T ln(Λ/σ)3]/v, where µ is the chemical potential and Λ is the

thermal wavelength. We assume that U[η] is given by (1.7) or (1.9).

When η(r) varies on a length scale larger thanσ, then we can make the local density

approximation for the entropy, −TS ≈
∫

dr [ fh(η(r))], where fh(η) is the configura-

tional part of the free energy density of the hard-sphere reference system with the

volume fraction η. fh(η0 + φ(r)) can be Taylor expanded and for weak ordering

(φ(r)� 1) fh(η) can be approximated by the polynomial in φ.

From (1.10), (1.7), (1.9) and the above we can see that the change of βΩco associ-

ated with creation of the mesoscopic inhomogeneity,

Lη0
[φ] = βΩco[η0 +φ]− βΩco[η0], (1.11)

takes the form of the functional (1.4) or (1.1) for V2 > 0 or V2 < 0 respectively, with

f (φ) =
∑

n≥1

1
n!

dnβ fh(η)
dηn

|η=η0
φn + 2η0βV0φ + βV0φ

2 − βµ̄φ. (1.12)

Thus, we have shown that self-assembly in amphiphilic systems and in systems with

competing interactions can be described by the same functional (1.1). This explains
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striking similarity of the phase diagrams and supports the hypothesis that these sys-

tems belong to the same universality class.

It should be stressed, however that the description by the Landau-Brazovskii functional

is valid only in the case of weak ordering, that is for high temperatures. The question

whether the self-assembly in colloidal and amphiphilic systems remains similar at low

temperature will be addressed in the results part of the thesis.

1.4 Effects of confinement

Spatial confinement has an impact on structural, thermodynamic and transport prop-

erties of the confined fluid [45]. In intracell compartments, in pores of a porous ma-

terial or on geometrically patterned surfaces, the boundaries of the self-assembling

systems can have an ordering or a disordering effect on the confined clusters or lay-

ers. The confinement has a significant effect on fluids when the separation between

the confining surfaces is comparable with the characteristic structural length of the

confined fluid [46, 47]. The key factor is the commensurability of the typical dis-

tance between the objects in the bulk, and the size of the compartment. Despite the

fact that the confinement plays a very important role in biological systems, in pores

of porous materials, and on patterned surfaces, the effects of confinement on the

self-assembling systems have been much less studied than the bulk properties. In

this section, we will briefly summarize the current state of knowledge about thermo-

dynamical effects of confinement as well as about the impact of confining surfaces

on the self-assembly driven either by the isotropic SALR potential or the amphiphilic

interactions.

1.4.1 Thermodynamical effects of confinement

The bulk structures which organize spontaneously are free of internal stresses. Im-

posing geometrical bonds often introduces an internal stress which depends on the

size and shape of the container, as well as on chemical and elastic properties at the

walls. In simple liquids, characterized by very short correlation lengths, the effects

of confinement are local and are present only close to the surfaces of the walls. In

the case of complex liquids, for which the range of the correlations can be larger

than the distance between the confining walls, the effects can be more pronounced
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FIG. 1.8: Schematic representation of different types boundary conditions for sys-
tem of slit geometry. The panels present: (a) rigid and impervious walls, (b) rigid

and permeable walls, (c) elastic and impervious walls.

along the whole system. The key factor which determines whether significant ef-

fects of confinement will occur, is the distance between the confining walls. When

the wall separation is commensurate with the period of the confined structure, the

only expected effect is the order enhancement, which weakens the disordering ef-

fects of thermal fluctuations. On the other hand, if the wall-wall distance and the

characteristic lengths are incommensurate, significant effects of confinement are ex-

pected.

The aim of the thesis is to study what kind of effects are expected for different kinds

of boundary conditions. In Fig. 1.8 typical types of confinement are schematically

presented. Panel (a) presents rigid walls which are separated by a fixed distance

and are impervious, hence the volume and the total number of confined particles

are fixed. Panel (b) presents a system with rigid and permeable walls, hence the

system can exchange particles with the external environment, and the particle num-

ber inside the confinement is controlled by the chemical potential. In panel (c) the

impervious and elastic boundary conditions are presented, the springs attached to

the walls symbolize the ability of the confining material to adapt its size to the con-

fined structures. A confinement with permeable and elastic walls is not presented,

but is of course possible and should be imagined as a combination of the (b) and (c)

schemes.

The permeability and rigidity of the boundaries influences the ordering or disorder-

ing effects of the confinement. In the case of impervious boundaries a fixed number
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of confined particles may not match the number of particles required to form an or-

dered structure, hence defects in the stable structures are expected. If the boundaries

are rigid, the disordering effect depends on the commensurability of the wall-wall

distance and the characteristic lengths of the confined structure. On the other hand,

in the case of elastic boundaries, adaptive features should enhance ordering effects

and the situation is more complicated. For elastic boundaries the wall separation

is determined by the equilibrium between two competing forces: the elastic force

resulting from the deformation of the confining material and the solvation force re-

sulting from the stress in the confined self-assembling system. Thus, the confinement

effects result from properties of both the fluid and the walls.

The solvation force is the effective interaction between the walls and it occurs when

the distance between the confining walls is comparable with the length of correla-

tions between the particles. The value of the solvation force is associated with the

excess of the grand potential in the confined system, Ωex ≡ Ω−Ωb, where Ωb is the

grand potential of the bulk system of the same volume. The confined system tends

to minimize Ωex , which far from phase transitions can be described by the following

formula:

Ωex =
∑

i

σiAi +
∑

j

σ
j
dwAj

dw + Ψ, (1.13)

where σi is the surface tension between the fluid and the i-th confining wall, Ai is

the area of the wall, σ j
dwAj is the sum of all domain-wall surface energies, with Aj

denoting the area of the j-th domain wall, and Ψ is the solvation potential.

The fluid-wall surface tension is associated with all external walls and its contribu-

tion to Ωex is also known in the theory of simple liquids. On the other hand, the

domains of liquid with different morphologies or orientation can occur only in com-

plex liquids. The presence of the domains is a result of local structure deformations

caused by the confinement (see the right panel of Fig. 1.9 for an example of domains

with different orientation of the lamellas). Finally, the solvation potential in the case

of simple liquids is nonzero only for very short wall separations, but in the case of

self-assembling systems the solvation potential can decay very slowly as a function

of the wall-wall distance [48]. How the solvation potential changes with the wall

separation L can be seen from the shape of the Ωex(L) curve (Fig. 1.10), since for

fixed (T, V,µ) and large L the values of Ψ and Ωex differ only by a constant.

More detailed description of Eq.1.13 as well as additional terms which should be
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FIG. 1.9: Mean-field results for the average density in the CHS model [48]. The
panels show a cross section of a three dimensional slit, where the shaded regions
correspond to oil-rich domains, and white regions to water-rich domains. The thick

lines are the local interfaces occupied by surfactant.

included close to phase transitions can be found in [49]. The long-range solvation

force in the self-assembling systems is an important effect of boundary conditions and

will be further studied in the thesis.

1.4.2 Amphiphilic systems

Because of the promising future use of amphiphilic systems in the industry focused

on device miniaturization, the effects of confinement on those systems was inten-

sively investigated both experimentally [18, 50, 51] and theoretically [48, 52–56].

Since a review on known confinement effects on amphiphilic self-assembly could be

a topic of a separate monography (see Ref. 4-44 in [57]), here we will describe only

a few significant reports on amphiphilic self-assembly, with a special care taken on

the effects of confinement.

An extensive mean-field study of amphiphilic self-assembly was based on a model

introduced by Ciach, Høye and Stell [58]. The CHS model for oil-water-surfactant

solution studied in [48, 49, 58, 59] is a generic lattice model which predicts stability

of lamellar phases in the bulk and in the confined systems of e. g. slit geometry.

In [48] the authors focused on the role of two factors: the wall-liquid interactions

and the ratio between the slit width and the period of the lamellar phase. A possible

effect of incommensurability between the wall separation and the period of the bulk

structure for a short-period lamellar phase is presented in Fig. 1.9. The figure shows

how the stable morphology can change if the distance between the walls varies only

by one lattice constant. Such structures, characterized by domains with different

stripe orientation or by non straight stripes, are not stable in the bulk, thus their
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FIG. 1.10: Excess grand potentialΩex (Eg. 1.13) as a function of the wall separation
L for the CHS model [48]. Red triangles (green circles) correspond to the lamellar
phase with stripes perpendicular (parallel) to the slit wall. Panels present Ωex for
different wall hydrophilicity with: (a) neutral walls, (b) weakly hydrophilic walls,
and (c) strongly hydrophilic walls. The stable orientation for given L corresponds

to the lower value of Ωex(L).

stability is an effect of confinement. In addition, the authors noticed that the orien-

tation of the stripes in the slit depends on the period of the bulk phase. For longer

periods the stripes are parallel to the walls independently of the wall separation,

while for shorter periods the orientation of the stripes depends on hydrophilicity of

the confining walls. The authors conclude that the short period phases are stiff and

thus their response to the external stress is inelastic, while the swollen, long period

phases behave more elastically. Interestingly, for intermediate periods it is possible

that the orientation of the lamellar phase changes with the wall separation (Fig.

1.10).

In [60] the authors studied self-assembly of block copolymers in a nanopore con-

finement of a cylindrical shape. For that purpose they used simulated annealing

technique and a lattice model proposed in [61] and [62]. In the model it was as-

sumed that the block of the copolymer consists of 10 monomers, each of which can

occupy only one site of the cubic lattice. The authors assumed non-zero interactions

only between neighboring monomers of different kind, which were separated by 1
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FIG. 1.11: This figure is taken from [60] and it presents different morphologies of
self-assembled block copolymers for different ratio between the pore diameter to
bulk cylinder spacing. First row:the wall attracts majority blocks, middle row: the
walls attracts minority blocks, bottom row: neutral walls assumed. Copyright 2006

American Physical Society.

or
p

2 lattice units.

What was found is that, unlike for colloidal systems [36], the presence of confine-

ment may induce structural frustration which leads to stabilization of totally novel

structures (Fig. 1.11), not seen in the bulk. The authors claim that the formation of

new structures such as helices and stacked toroids is connected with the very small

ratio between the pore diameter and the bulk cylinder spacing. Probably for that rea-

son no new morphologies were reported in [36], where the bulk period of the stripe

phase and the stripe width were comparable. Thus, one can expect that a further

research on effects of confinement on colloidal systems with different characteristic

lengths of periodic structures can lead to determination of new stable morphologies

which are not stabilized in the bulk.

The study of the impact of the cylinder-shape confinement on diblock copolymers

was later carried out for asymmetric block copolymers [63, 64] and also reports

stability of new morphologies.

In [57] the authors reported a study of the impact of soft confinement on diblock

httt://rcin.org.pl



Chapter 1. Introduction 37

FIG. 1.12: This figure is taken from [57] and it presents different morpholo-
gies of self-assembled symmetric block copolymers for different solvent-copolymer
strength of intraction εAS . In the upper row only A domains of the copolymer are
shown, while in the lower row both domains are presented, with green color indi-

cating domain A and gray color domain B.

copolymers morphologies. Since in Chapter 3 we are also exploring effects of this

type of confinement, in what follows we are going to discuss this work in more detail.

Soft type of confinement, in contrast to hard confinement used in the aforemen-

tioned research, allows the system to change the shape of the confining geometry

upon internal forces or external environment. The typical example of such system is

a biological cell. In [57] the soft confinement is realized by the formation of polymer

droplets in a poor solvent environment. The authors report that the effective shape

of the confinement as well as the morphology of the internal self-assembling system

inside depend on two competing factors: the solvent-copolymer interactions and the

tendency of copolymers to aggregate into bulk structures. If the solvent is neutral

or weakly selective, than the systems prefers the bulk morphology of the copolymer,

while the strongly selective solvent favors spherical aggregates. In that case spheri-

cal or nearly spherical aggregates contain internal morphologies of lamellar, gyroid

or cylinder shapes. In Fig. 1.12 the dependence of the stable morphologies on the

solvent-copolymer interaction is presented in case of symmetric diblock copolymers,

which in the bulk self-assemble into lamellar structure.

1.4.3 Colloidal self-assembly

In the case of the SALR potential the impact of a slit-type confinement (a system

with two parallel walls) on thermodynamically stable patterns was studied in the

Canonical Ensemble by Monte Carlo simulations [36] and in the Grand Canonical

Ensemble by the density functional theory [39]. All of the authors reported quali-

tative differences between the properties of the self-assembling system in the bulk

and in the confinement.
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In Ref. [36] Imperio and Reatto studied microseparation of particles interacting via

the hard-core double Kac potential. They assumed that the particles form a mono-

layer confined by smooth parallel walls and focused their attention on the lamellar

phase. They have shown that in the case of neutral hard walls the internal energy

per particle as a function of the distance between the walls is non-monotonic and

exhibits a number of minima and maxima corresponding to different patterns (Fig.

1.13). They stressed that if the wall separation is too large to fit one stripe parallel

to the walls, the stripes align perpendicularly until the width is large enough for

two parallel stripes to fit. For larger separations the minima of the energy profile

correspond to stripes parallel to the walls, while the maxima to structures charac-

terized by stripes perpendicular to the walls in the middle of the slit and parallel

in the neighborhood of the walls. Note that such lamellar structure, with separate

stripes aligned perpendicularly, is not stable in the bulk, hence its stabilization is a

pure effect of confinement. Moreover, it was found that unlike in the bulk, in the

presence of neutral walls a switch from the cluster to the lamellar morphology with

increasing temperature is possible.

Similar effect characterized by switches between structures with different stripe ori-

entations upon change of the wall-wall distance was observed in the CHS model

(Figs. 1.10b and 1.9). Interestingly, also the curves of the internal energy of the

SALR system and the excess grand potential of the CHS model are similar.

In Ref.[39] Archer used the same form of the SALR interparticle potential as had

been used in [36], and also studied an impact of hard neutral walls. In order to

compare the results with those of Imperio and Reatto, the Grand Canonical DFT

calculations were made for fixed average density. The author focused on determin-

ing the sequences of stable structures for increasing distance between the walls at a

given temperature and fixed density. He confirmed that the change of the distance

can lead to the change of the stable-phase morphology, especially if the period of

the structure stable in the bulk and the width of the slit are incommensurate.

In [39] the comparison with the results obtained in [36] is concluded with a state-

ment that the DFT method “appears to be qualitatively reliable” and “seems to at

least be able to describe some of the sequences of structures that are observed in the

confined fluid”. More detailed study of the reliability of the DFT method is one of

the goals of the thesis and will be described in the next chapters.
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FIG. 1.13: This figure is taken from [36] and it presents potential energy per particle
as a function of wall separation for three densities (0.37 marked by triangles, 0.41
marked by red circles and 0.40 marked by black dots). The insets show snapshots of
different morphologies for the density 0.4. The neutral walls are vertically oriented.

Copyright 2007 American Physical Society.

1.5 Open questions, scope and plan of the thesis

The shapes of the effective interaction potentials in various self-assembling systems

can be very similar if the distance is measured in units of the diameter σ of the

system components (ions, membrane proteins or colloid particles). In such a case

similar patterns can be expected for the same volume fractions η of the particles

and for the same temperature measured in appropriate reduced units. Thanks to

the scaling, one can obtain information on pattern formation on different length

scales from a suitably designed generic model. In order to gain general knowledge

about the process of self-assembly under confinement we decided to use an approach

which has not been considered before in the context of self-assembling systems. We

introduced a generic lattice model which does not require a specific function to

model interactions, but only ratios of interaction energies and their ranges.

One of the main problems that a researcher have to face while studying the self-

assembly process is the extraordinarily complex free energy landscape. One way of

dealing with such an obstacle is the mean-field approximation used in [37–42]. The
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MF approximation allowed to determine the phase diagrams for systems which ex-

hibit pattern formation driven by the isotropic SALR competing interaction potential

(Figs. 1.5 and 1.7) and the amphiphilic interaction potential of block copolymers

(left panel of Fig. 1.3). The comparison of the MF phase diagram for block copoly-

mers with experimental results has shown that the MF approximation significantly

influenced the diagram. The question how the MF approximation influenced the re-

sults for the SALR potential remains open. How neglecting the density fluctuations

changed the phase diagram of the system? Were all the stable phases found? What

is more, if we cannot be sure of completeness of the diagram - can we draw con-

clusions about the effects of boundary conditions? In order to bypass such doubts

we have decided to develop a model which in one dimension can be solved

exactly and in two-dimensional space allows for a solid investigation by com-

puter simulation techniques. Thus, for the first time a complete phase diagram

for a system with particles interacting via the SALR potential can be obtained

and validity of the MF approximation can be verified.

Determination of the bulk properties of a self-assembling system is the first step re-

quired to draw conclusions about the effects of boundary conditions. After verifying

that the amphiphilic and SALR systems in the bulk share many features also at low

temperatures, we have decided to study the effects of confinement only for the SALR

self-assembly which at the moment are far less described. Since the boundary con-

ditions may be imposed in the variety of ways, we focused our attention on the role

of permeability and rigidity or elasticity of the confining walls.

Suppose that a cell membrane at given temperature confines a system with a given

density. Should the confined structure be the same for permeable and impervious

confinement ? From the point of view of statistical physics this question is associated

with the problem of statistical ensembles equivalence. If the system has impervious

rigid walls and its temperature is fixed, then the thermodynamically stable configu-

rations minimize the Helmholtz free energy. On the other hand, if the rigid walls are

permeable and the system is in an environment acting as a reservoir of particles, then

for a fixed temperature stable configurations minimize the grand thermodynamic

potential. These cases correspond to the system descriptions in the canonical and

in the grand canonical ensembles respectively. For simple fluids the two ensembles

are equivalent in the thermodynamic limit and if the values of the thermodynamic

parameters are relatively far from phase transitions. Close to the phase transition
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the equivalence breaks due to large fluctuations of the number of particles. It is of

interest to compare the ensembles in the case of complex liquids. The question

how the self-assembly is coupled with the fluctuation of the number of particles

is open. We compare the two ensembles in different thermodynamic conditions

in the core of a confined one-dimensional system, which does not exhibit phase

transitions.

Rigidity of the confinement plays an important role in the process of self-assembly.

If for an empty system the distance between the walls is incommensurate with the

characteristic lengths of the bulk structure, then depending on the confinement rigid-

ity different effects of confinement are possible. We will study these effects in the

case of rigid and elastic confinement with both permeable or impervious walls. In

the case of rigid walls we will focus on the defects introduced in the bulk structure

and on the shape of the equation of state, while for elastic walls a new phenomena

concerning thermally induced switches of the system size will be described.

Specific questions to be addressed

In the thesis, by a deep analysis of generic models for spontaneous pattern forma-

tion, we address the following questions:

1. What are the properties of the self-assembling systems in the bulk ?

• What is the bulk phase diagram of a system with particles interacting via

the SALR potential ?

• What is the impact of the mean-field approximation on the phase dia-

grams of the SALR self-assembling systems ?

• Which properties of colloidal and amphiphilic self-assembling systems are

common at low temperatures ?

2. What are the effects of boundary conditions on the self-assembly in the SALR

system ?

• What is the impact of the incommensurability between the system size

and the period of the bulk structure ?

• What is the impact of the rigidity and the permeability of the confinement

on mechanical, thermal and structural properties ?
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Research and thesis plan

The research presented in the thesis starts with a study of one-dimensional lat-

tice models for the SALR and the amphiphilic systems in the bulk (Sec. 2.1). Both

models are solved exactly. In addition, the investigation of the SALR system was

further extended by the comparison with the results obtained within the mean-field

approximation. Because of the similarities between the amphiphilic and SALR sys-

tems, which as it turned out occur not only at high-T (as was shown in Sec. 1.3),

but also at low temperatures, for further investigation in the two-dimensional bulk

we used only the SALR system (Sec. 2.2.1). The two-dimensional bulk model was

studied in mean-field and by computer Monte Carlo simulation techniques. After

an extensive investigation of colloidal self-assembly in the bulk, the effects of dif-

ferent types of confinement are studied in Chap. 3 and 4. Chapter 3 concerns the

one dimensional SALR model with permeable and impervious walls which can be

either rigid or elastic, Chap. 4 presents the effects of slit confinement in the two

dimensional SALR model with rigid boundary conditions. In Chap. 5 the thesis is

summarized.
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Self-assembly in the bulk

In this Chapter we present the results of our investigation of the self-assembly at a

nanoscale in the bulk, that is, when the system boundaries do not influence the

properties of the confined fluid. In Sec. 2.1, we introduce and carefully study

one-dimensional (1d) generic models for the colloidal (Sec. 2.1.1) and the am-

phiphilic (Sec.2.1.2) self-assembly. The results of both systems are compared in Sec.

2.1.3. We choose the model of the colloidal self-assembly for further studies in a

two-dimensional (2d) space (Sec. 2.2). The 2d colloidal self-assembly model in-

vestigation consists of derivation of: the ground state (Sec. 2.2.2), the MF phase

diagram (Sec. 2.2.3) and the phase diagram obtained via Monte Carlo (MC) simu-

lations (Sec. 2.2.4).

2.1 One-dimensional models

A great advantage of studying one-dimensional (1d) models is that often they can

be solved exactly. In this section two 1d generic models will be studied. We will

present and compare their ground states as well as the exact solutions for the equa-

tion of state, the average density, the correlation function. The investigation of the

model for the colloidal self-assembly will be further extended by comparison of the

43
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exact results with the phase diagrams obtained within the mean-field approximation

which were described in the authors Master Thesis [65].

2.1.1 Self-assembly of colloidal particles with competing inter-

action potential

We start the study of the one-dimensional self-assembly by considering the model

for particles interacting via competing interaction potential. The model, apart from

yielding general information on periodic ordering in the SALR-potential systems,

describes several physical systems that are interesting by their own. In the first

place it can represent charged particles in a presence of depletant at a three phase

coexistence line, or adsorbed at nanotubes or microtubules. Another example is a

linear backbone polymer with monomers containing sites binding particles or ions

that attract or repel each other when bound to first or third neighbors on the back-

bone, respectively. Our model can answer the question of spontaneous formation of

ordered periodic patterns on linear substrates.

2.1.1.1 Introduction of the SALR model

We consider an open system in equilibrium with a reservoir with temperature T and

chemical potential µp. The interaction h between the particles and the nanotubes,

microtubules or binding sites plays analogous role as the chemical potential, and

we introduce µ = µp + h. The particles can occupy lattice sites labeled by x taking

integer values, 1 ≤ x ≤ L, and we assume periodic boundary conditions (PBC), i.e.

L + 1 ≡ 1, 0 ≡ L. Each microstate is described by {ρ̂(x)} ≡ (ρ̂(1), ..., ρ̂(L)), where

the occupancy operator ρ̂(x) = 1 or ρ̂(x) = 0 when the site x is occupied or empty

respectively. The probability of the microstate {ρ̂(x)} is given by

p[{ρ̂(x)}] =
e−βH[{ρ̂(x)}]

Ξ
, (2.1)
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where Ξ is the normalization constant, and β ≡ (kB T )−1 with kB denoting the Boltz-

mann constant. We have introduced for convenience the thermodynamic Hamilto-

nian containing the energy and the chemical potential term,

H[{ρ̂}] =
1
2

L
∑

x=1

L
∑

x ′=1

ρ̂(x)V (x − x ′)ρ̂(x ′)−µ
L
∑

x=1

ρ̂(x), (2.2)

where the pair interaction potential V is of the SALR type, that is

V (∆x) =















−J1 for |∆x |= 1,

+J2 for |∆x |= 3,

0 otherwise.

(2.3)

That is, the particles attract each other with the energy J1, if they are nearest neigh-

bors and repel with the energy J2 if they are 3-rd neighbors (Fig. 2.1). The nearest-

neighbor attraction is the standard assumption in the lattice-gas models. In the case

of charged particles in electrolyte the assumed range of repulsion (∼ 2.5σ) should

be of order of the Debye screening length, 2.5σ ∼ λD. Since in various solvents with

weak ionic strength λD ∼ 1− 100nm, the model is suitable for charged molecules,

nanoparticles or globular proteins [66].

FIG. 2.1: Schematic presentation of the one-dimensional lattice model with periodic
boundary conditions.

The Hamiltonian (2.2) can be rewritten in terms of the “unoccupancy” operator

ν̂(x) = 1− ρ̂(x) (ν̂(x) = 1,0 for an empty and full site x respectively)

H[{ν̂}] =
1
2

L
∑

x=1

L
∑

x ′=1

ν̂(x)V (x − x ′)ν̂(x ′) + (µ− V0)
L
∑

x=1

ν̂(x) + L
�V0

2
−µ

�

(2.4)
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where V0 =
∑

x V (x) = 2(J2 − J1). Note that Eq.(2.2) in terms of ρ̂ and Eq.(2.4)

in terms of ν̂ have the same form for µ = V0/2. Moreover, the probability of the

microstate {ρ̂(x)} for µ= V0/2−∆µ is the same as the probability of the “negative”

of this microstate, {1−ρ̂(x)}, for µ= V0/2+∆µ. Because of the above particle-hole

symmetry the phase diagrams must be symmetric with respect to the symmetry axis

µ= J2 − J1.

We choose J1 as the energy unit and introduce dimensionless variables for any quan-

tity X with dimension of energy as X ∗ = X/J1, in particular

T ∗ = kB T/J1, J∗ = J2/J1, µ∗ = µ/J1. (2.5)

2.1.1.2 The ground state

The grand potential

Ω= −pL = −kB T lnΞ= U − TS −µN (2.6)

where p, U , S, N are pressure, internal energy, entropy and average number of par-

ticles respectively, reduces to the minimum of H[{ρ̂(x)}] for T = 0 and fixed L.

In the case of periodic phases the bulk properties must be determined for L = ln,

where l is the period of density oscillations and n is a positive integer. We consider

ω∗ = −p∗ = H∗[{ρ̂(x)}]/(ln) for two homogeneous phases, one with all sites empty

(gas) and the other one with all sites occupied (liquid) and for a periodic phase

where 3 occupied neighboring sites are followed by l−3 empty sites with l ≥ 6. For

these phases we have

ω∗ =















0 empty lattice (gas)

−2+3µ∗

l periodic phase, l ≥ 6

J∗ − 1−µ∗ full occupancy (liquid).

Two phases can coexist for thermodynamic states such thatω∗ in these phases takes

the same value. The (J∗,µ∗) phase diagram for T ∗ = 0 is shown in Fig.2.2.

Note that for µ∗ = −2/3 the ω∗ of the periodic phase is independent of l if l ≥ 6.

This is because when in the empty lattice 3 neighboring cells become occupied, the

associated change of H∗ is−2−3µ∗. Since the interaction range is 3, for µ∗ = −2/3 a

triple of occupied cells can be separated from another triple of occupied cells by l−3
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FIG. 2.2: Ground state of the considered model. The repulsion to attraction ratio J∗

and the chemical potential µ∗ are dimensionless (see (2.5)). The coexistence lines
are µ∗gas−cond = −1+ J∗, µ∗gas−per = −2/3 and µ∗cond−per = −4/3+ 2J∗. Schematic
illustration of the three phases is shown in the insets inside the region of stability

of each phase.

empty cells for any l ≥ 6. Such a state can be interpreted as a cluster fluid that can be

stable, however, only for a single value of the chemical potential, µ∗ = −2/3. When

2 + 3µ∗ > 0, the lowest value of ω∗ corresponds to l = 6, and the periodic phase

with period 6 is stable. The gas and periodic phases coexist for µ∗ = −2/3. Because

of this coexistence, arbitrary separation between the clusters, whose number is also

arbitrary (but smaller than L/6), can be interpreted as arbitrarily small droplets

(larger than 6 in the case of the periodic phase) of these phases. As a result, an

arbitrary number of interfaces can be formed. This is possible when the surface

tension between the gas and the periodic phases vanishes.

Similarly, creation of a triple of empty sites in the fully occupied lattice leads to the

change of H∗ which is ∆H∗ = −6J∗ + 4+ 3µ∗. At the coexistence between the fully

occupied lattice and the periodic phase 6J∗ − 4 − 3µ∗ = 0, hence the separation

between the three empty neighboring cells (bubbles) can be arbitrary (but ≥ 3).

Again, such a state can be interpreted as a fluid of bubbles, or as a coexistence

between the liquid and periodic phases in the case of vanishing surface tension. Note

the similarity between this property of our model and the very low surface tension

between water- or oil- rich phases and microemulsion. At T ∗ = 0 formation of the

microemulsion is associated with vanishing surface tension in the lattice model for

the water-oil-surfactant mixture[67].
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2.1.1.3 Mean-field approximation

Short background

In the self-consistent mean-field (MF) approximation the Hamiltonian (2.2) is ap-

proximated by

HM F[{ρ̂(x)}] =
∑

x

�

− (h(x) +µ)ρ̂(x) +
1
2

h(x)ρ̄(x)
�

(2.7)

where the mean-field acting on the site x is

h(x) = −
∑

x ′
V (x − x ′)ρ̄(x ′) (2.8)

and the MF average density satisfies the self-consistent equation

ρ̄(x) =
eβ(h(x)+µ)

1+ eβ(h(x)+µ)
. (2.9)

The grand statistical sum

ΞM F =
∏

x

�

e−
β
2 h(x)ρ̄(x)

�

1+ eβ(h(x)+µ)
��

(2.10)

together with (2.9) after some algebra leads to the grand potential of the form [68]

ΩM F =
L
∑

x1=1

L
∑

x2=1

1
2
ρ̄(x1)ρ̄(x2)V (x1 − x2) (2.11)

+
L
∑

x=1

fh(ρ̄(x))−µ
L
∑

x=1

ρ̄(x).

where in the lattice models

fh(ρ̄) = −kB Ts(ρ̄) = kB T
�

ρ̄ ln(ρ̄) + (1− ρ̄) ln(1− ρ̄)
�

. (2.12)

Local minima of (2.11) satisfy Eq.(2.9) (see Ref.[68]).

Eq.(2.9) can be solved by iterations for different initial conditions. Stability regions

of different phases and first-order transitions between them can be obtained by com-

paring ωM F = ΩM F/(ln) for different forms of ρ̄(x). In practice systems with the

size l and PBC represent one period of the phases with the period l, and we have
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FIG. 2.3: Ṽ ∗(k) given by (2.16). J∗ = 0.05,1/9, 0.5,1, 1.5 from the bottom to the
top line on the left.

considered 6≤ l ≤ 50.

Stability analysis

Boundary of stability of the disordered phase can be found by analyzing the second

derivative of βΩM F with respect to the density profile ρ̄(x). The disordered fluid is

stable as long as this derivative,

CM F(x , x ′) =
∂ 2βΩM F

∂ ρ̄(x)∂ ρ̄(x ′)
, (2.13)

is positive definite. The disordered phase is at the boundary of stability when the

smallest eigenvalue of (2.13) vanishes for ρ(x) = const. For interactions depending

only on x − x ′ the quadratic part of βΩM F (bilinear form) is diagonal in Fourier

representation, and the eigenvalues of C are given by

C̃M F(k) = β
∗Ṽ ∗(k) +

1
ρ̄(1− ρ̄)

, (2.14)

where

Ṽ ∗(k) =
∑

x

V ∗(x)eikx . (2.15)

In this model

Ṽ ∗(k) = −2 cos k+ 2J∗ cos3k. (2.16)

C̃M F(k) assumes the smallest value C̃M F(kb) for given T ∗ and µ∗ for k = kb corre-

sponding to the minimum of Ṽ (k). We obtain
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kb =

(

0 if J∗ < 1/9,

arccos
q

1+3J∗
12J∗ otherwise,

and

Ṽ ∗(kb) =







2(J∗ − 1) if J∗ < 1/9,

−2J∗
�

1+3J∗

3J∗

�3/2
otherwise.

The boundary of stability of the disordered phase obtained from C̃M F(kb) = 0,

T ∗
λ
= −Ṽ ∗(kb)ρ̄0(1− ρ̄0), (2.17)

represents the spinodal line of the gas-liquid separation when kb = 0 (J∗ < 1/9).

The MF boundary of stability of the disordered phase with respect to density waves

with finite wavelengths 2π/kb is termed λ-line in literature [37, 38, 69], to distin-

guish it from the spinodal line where the disordered phase is unstable with respect to

phase separation. In this model the MF instability with respect to periodic ordering

with the wavelength 2π/kb with kb > 0 occurs when J∗ > 1/9 (see Fig.2.3).

It is interesting to find the λ-line and the spinodal in the (µ∗, T ∗) phase space. From

the form of the chemical potential for ρ̄ = const, µ∗ = 2(J∗−1)ρ̄+T ∗ ln[ρ̄/(1−ρ̄)],

we obtain the boundary of stability of the homogeneous phase

µ∗ = (J∗ − 1)(1± q) + T ∗ ln

�

J∗

2T ∗

�1+ 3J∗

3J∗

�3/2
(1± q)2

�

(2.18)

where

q =

√

√

1+ 2
T ∗

J∗

� 3J∗

1+ 3J∗
)
�3/2

. (2.19)

The shapes of the spinodal and λ-lines for various J∗ are shown in Fig.2.4.

In the case of attraction dominated system (J∗ < 1/9), the two branches of the

spinodal line separate the region where ΩM F assumes two minima for two different

constant densities (low-T ∗ side of the lines) from the region with one minimum on

the high-T ∗ side of the lines. This is usual behavior associated with the gas-liquid

separation.

For 1/9< J∗ < 1 the branches of the line of instability intersect and form a loop for

high T ∗. The homogeneous phase is unstable for any density inside the loop. Note
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FIG. 2.4: Lines of instability (solid) of the homogeneous phase in the (µ∗, T ∗) vari-
ables for a range of J∗. Similar behavior was obtained in Ref.[70]. The coexistence

lines at T ∗ = 0 are shown as dashed lines.

that when the loop is present, then for decreasing T ∗ or increasing µ∗ there may ex-

ist a sequence of phases: disordered - periodic - disordered. Such a sequence agrees

with observations of the reentrant melting [71, 72]. For the repulsion-dominated

system (J∗ > 1) only the loop is present (Fig.2.4), and coexistence between homo-

geneous phases is not expected.

Our stability analysis is incomplete, because we did not study the boundary of sta-

bility of the periodic phase.

Mean-field phase diagrams

The continuous transitions between the disordered and ordered phases coincide

with the critical point or with the λ-line determined above for J∗ < 1/9 or J∗ > 1/9

respectively. The transitions become first order for T ∗ < T ∗tcp, where the tricritical

point (TCP) is calculated analytically in Appendix 6.2. The TCPs exist only for 1/9<

J∗ < 1. For J∗ = 1/9 the two TCP (one for ρ < 1/2, the other one for ρ > 1/2)

merge into the critical point at ρ = 1/2. For J∗ = 1 we obtain T ∗tcp = 0. The

locations of the first-order transition lines have been obtained by calculating the

grand potential (2.11) for the average densities that are self-consistent solutions of

Eq.(2.9). The method of determining the transition lines is shown schematically in

Fig.2.5.

We obtain four qualitatively different phase diagrams for J < 1/9, 1/9 < J < 1/3,

1/3 < J < 1 and J > 1. In the first case standard gas-liquid separation occurs. For
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FIG. 2.5: Illustration of the method used for obtaining the phase coexistence. In the
bottom panel the left, central and right line corresponds to the gas, periodic and

disordered liquid phases respectively.

1/9< J < 1/3 we find gas-liquid coexistence at low T ∗, next a triple point where the

two phases coexist with the periodic phase, and the first-order transition between the

periodic phase and the fluid becomes continuous at the tricritical points. This type of

phase diagram is shown in Fig.2.6 for J∗ = 1/4. Similar phase diagram was obtained

for very weak repulsion in Ref.[40], where only one-dimensional density oscillations

were assumed in the Landau-type and density-functional theories. Moreover, when

electrostatic repulsion is added to the Landau functional, similar phase diagram is

obtained [73].

For 1/3< J < 1 there is no coexistence between the gas and liquid phases. Instead,

the gas - periodic phase transition, followed by the periodic phase - liquid transition

occur for increasing chemical potential. The transitions are first order below and

continuous above (in temperature) the tricritical points. The phase diagram for

J∗ = 1/3 is shown in Fig.2.7. Similar phase behavior was obtained in Ref.[40] for

medium-strength repulsion.

Finally, for J∗ > 1 the tricritical points disappear and the transition between the

disordered and periodic phases is continuous. This seems to be inconsistent with

the presence of the first-order transition between the periodic and the fluid phases

at T ∗ = 0. This apparent inconsistency follows from the presence of two periodic

phases for J∗ > 1. One of them is the same as the phase stable at T ∗ = 0. It has
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FIG. 2.6: MF phase diagram for J∗ = 1/4 in variables (µ∗, T ∗) (a) and (ρ, T ∗)
(b). The symmetry axis in (a) is µ∗ = −3/4 and ρ = 1/2 in (b). Only half of the
phase diagram is shown because of the symmetry. Dash and solid lines represent
continuous and first-order transitions. The dotted line is the λ-line. The coexisting
phases in the two-phase regions in (b) are labeled by g for gas, d for dense fluid and
p1, p2 for the periodic phases with the smaller and the larger period respectively.
The density range of stability of the large-period phase is within the thickness of
the line. The periodic phases in (a) are stable inside the lense (p2) and inside the

loop (p1).

large amplitude of density oscillations and the period l = 6. The other phase appears

inside the loop of the λ-line, has a period 2π/kb and small amplitude of density os-

cillations. The two periodic phases coexist along the line which is a continuation of

the coexistence line between the large-amplitude periodic phase and the homoge-

neous fluid, above the temperature at which this transition and the low-T ∗ branch

of the λ-line intersect (see Figs. 2.4 and 2.8). The coexistence between the two

periodic phases terminates at a critical point, where the densities, amplitudes and

periods of the two phases become the same. The (µ∗, T ∗) and (ρ, T ∗) phase dia-

grams for J∗ = 3 are shown in Fig.2.8. The amplitudes of the two periodic phases

along their coexistence line and for T ∗ = 0.347 are shown in Fig.2.9 as functions of
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FIG. 2.7: MF phase diagram for J∗ = 1/3 in variables (µ∗, T ∗) (a) and (ρ, T ∗) (b).
The symmetry axis is µ∗ = −2/3 and ρ = 1/2 in (a) and (b) respectively. Only
half of the phase diagram is shown because of the symmetry. Dash and solid lines
represent continuous and first-order transitions between the disordered fluid and
the periodic phase. The dotted line is the λ-line. The periodic phase in (a) is stable

inside the loop (thick line). The two-phase regions in (b) are shaded.

T ∗ and µ∗ respectively. The density profiles in the two periodic phases for selected

thermodynamic states are shown in Fig.2.10. As far as we know, coexistence of two

ordered phases with the same symmetry but different degree of order has not been

reported yet.

2.1.1.4 Exact solution

Transfer matrix and exact expressions

Since the range of interactions is 3, we coarse-grain the lattice and introduce L/3

boxes consisting of three neighboring lattice sites, and labeled by integer 1 ≤ r ≤

L/3. The microstates in the r-th box are

Ŝ(r) = (ρ̂(3r − 2), ρ̂(3r − 1), ρ̂(3r)). (2.20)

There are 23 possible microstates in each box. We distinguish 4 states with the first

site occupied and the remaining sites either occupied or empty, and denote such
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FIG. 2.8: MF phase diagram for J∗ = 3 in variables (µ∗, T ∗) (a) and (ρ, T ∗) (b). The
symmetry axis is µ∗ = 2 and ρ = 1/2 in (a) and (b) respectively. Only half of the
phase diagram is shown because of the symmetry. Dash and solid lines represent
continuous and first-order transitions. The dotted line is the λ-line. The two-phase
regions in (b) are shaded with different shades for different phase equilibria. The
high-amplitude periodic phase coexists with gas (for µ∗ < 2 or ρ < 1/2) or liquid
(for µ∗ > 2 or ρ > 1/2) for T ∗ < T ∗T P , and with the low-amplitude periodic phase
for T ∗ > T ∗T P . The coexistence line between the two periodic phases (short solid
line above the dashed line in (a)) begins at T ∗ = T ∗T P and terminates at the critical
point with T ∗c ≈ 0.34713. Note that the point where the transition between the dis-
ordered and the periodic phases changes order is not the TCP. The disordered phase
coexists with one periodic phase for T ∗ < T ∗T P , and undergoes a continuous tran-
sition to the other periodic phase for T ∗ > T ∗T P , whereas at the TCP the transition

between the same phases changes order.
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FIG. 2.9: Amplitudes of the density profiles in the two periodic phases for J∗ = 3.
(a) as a function of temperature along the coexistence line (the lines meet at T ∗c ≈

0.34713) (b) as a function of µ∗ for T ∗c = 0.347.

states by Ŝ1(r) = (1, ρ̂(3r − 1), ρ̂(3r)). Likewise, we denote states with the second

site occupied by Ŝ2(r) = (ρ̂(3r − 2), 1, ρ̂(3r)), and with the third site occupied by

Ŝ3(r) = (ρ̂(3r − 2), ρ̂(3r − 1), 1).

The Hamiltonian of the system with the PBC can be written in the form

H∗[{ρ̂(x)}] =
L/3
∑

r=1

H∗t [Ŝ(r), Ŝ(r + 1)] (2.21)

where

H∗t [Ŝ(r), Ŝ(r + 1)] =
3r
∑

x=3r−2

�

− ρ̂(x)ρ̂(x + 1) + J∗ρ̂(x)ρ̂(x + 3)−µ∗ρ̂(x)
�

.(2.22)

We introduce a 8× 8 transfer matrix T with the matrix elements

T (Ŝ(r), Ŝ(r + 1))≡ e−β
∗H∗t [Ŝ(r),Ŝ(r+1)] =

8
∑

i=1

Pi(Ŝ(r))λi P
−1
i (Ŝ(r + 1)), (2.23)

where the eigenvalues of T are denoted by λi such that |λi| ≥ |λi+1|, the elements
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FIG. 2.10: Density profiles (a) in the coexisting high- and low-amplitude phases for
T ∗ = 0.3. The lines are shifted horizontally for clarity. (b) in the low-amplitude
phase close to the continuous transition to the fluid at T ∗ = 0.3 and (c) for T ∗ =
1.3 and µ∗ = 1. The quasi-periodic structure with a period incommensurate with
the lattice is obtained from a density profile with a large-period when 2π/kb is

noninteger. The lines connecting the results for integer x are to guide the eye.

(Ŝ, i) of the matrix P transforming T to its eigenbasis are denoted by Pi(Ŝ), and the

elements (i, Ŝ) of the matrix inverse to P by P−1
i (Ŝ). Note that T is not symmetric,

hence pairs of complex-conjugate eigenvalues may occur. However, because T is a

finite matrix with positive elements, from the Perron-Frobenius theorem it follows

that the largest (in absolute value) eigenvalue is non-degenerate [74].

The grand statistical sum in terms of the transfer matrix takes the form

Ξ= TrTL/3 =
8
∑

i=1

λ
L/3
i (2.24)

and for the grand potential we obtain

Ω∗/L = −p∗ = −T ∗
�

1
3

lnλ1 +
1
L

ln
�

1+
8
∑

i=2

�λi

λ1

�L/3�
�

'L→∞ −
T ∗

3
lnλ1. (2.25)
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In the case of PBC the average density is independent of the position, ρ = 〈ρ̂(1)〉.

From the definition of the average density and from Eqs. (2.23) and (2.24) we

obtain

〈ρ̂(1)〉=

∑

Ŝ1(1)

∑8
i=1λ

L/3
i P−1

i (Ŝ1(1))Pi(Ŝ1(1))
∑8

i=1λ
L/3
i

'L→∞

∑

Ŝ1(1)

P−1
1 (Ŝ1(1))P1(Ŝ1(1)).

(2.26)

Let us consider the correlation function G for the sites separated by a distance x =

3r + i, where r ≥ 0 and i = 0,1, 2. Because the interaction range is 3, and the

transfer matrix operates between triples of sites, we shall obtain different expression

for 〈ρ̂(1)ρ̂(1+ x)〉 for different i = 0,1, 2. We introduce the notation

G(3r + i) = 〈ρ̂(1)ρ̂(1+ 3r + i)〉 − 〈ρ̂(1)〉2. (2.27)

From the definition of 〈ρ̂(x)ρ̂(x ′)〉 and from Eqs. (2.23) and (2.26) we obtain the

asymptotic expression for L→∞

G(3r + i) =
8
∑

n=2

�λn

λ1

�r
A(n)1 B(n)1+i (2.28)

where i = 0, 1,2,

A(n)j =
∑

Ŝ j

Pn(Ŝ j)P
−1
1 (Ŝ j), (2.29)

B(n)j =
∑

Ŝ j

P−1
n (Ŝ j)P1(Ŝ j), (2.30)

and Ŝ j is defined below Eq.(2.20). The asymptotic decay of correlations for r � 1

is determined by the eigenvalue λ2 with the second largest absolute value.

If λ2 is real, then for r � 1 and i = 0,1, 2 we can write

G(3r + i) = (sgn(λ2))
r e−3r/ξA(2)1 B(2)1+i, (2.31)
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where the correlation length is

ξ= 3/ ln
� λ1

|λ2|

�

. (2.32)

Note the qualitatively different behavior for λ2 > 0 and λ2 < 0. For λ2 < 0 the cor-

relation function changes sign when the separation between the particles increases

by 3, in analogy with the density of the periodic phase in the ground state. The case

λ2 > 0 corresponds to decay of correlations in the gas or liquid phases where no

clusters consisting of three particles separated by 3 vacancies are formed.

If λ2 is complex, then λ3 = λ∗2, A(3)1 = A(2)∗1 and B(3)j = B(2)∗j . We introduce the

notation

λ2 = |λ2|eiλ, A(2)1 = |A
(2)
1 |e

iα1 , B(2)j = |B
(2)
j |e

iβ j , (2.33)

and for r � 1 and i = 0,1, 2 obtain the asymptotic expression

G(3r + i) =Aie
−3r/ξ cos

�

rλ+ θi

�

(2.34)

where Ai = 2|A(2)1 ||B
(2)
1+i| and θi = α1 + β1+i, i = 0,1, 2. Similar expression was

proposed in Ref.[75] for a 1d and in Ref.[76] for a 3d system. The structure factor

obtained in experiments and theory [7, 33–41, 66, 76, 77] is also consistent with

this form. In general, −π ≤ λ ≤ π, and 2π/λ is noninteger. Except from λ = ±π

(but in this case the imaginary part of λ2 vanishes), the period of the exponentially

damped oscillations is incommensurate with the lattice. This is similar to the results

of the MF stability analysis and to the incommensurate density profiles obtained in

MF for higher temperatures.

When λ= ±π∓ ε with ε� 1, then we can write Eq.(2.34) in the equivalent form

G(3r + i) = (−1)r e−3r/ξG(r, i), (2.35)

with

G(r, i) =Ai cos(6πr/w+φi), (2.36)
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where the phase and the period of the amplitude modulations are φi = −θisgn(λ)

and

w=
6π

|λ− sgn(λ)π|
. (2.37)

The first factor in (2.35) changes sign when the distance increases by 3. The last

factor describes the modulated amplitude with the wavelength of modulations w�

6 if λ→±π.

We have obtained λi and the matrix P numerically for different J∗,µ∗ and T ∗ and

the results are presented in the next section.

Exact results

There are no phase transitions in a thermodynamic sense in one-dimensional sys-

tems with short range interactions and at finite temperature [78]. However, instead

of a discontinuity, a rapid change of the density as a function of µ∗ or p∗ can occur.

Moreover, instead of long-range order and the associated periodic density, a short-

range order with exponentially damped oscillatory decay of correlations with very

large correlation length may exist. In order to verify if such pseudo phase transitions

occur in this model, we calculate density and pressure for several values of J∗ for

the range of µ∗ and T ∗ corresponding to the phase transitions obtained in MF. In the

next step we examine the correlation functions.

(A) Thermodynamic properties (Equation of state)

In Figs. 2.11-2.12 p(µ∗) and ρ(µ∗) obtained from Eqs.(2.25) and (2.26) are shown

for J∗ = 3 and J∗ = 1/4 for 0.05 < T ∗ < 1. By eliminating µ∗ from Eqs. (2.25)

and (2.26) we obtain the equation of state (EOS), and present several isotherms

ρ(p∗) in Figs.2.13 and 2.14. The chosen strengths of the repulsion to attraction

ratio correspond to qualitatively different ground state and MF phase diagrams (see

Figs.2.2, 2.6 and 2.8). Let us first discuss J∗ = 3. For low T ∗ one can observe that

although p∗(µ∗) is a smooth function, its slope changes rapidly for the two values

of µ∗ that correspond to the phase transitions at T ∗ = 0 and in MF. In accordance

with this behavior the density changes from nearly 0 to 1/2 in a very narrow range

of p∗ and µ∗, remains nearly constant for large intervals of p∗ and µ∗, and again

changes rapidly from ρ = 1/2 to ρ ≈ 1. Very large compressibility for ρ 6= 1/2

changes to very small compressibility for ρ ≈ 1/2. It is necessary to substantially
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FIG. 2.11: p(µ∗) obtained from Eq.(2.25) (a) J∗ = 3; top line: T ∗ = 0.1, bottom
line: T ∗ = 1 and (b) J∗ = 1/4; top line: T ∗ = 0.05, bottom line: T ∗ = 0.5.

FIG. 2.12: ρ(µ∗) obtained from Eq.(2.26) for J∗ = 3 and T ∗ = 0.1,0.4, 0.7,1 (top
to bottom line on the right) (a) and J∗ = 1/4 and T ∗ = 0.005, 0.05,0.1, 0.15 (top

to bottom line on the right) (b).
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FIG. 2.13: EOS ρ(p∗) isotherms obtained from Eqs.(2.25) and (2.26) for T ∗ =
0.1, 0.2,0.3, 0.4,0.5 and 1 (top to bottom line on the left) for J∗ = 3 (a) and J∗ =

1/4 (b).

FIG. 2.14: EOS ρ(p∗) isotherms obtained from Eqs.(2.25) and (2.26) for T ∗ = 0.1.
From the left to the right line J∗ = 0.1, 0.25,1/3,0.5, 0.75, ..., 2.75,3.

increase the pressure in order to induce a slight increase of the density from ρ =

1/2, and a slight further increase of pressure is sufficient for a rapid compression to

ρ ≈ 1. When T ∗ increases from T ∗ ≈ 0.1, the density changes from the gas density

to 1/2 more and more gradually. For T ∗ > 0.5 there are no abrupt changes of the

slopes of the ρ(p∗) and ρ(µ∗) lines, but the curvature of these lines is significantly

smaller than in the one-phase region of a simple fluid. This is because the repulsion

between the particles at the distance 3 leads to a significant increase of pressure for

random distribution of particles. On the other hand, small pressure for ρ < 1/2

when T ∗ is low signals that in majority of states clusters made of at most 3 particles

are separated by at least 3 empty sites. Similar behavior is observed for 1 < J∗ < 3
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(Fig.2.14), but the range of µ∗, p∗ and T ∗ for which ρ ≈ 1/2 and remains nearly

constant decreases with decreasing J∗. For J∗ < 1 the plateau at the ρ(µ∗) and ρ(p∗)

curves for ρ = 1/2 disappears.

For J∗ = 1/4 we can see in Fig. 2.11 b) a rapid change of the slope of the p∗(µ∗)

line and in Fig. 2.12 the corresponding change of density from ρ ≈ 0 to ρ ≈ 1

when T ∗ < 0.06. For T ∗ > 0.15 the shapes of p∗(µ∗),ρ(µ∗) and ρ(p∗) (Fig.2.13)

resemble the corresponding curves in the single-phase simple fluid. We thus see a

pseudo-transition between the gas and liquid phases for very low T ∗.

We conclude that the thermodynamic properties show no signature of the weakly-

ordered periodic phase previously found in MF (Fig.2.6). By comparing Figs.2.13

a) and b) one can see the much lower pressure in this case than for the repulsion-

dominated case of J∗ = 3.

(B) Structure (correlation function)

Our aim in this section is to discuss the exact results for the correlation function for

J∗ = 3 and J∗ = 1/4, corresponding to qualitatively different ground state (Fig.2.2)

and MF phase diagrams (Figs.2.8 and 2.6). We particularly address the question for

what parameters the periodic order occurs, and how the range and amplitude of the

correlation function depends on µ∗, T ∗ and J∗.

For J∗ = 3 we obtain complex λ2 for the considered region of (µ∗, T ∗). In this case

the correlation function is given in Eq.(2.34), and presented in Figs.2.15 and 2.16.

In Fig.2.15 µ∗ corresponds to ρ ≈ 1/2, where the periodic phase is predicted in MF,

and in Fig.2.16 µ∗ corresponds to ρ ≈ 0 (homogeneous gas in MF).

The correlation length ξ (Eq.(2.32)) and the amplitude of the correlation function

A0 (see below Eq.(2.34)) are shown in Figs.2.17 and 2.18 respectively. For µ ≤

−2/3 the wavenumber λ is shown in Fig.2.19 a), and for µ≥ −2/3 the period w of

modulations of the amplitude (see (2.35) and (2.36)) is shown in Fig.2.19 b).

From Fig.2.17 a) it follows that for µ∗ < −2/3 the correlation length ξ first increases

slightly for decreasing T ∗, but starting form T ∗ depending on µ∗ decreases rapidly to

0 for T ∗ decreasing to 0. Analogous behavior is predicted for µ∗ > 14/3 by the model

symmetry. For −2/3 < µ∗ < 14/3 (stability of the periodic phase for T ∗ = 0) the

correlation length increases for decreasing T ∗. For given T ∗ the correlation length

increases with increasing µ∗ when µ∗ < 2 and assumes a maximum for µ∗ = 2. The

maximum of ξ is very large for T ∗ < 0.15. For ξ ∼ 105 the range of the ’short-

range order‘ is in fact macroscopic. For particles with a diameter 10nm the periodic
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FIG. 2.15: The correlation function G(x) for x = 3k+ i with i = 0,1, 2 (Eq.(2.34))
for J∗ = 3, µ∗ = 0 and T ∗ = 0.1 (inside the MF stability region of the periodic
phase). Solid line and the circles (black), dashed line and the asterisks (red) and
dotted line and the squares (blue) correspond to i = 0,1, 2 respectively. The bottom

panel shows a small portion of the upper panel.

FIG. 2.16: The correlation function G(x) for x = 3k+ i with i = 0,1, 2 (Eq.(2.34))
for J∗ = 3, µ∗ = −0.7 and T ∗ = 0.1 (outside the MF stability region of the periodic
phase). Black (circle), red (asterisk) and blue (square) symbols correspond to i =

0,1, 2 respectively.
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FIG. 2.17: The correlation length ξ (Eq.(2.32)) for J∗ = 3 as a function of T ∗ (a)
outside the MF stability region of the periodic phase. From the top to the bottom line
µ∗ = −2/3,−0.7,−0.8,−0.9,−1 and (b) inside the MF stability region of the peri-
odic phase. From the bottom to the top line µ∗ = −0.65,−0.6,−0.55,−0.5,−0.45

and 2.

FIG. 2.18: The amplitude A0 of the correlation function (see Eq.(2.34) and below)
as a function of µ∗. Dash, solid and dotted lines correspond to T ∗ = 0.1,0.2, 0.3

respectively. J∗ = 3 (a) and J∗ = 1/4 (b).

arrangement persists to distances ∼ 1mm. The amplitude of the correlation func-

tion for T ∗ ≤ 0.1 increases sharply from a very small value for µ∗ < −1 to ∼ 0.2

for µ∗ > −0.7 (see Fig.2.18a). The period w of the modulations of the correlation

function (Eqs.(2.35)- (2.37)) increases for decreasing T ∗, indicating more and more

ordered structure (see Fig. 2.19b). All these results confirm a qualitative change of

the structure along the lines µ∗ = −2/3, 14/3 for low T ∗. For −2/3 < µ∗ < 14/3

quasi long-range order with the very large correlation length and the amplitude that
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FIG. 2.19: (a) the wavenumber λ of the correlation function (Eq.(2.34)). J∗ = 3
and µ∗ = −2/3,−0.7,−0.8,−0.9,−1 from the top to the bottom line (b) the pe-
riod w (Eqs.(2.35)-(2.37)) of the amplitude modulations. J∗ = 3 and µ∗ =

−0.65,−0.6,−0.55,−0.5,−0.45 from the bottom to the top line.

for low T ∗ rapidly decreases at the boundaries of this region exists. From Figs.2.17

and 2.18 we can see that the increasing correlation length and amplitude for in-

creasing T ∗ when −1< µ∗ < −2/3 indicates a change from a less to a more ordered

structure when T ∗ increases. The rapid increase of the amplitude as a function of

µ∗ for µ∗ ≈ −2/3 near T ∗ corresponding to the maximum of ξ resembles the transi-

tion between the periodic phases with weak and strong order found in MF (compare

Figs. 2.18a and 2.9b). When T ∗ further increases, the properties of the correlation

function change more gradually and the correlation length becomes short, in con-

sistency with the continuous transition between the ordered and disordered phases

found in MF for high T ∗. Despite the absence of the phase transition in the strict

sense, we can see a change from a quasi-ordered periodic structure to the structure

with much lower degree of order.

For J∗ = 1/4 we obtain λ2 that is a real number on the low-T ∗ side of a line

T ∗cross(µ
∗), and a complex number for T ∗ above this line. As a result, a monotonic

decay of correlations is found for T ∗ < T ∗cross(µ
∗), and an oscillatory decay sets in for

T ∗ > T ∗cross(µ
∗). The derivatives of the correlation length ξ and the wavenumber λ

with respect to T ∗ have a discontinuity when the imaginary part of λ2 appears (see

Fig.2.20). The amplitude of the correlation function (Fig.2.18b) increases from a

very small value for µ∗ < −1 to ∼ 0.3 for µ∗ = −0.75 for T ∗ = 0.1. For larger T ∗

the increase of the amplitude is more gradual. The correlation function shown in

Fig. 2.21 confirms that for low T ∗ the correlations decay monotonically, whereas

for higher T ∗ the oscillatory decay of correlations is present. The correlation length,
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FIG. 2.20: The wavenumber λ (a) and the correlation length ξ (Eq. (2.32)) (b)
of the correlation function (Eq.(2.34)) as a function of T ∗ for J∗ = 1/4. From
the bottom to the top line in (a) and from the top to the bottom line in (b) µ∗ =

−0.75,−0.75± 0.01,−0.75± 0.02, . . . ,−0.75± 0.07.

FIG. 2.21: The correlation function G(x) for x = 3k+ i with i = 0,1, 2 (Eq.(2.34))
for J∗ = 1/4 and µ∗ = −3/4 for T ∗ = 0.05 (a) and T ∗ = 0.2 (b). Black (circle), red

(asterisk) and blue (square) symbols correspond to i = 0,1, 2 respectively.
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however, is rather short, as shown in Fig.2.20. The monotonic decay of correlations

for low T ∗, and oscillatory decay of correlations at higher T ∗ together with a rather

rapid increase of the amplitude of the correlation function from a very small to a

rather large value for some range of µ∗ around µ∗ = −3/4 bear some similarity to

the MF phase diagram. However, due to the much shorter correlation length than

for J∗ = 3, we can conclude that the weak periodic order (small amplitude of density

oscillations) found in MF for relatively large T ∗ does not resemble an ordered phase

in 1d.

2.1.1.5 Monte Carlo simulations in the Canonical Ensemble

In the previous section we have shown that the disordered phase in systems with

competing interactions is characterized by the EOS and the correlation function that

for strong repulsion are completely different than in simple fluids. In this section

we would like to determine how the pretransitional ordering into clusters whose

positions can be correlated over very large distances is reflected in the measurable

thermal properties such as the constant-volume specific heat. Since analytical cal-

culations in the Canonical Ensemble are very difficult, we perform MC simulations.

The basic step in the sampling is made as follows: Given the current configuration

of the system one chooses at random with equal probability one of the occupied

positions, x (with ρ̂(x) = 1), and one of the empty positions x ′ (with ρ̂(x ′) = 0), the

trial configuration is then constructed by swapping the states between the positions

x and x ′. Considering the energies of the current and the trial configurations one

applies the Metropolis criterion [79] to decide whether the trial configuration is

accepted as the new configuration of the system or not. The energies of the system

in the Canonical Ensemble are given by the Canonical Hamiltonian U

U[{ρ̂}] =
1
2

L
∑

x=1

L
∑

x ′=1

ρ̂(x)V (x − x ′)ρ̂(x ′). (2.38)

The heat capacity per particle, cv = (∂ (U/N)/∂ T )N ,L , is computed using the fluc-

tuation formula:

cv =
1

NkB T 2

�

〈U2〉 − 〈U〉2
�

, (2.39)

where the angular brackets indicate averages in the Canonical Ensemble.
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FIG. 2.22: The specific heat per particle (in kB units) as a function of density
(dimensionless) for J∗ = 3. From the top to the bottom line on the left T ∗ =

0.25,0.5, 0.75,1 with L = 1200.

For J∗ = 3 the specific heat is shown in Fig.2.22. The results for J∗ = 0.25 are

shown in Fig. 2.23. For both values of J∗ we can observe the presence of a peak at

low density. On cooling the system the height of this peak increases, and the density

where it appears is shifted to lower values. This maximum in the heat capacity at

low temperature can be explained as an effect of the equilibrium between isolated

particles and clusters of several particles. Given the Hamiltonian of the model, these

clusters are likely to be triples in the case of J∗ = 3. At low temperature and low

density the loss of entropy due to the formation of clusters is compensated by the

energetic effect due to the attractive interaction between the nearest neighbors.

There are, however, significant differences between the heat capacities curves for

J∗ = 0.25 and J∗ = 3.0, especially for ρ ' 1/2. These differences are consistent with

the results for the EOS and the correlation function that indicate periodic ordering

of clusters only for strong enough repulsion. For J∗ = 3.0, at low temperature, we

can observe a basin around ρ = 1/2, and a narrow peak centered also at ρ = 1/2.

Focusing in the regionρ ≤ 1/2, the ground state configurations are formed by triples

of occupied positions. Each triple of occupied cells is separated at least by three

empty positions from another triple. Since the triple-triple interaction is repulsive

at short distances, the system does not show any trend to exhibit a pseudo phase

separation to form large regions of occupied and empty positions, and therefore the

small energy fluctuations lead to small values of the heat capacity. Notice, however

that for J∗ < 1/3 and low temperature the dominant attractive interactions lead to

a condensation of particles in large clusters of occupied cells. In this case neither

the basin at low T ∗ nor the peak near ρ = 1/2 is present.
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FIG. 2.23: The specific heat (in kB units) as a function of density (dimensionless)
for J∗ = 1/4. From the top to the bottom line on the left T ∗ = 0.1,0.25, 0.5,0.75, 1

with L = 840.

The peak of cv(ρ) atρ ' 1/2 for J∗ = 3 can be interpreted as a signature of a pseudo-

phase transition between an ordered (or quasi-ordered) phase (periodic phase with

l = 6 for ρ = 1/2) and a high temperature disordered phase. Notice that as one

approaches ρ = 1/2 the degeneracy of the ground state reduces sharply, then we

can describe this peak as produced by the competition between the ground state

(with very low entropy values when ρ → 1/2) and disordered states (with higher

values of energy and entropy). This ordered pseudo-phase lies between the fluid of

small droplets (ρ < 1/2, T → 0) and the fluid of bubbles (ρ > 1/2, T → 0). In spite

of the lack of real phase transitions for one-dimensional models with short range

interactions, the periodic pseudo phase with density ρ = 1/2 resembles to some

extent the low-density crystalline phases that appear in core-softened models [80].

2.1.1.6 Short summary & comparison of the exact and the mean-field results

We have developed a generic model for self-assembly of systems with isotropic com-

peting interactions. The 1d model was solved exactly and within the MF approxima-

tion for the whole range of the repulsion to attraction ratio J∗. We have found exact

solutions for the equation of state, average density and the correlation function. The

mean-field phase diagrams obtained in [65] were also discussed. In addition, MC

simulations for specific heat have been performed. The main results are:

• The ground state (T ∗ = 0) shows a sequence of phases: fluid (gas) - periodic

- fluid (liquid) for increasing µ∗ when J∗ > 1/3, while for weaker repulsion

only gas and liquid phases are stable (Fig. 2.2).

httt://rcin.org.pl



Chapter 2. Self-assembly in the bulk 71

• Ordering on mesoscopic length scale induces qualitative changes in the equa-

tion of state (EOS) in comparison to that of simple fluids (see Fig.2.13): very

large compressibility for the range of densities where the pseudo-phase tran-

sitions between the fluid and the periodic phase are expected, and extremely

small compressibility where quasi-periodically distributed clusters are formed.

• The correlation length of self-assembling particles may be several orders of

magnitude larger than the particle diameter (see Fig.2.17).

• The exact solution for the correlation function showed that counterintuitively

monotonic decay can change upon heating to oscillatory decay (Fig. 2.21).

• The pseudo-phase transition to the periodically distributed clusters is associ-

ated with a peak in the specific heat (Fig. 2.22).

• The range of µ for which the periodic phase is stable is broaden within the MF

approximation at T > 0, than predicted by the exact results at T = 0. (see e.

g. Fig. 2.6)

• The MF phase diagrams exhibit re-entrant melting, i. e. for increasing T at

constant µ∗ a sequence of phases: fluid-periodic-fluid appears. (Figs. 2.6, 2.7

and 2.8).

• The MF phase diagram for strong repulsion (Fig. 2.8) predicts coexistence

of two periodic phases with different amplitude of oscillations, while the MF

phase diagram for weak repulsion(Fig. 2.6) predicts coexistence of two peri-

odic phases with different periods of oscillations .

The aforementioned results will be discussed in more detail in Sec. 2.1.3, where the

comparison between the SALR and the amphiphilic systems is presented.

Utility of the MF approximation for 1d self-assembling systems

The mean-field approximation is a common tool used for investigation of complex

systems. However, in the case of self-assembling systems it is not known how it af-

fects the results. Since we were able to obtain the exact solution of the model, we can

comment on what is the connection between the exact results for the ground state,

equation of state and the correlation function and the mean-field phase diagram.

The exact result for the ground state (T ∗ = 0) shows stability of the periodic phase

for intermediate values of the chemical potential and for sufficiently strong interpar-

ticle repulsion. The MF solution is consistent with the exact results when T ∗ → 0,
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but for intermediate temperatures the MF phase diagram shows existence of the pe-

riodic phase for a range of µ∗ and J∗ that is broader than at T ∗ = 0. In particular,

the periodic phase appears in the MF phase diagrams for J∗ > 1/9, while at T ∗ = 0

only for J∗ > 1/3.

What is more, the MF phase diagram shows that for increasing temperature at con-

stant chemical potential a sequence of phases: fluid-periodic-fluid appears. The

found re-entrant melting, leads to counterintuitive conclusion, that upon the in-

crease of temperature more ordered structure is formed. This phenomenon, how-

ever, is not a pure artifact of the MF approximation. We have found that it is reflected

in the qualitative change of the correlation function properties. For the chemical po-

tential values that in the ground state correspond to the gas or liquid, we observe

that the correlation length assumes a maximum for some finite T ∗, indicating an in-

crease of order upon heating. Moreover, for such T ∗ the amplitude of the correlation

function changes from a very small value to a much larger value for a narrow range

of the chemical potential, and stays large for the range of the chemical potential

similar to the stability region of the periodic phase found in MF. Thus, the surpris-

ing MF result and the predicted MF phase diagram are related with some particular

features of the model exact solution.

We need to stress, however, that in one-dimensional systems at T > 0 no phase

transitions are present, thus the MF approximation should only be used if the exact

solution is out of reach. The validity of the MF approximation in 2d self-assembling

systems is discussed in Sec. 2.2.5.

2.1.2 Self-assembly of amphiphilic molecules

In Sec. 1.3 we have shown why colloidal and amphiphilic self-assembly in the bulk

are similar if one assumes weak ordering. These results, however, do not answer

the question of similarity at low temperature. In order to compare colloidal and

amphiphilic self-assembly at low temperatures, in this section we will introduce

and carefully study a one-dimensional generic model of amphiphiles in a polar sol-

vent. Determining the exact solution of the model will allow us to compare the

colloidal and amphiphilic self-assembly without the limitation for the temperature

range. Such comparison is presented in Sec. 2.1.3.
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This section is organized as follows: we introduce the model in Sec. 2.1.2.1, its

ground state (T=0) is presented in Sec. 2.1.2.2, while the analysis at T > 0 is

first carried out within the MF approximation in Sec. 2.1.2.3 and next the exact

results are derived and studied in Sec. 2.1.2.4. Conclusions from the investigation

on amphiphilic self-assembly in 1d are in Sec. 2.1.2.5.

2.1.2.1 Model Introduction

Amphiphilic molecules consist of a hydrophilic head and a hydrophobic tail, there-

fore the interactions between them depend on their relative orientations. In the

case of a two-component mixture of a polar solvent and amphiphilic molecules, for

example lipids, we assume that the solvent molecules attract the polar head, and

effectively repel the hydrophobic tail of the amphiphilic molecule. We neglect ori-

entational degrees of freedom of the solvent molecules. In a one-dimensional model

the continuum of different orientations of amphiphiles is reduced to just two orien-

tations (Fig.2.24). We assume that the molecules occupy lattice sites, and the lattice

constant a is of order of the length of the amphiphilic molecule in this model. If

the solvent molecules are much smaller than the amphiphilic molecules, we assume

that the site is occupied by a cluster of several solvent molecules.

We assume nearest-neighbor interactions. The absolute value of the energy of two

clusters of solvent molecules that occupy the nearest-neighbour sites, −b, is taken

as the energy unit. We assume that the interaction between the cluster of solvent

molecules and the amphiphilic molecule in the favorable (unfavorable) orientation

is −cb (+cb), and the interaction between two amphiphilic molecules in the favor-

able and unfavorable orientation is −g b and +g b respectively. The orientations

of two amphiphilic molecules are favorable when they are oriented either head-

to-head or tail-to-tail. The neighborhood of the polar head and the hydrophobic

tail is unfavorable. The energies of different pairs of occupied sites are shown in

Fig. 2.24. The model is similar to the lattice model of ternary oil-water-surfactant

mixtures introduced in Ref.[58] and to a continuous model of binary mixtures with

amphiphiles [68].
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FIG. 2.24: The interacting pairs of occupied sites in the 1d model. The open circle
represents the solvent molecule, and the light and dark semicircles represent the
head and the tail of the amphiphilic molecule respectively. The unit of the inscripted

energies is the absolute value of the solvent-solvent interaction energy.

Different values of the parameters b, c, g may correspond to different particular mix-

tures. We are interested in general aspects of the amphiphilic self-assembly, espe-

cially in similarities between ordering on the mesoscopic length scale in the am-

phiphilic and colloidal systems, and in origin of these similarities. For this reason

we shall not try to fit the model parameters to any particular mixture. A representa-

tive example of a system described by this model is a mixture of lipids and water. We

should stress that water is a complex liquid [81–84], and micro-heterogeneities are

present in aqueous solutions of polar molecules [85, 86]. However, on the meso-

scopic length scale of tens or hundreds of nanometers the ordering of the water

molecules plays a subdominant role.

FIG. 2.25: Presentation of the used notation: i = 1 corresponds to cluster of solvent
molecules, i = 2 corresponds to amphiphilic molecules with the head on the left,
while i = 3 corresponds to the amphiphilic molecules with the head on the right.

We introduce the microscopic densities ρ̂i(x) with i = 1,2, 3 denoting the cluster

of solvent molecules, and the amphiphile with the head on the left and on the right

respectively (Fig. 2.25). ρ̂i(x) = 1 when the site x is in the state i and ρ̂i(x) = 0

otherwise. Multiple occupancy of the lattice sites is excluded. We further restrict

our attention to the liquid phase and assume close-packing, i. e. for any site x

3
∑

i=1

ρ̂i(x) = 1. (2.40)

httt://rcin.org.pl



Chapter 2. Self-assembly in the bulk 75

The Hamiltonian of an open system, with the chemical-potential contribution in-

cluded, can be written in the form

H ′am[{ρ̂i}]/b =
1
2

L
∑

x=1

L
∑

x ′=1

ρ̂i(x)V
′

i j(x , x ′)ρ̂ j(x
′)−

L
∑

x=1

µρ̂1(x), (2.41)

where V ′i j(x , x ′) is the interaction potential between the i-th and j-th states at sites

x and x ′ respectively, and the Einstein summation convention1 for repeated indices

is used, L is the system size, µ = µ1 − µs, µ1 b is the chemical potential of the sol-

vent, and the chemical potential of amphiphiles, µs b = µ2 b = µ3 b, is independent

of orientations of the molecules. In order to mimic properties of the bulk we as-

sume periodic boundary conditions, L+1≡ 0. According to the above discussion of

interactions the interaction potential V′ is

V′(x , x + 1) =









−1 −c c

c g −g

−c −g g









(2.42)

and V ′i j(x , x − 1) = V ′ji(x , x + 1), V ′i j(x , x + k) = 0 for |k| > 1. In the liquid phase

we can neglect density fluctuations (Eq.(2.40)), hence ρ̂1(x) = 1 − ρ̂2(x) − ρ̂3(x)

and there are two independent densities. In a disordered phase 〈ρ̂i(x)〉 = ρi, and

ρ1 = 1−ρs with ρs = 2ρ2 = 2ρ3 denoting the average amphiphile concentration.

Thanks to the close packing assumption we can eliminate ρ̂1(x) in the energy con-

tribution, and the Hamiltonian takes the form (up to a state-independent constant)

Ham[{ρ̂i}]/b =
1
2

∑

x

∑

x ′
ρ̂i(x)Vi j(x , x ′)ρ̂ j(x

′)−
∑

x

µ̄1ρ̂1(x) (2.43)

where i, j = 2,3, µ̄1 = µ1 + 2−µs and

V(x , x + 1) =





−1+ g −1− g − 2c

−1− g + 2c −1+ g



 . (2.44)

Again, Vi j(x , x − 1) = Vji(x , x + 1) and Vi j(x , x + k) = 0 for |k|> 1.

1If expression contains repeated subscripted variables, then the subscripted variables are assumed
to be summed over.
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2.1.2.2 The ground state

At T = 0 the stable structure corresponds to the global minimum of the Hamiltonian.

The Hamiltonian in Eq.(2.43) for given interactions c and g takes the minimum for

the densities ρ̂i(x) that depend on µ̄. Apart from the water-rich and lipid-rich phases

we expect stability of the periodic phase where lipid bilayers are separated by water

layers. In the lipid-rich phase the lipids are oriented head-to-head and tail-to-tail

when g > 0. The values of Ham per lattice site, h= Ham/L, in these phases are

h/b =















−1− µ̄1 water

− l−1+µ̄1 l+2c+g(2n−1)
l+2n periodic

−g lipid.

(2.45)

In the periodic phase l water occupied sites are followed by 2n sites occupied by

properly oriented lipid molecules. The coexistence lines obtained by equating h/b

in these phases are

µ̄1 =















g − 1 water-lipid
2c+g−3

2 water-periodic

2(g − c) periodic-lipid.

(2.46)

The three phases coexist along the triple line g = 2c − 1 and µ̄1 = 2(c − 1).

Note that for the periodic phase we can write Eq.(2.45) in two equivalent forms,

h/b =

(

−(1+ µ̄1) +
2n(µ̄1+1−g)+1−2c+g

l+2n

−g + l(g−1+µ̄1)+g−2c+1
l+2n .

(2.47)

In the stability region of the periodic phase h/b in this phase is smaller than in the

other two phases, therefore the second terms in both expressions in (2.47) must

be negative. From the top line in (2.47) it follows that the lowest value of h/b is

assumed for l = 1, and from the bottom line it follows that n = 1 in the stable

structure. However, at the coexistence with the water phase the numerator in the

second term in the top line in (2.47) vanishes. Since the periodic phase must be more

stable than the pure lipid phase and therefore n= 1 (see the second line in (2.47)),

we obtain that at the water-periodic phase coexistence the separation l between

the lipid bilayers can be arbitrary. Thus, the ground state is strongly degenerated.
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Similar degeneracy occurs at the periodic-lipid phase coexistence. In this case l = 1

(the periodic phase is more stable than water). At the periodic-lipid coexistence the

nominator in the second term in the bottom line in (2.47) vanishes, therefore the

separation 2n between the water occupied sites is arbitrary.

The (c, g,µ) ground state is shown in Fig. 2.26. The water-amphiphile coexistence

occurs for small values of c. When g ≤ 2c − 1 the periodic structure of solvent-

separated bilayers may be present for some range of µ and the sequence of the

stable phases for increasing µ at fixed c and g is: amphiphiles-bilayers-solvent.

Note that the arbitrary separation between the bilayers can be interpreted as the

sponge or the disordered lamellar phase. On the other hand, the arbitrary separation

between the bilayers is possible only at the coexistence between the water and the

periodic phase, and can be interpreted as an arbitrary number of coexisting droplets

of the two phases, which in addition can have an arbitrary size. This in turn signals

vanishing surface tension between the periodic and the water phases. Precisely the

same properties, namely the coexisting droplets of the periodic and the lipid phases,

and the associated vanishing surface tension, are found at the coexistence between

the periodic and the lipid phases.

Thus, the ground state is strongly degenerate and the entropy per site does not

vanish, at these periodic-lipid phase coexistences.

Similar degeneracy of the ground state was found earlier for the lattice model of

microemulsion [67]. The very low surface tension at the coexistence between the

microemulsion and the water-rich phases was attributed to the amphiphilic nature

of lipid molecules.

2.1.2.3 Mean-field stability analysis

The grand thermodynamic potential in the MF approximation takes the form

βΩam
M F =

1
2

∑

x

∑

x ′
ρi(x)βVi j(x , x ′)ρ j(x

′)−µ∗
∑

x

ρ1(x) +
∑

x

3
∑

n=1

ρn(x) lnρn(x)

(2.48)

where the indices in the first term are i, j = 2, 3 and summation convention is used

for this term, ρ1(x) = 1 − ρ2(x) − ρ3(x), Vi j is defined in Eq.(2.44), µ∗ = βµ̄1,

and in thermal equilibrium the densities correspond to the minimum of Ωam
M F , i.e.

δΩam
M F/δρi(x) = 0 for i = 2, 3. The last term in (2.48) is the entropy contribution.
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FIG. 2.26: The ground state of the model in the variables (c, g, µ̄1) (panel (a))
and in the plane (c, µ̄1) for c = g (panel (b)). The surfaces in panel (a) represent
coexistence between the phases, while the black dashed line represents the triple
points where all the three phases coexist. The triple point for g = c is at (c, µ̄1) =
(1,0). On the (b) panel a schematic illustration of the three phases is shown in
the insets inside the region of stability of each phase. At the coexistence with the
solvent-rich phase the layers of solvent, l, can have an arbitrary length, and at the
coexistence with the amphiphile-rich phase the layers of amphiphilic molecules can
have the thickness 2n with arbitrary n. The dashed line corresponds to c = g = 2
for which the EOS, the correlation function and the specific heat are calculated in

the following sections.

In this section we shall determine the stability of the disordered phase with respect

to concentration waves with the wavenumber 0 ≤ k ≤ π. Macroscopic separation

of water- and lipid-rich phases corresponds to k = 0. In the crystalline lipid phase

the particles are oriented head-to-head and tail-to-tail. This phase corresponds to

the concentration wave with k = π, i.e. the period Φ is 2π/k = 2. There are two

sublattices in this phase. The sites of the first one are numbered with even x , and of

the second one with odd x . ρ2(x)− ρ̄2 > 0 for x belonging to one of the sublattices,

whereas ρ3(x)− ρ̄3 > 0 on the sites of the other sublattice, where 2ρ̄2 = 2ρ̄3 = ρ is
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the space-averaged density of lipids. For 0< k < π the fluctuating bilayers of lipids

oriented tail-to-tail are separated by layers of water. At the instability with respect

to the k-mode

det C̃(k) = 0, (2.49)

where

C̃i j(k) =
δ2βΩam

M F

δρ̃i(k)δρ̃ j(−k)
, (2.50)

for i, j = 2, 3 and ρ̃ j(k) =
∑

x ρ j(x)exp(ikx), with similar convention (tilde) for the

Fourier transforms of the remaining functions. From (2.48) and (2.44) we obtain

C̃i j(k) = β Ṽi j(k) + fi j, (2.51)

where

Ṽii(k) = 2β∗(g − 1) cos k, (2.52)

Ṽ23(k) = Ṽ32(k) = −2β∗
�

(1+ g) cos k+ 2ic sin k
�

, (2.53)

and

fi j =
� 2
ρ
+

1
1−ρ

�

δKr
i j +

� 1
1−ρ

�

(1−δKr
i j ). (2.54)

From (2.49) we obtain the explicit expression for the reduced temperature T ∗ at the

instability with respect to the density wave with the wavenumber k for given ρ

T ∗(ρ, k) = −ρ
�

P cos k∓
Æ

4c2(1−ρ)−Q cos2 k
�

, (2.55)

where

P(g,ρ) = g − 1+ρ, (2.56)

Q(c, g,ρ) = 4(1−ρ)(c2 − g)− P2(g,ρ). (2.57)

At the domain boundaries, i.e. for cos k = ±1 we obtain

T ∗(ρ, k) =

(

2ρ(1−ρ) for k = 0

2gρ for k = π.
(2.58)
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FIG. 2.27: The plane of the interaction parameters in units of the water-water in-
teraction (see (2.42)) with indicated regions corresponding to different types of or-
dering. Above the solid line the disordered phase can become unstable with respect
to oscillatory density with the period Φ = 2π/kb 6= 2 for some range of densities
ρmin < ρ < ρmax (formation of the amphiphilic bilayers). Above the dashed line
the instability with respect to periodic ordering occurs for 0< ρ < ρmax . Below the
dashed line the separation into water-rich and lipid phases occurs forρ < ρmin. The
dash-dotted line is the projection of the three-phase line at T = 0 on the (c, g) plane.
For the points marked by triangle (1, 0), square (2,1) and circle (c, g) = (0.7,0.25)
the MF instability lines T ∗(ρ, kb) and the period of density oscillations along the

line are presented at Figs. 2.28, 2.29 and 2.30 respectively.

For givenρ the boundary of stability of the disordered phase corresponds to T ∗(ρ, kb)

such that T ∗(ρ, k) assumes a maximum for k = kb. From the necessary condition

∂ T ∗(ρ, k)/∂ k = 0 we obtain

cos2 kb = R, R=
c2P2(g,ρ)

(c2 − g)Q(c, g,ρ)
. (2.59)

The corresponding temperature is

T ∗(ρ, kb) = 4cρ(1−ρ)
√

√ (c2 − g)
Q(c, g,ρ)

. (2.60)

The boundary of stability of the disordered phase for given density corresponds

to max(T ∗(ρ, 0), T ∗(ρ,π), T ∗(ρ, kb)). The instability with respect to kb 6= 0,π can

occur provided that 0≤ R≤ 1. The R (see Eq.(2.59)) is a positive number less than

1 for ρ ∈ (ρmin,ρmax), where the boundaries depend on the strengths c, g of the

interactions. For 1 > ρ > ρmax and for 0 < ρ < ρmin the instability with respect

to the kb mode does not occur. For 0 < ρ < ρmin the instability of the disordered

phase is given by T ∗(ρ, 0), and for 1 > ρ > ρmax by T ∗(ρ,π). The boundaries of
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FIG. 2.28: Panel (a): The T ∗(ρ, kb) (solid), T ∗(ρ, 0) (short-dash) lines of MF insta-
bility with respect to formation of the lamellar phase (Eq.(2.60)) and water-lipid
phase separation (Eq.(2.58)). The actual instability of the disordered phase is in-
dicated by the thick line. Panel (b): The period Φ of the density oscillations along
the line of instability T ∗(ρ, kb) as a function of the density of lipids. On both panels

(c, g) = (1,0).

the interval (ρmin,ρmax) are found to be

ρmin =

(

1− g2

2c2−g if c2 < g < 2c2

1− 2c2 + g if g < c2 or g > 2c2
(2.61)

and

ρmax =

(

1− 2c2 + g if c2 < g < 2c2

1− g2

2c2−g if g < c2 or g > 2c2.
(2.62)

We have found that T ∗(ρ, kb) > T ∗(ρ, 0), T ∗(ρ,π) for ρmin < ρ < ρmax and 0 <

kb < π when c2 > g and 2c2 > g + g2.

The density interval (ρmin,ρmax) with the above properties does not exist for g, c

located below the solid line in Fig. 2.27. For such parameters the instability is with

respect to water-lipid phase separation or with respect to ordering of lipids into a

stack of oppositely oriented bilayers.

Figs. 2.28(a), 2.29(a) and 2.30(a) show the lines of instability for the parameters

from different regions in Fig. 2.27, whereas Fig. 2.28(b), 2.29(b) and 2.30(b) show
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FIG. 2.29: Panel (a): The T ∗(ρ, kb) (solid), T ∗(ρ,π) (long-dashed) and T ∗(ρ, 0)
(short-dash) lines of MF instability with respect to formation of the lamellar phase
(Eq.(2.60)), crystallization of lipids, and water-lipid phase separation (Eq.(2.58))
respectively. The actual instability of the disordered phase is indicated by the thick
line. Panel (b): The period Φ of the density oscillations along the line of instability

T ∗(ρ, kb) as a function of the density of lipids. On both panels (c, g) = (2,1).

FIG. 2.30: Panel (a): The T ∗(ρ, kb) (solid), T ∗(ρ,π) (long-dashed) and T ∗(ρ, 0)
(short-dash) lines of MF instability with respect to formation of the lamellar phase
(Eq.(2.60)), crystallization of lipids, and water-lipid phase separation (Eq.(2.58))
respectively. The actual instability of the disordered phase is indicated by the thick
line. Panel (b): The period Φ of the density oscillations along the line of instability
T ∗(ρ, kb) as a function of the density of lipids. On both panels (c, g) = (0.7, 0.25).
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corresponding periods of density oscillations.

2.1.2.4 Exact solution

In this section we introduce the transfer matrix and develop exact expressions for

the grand thermodynamic potential, the average density of each component and for

the correlation function. In the first paragraph the expressions are derived, whereas

in further paragraphs the exact results are analyzed.

Exact expressions

The elements of the transfer matrix T are given by

Ti j ≡ exp
�

−β∗
�

Vi j −µδKr
i1

�	

, (2.63)

The partition function for a system with periodic boundary conditions is

Ξam =
∑

ρ̂(1)

. . .
∑

ρ̂(L)

L
∏

n=1

exp
�

−β∗
�

ρ̂T (n)Vρ̂(n+ 1)−µρ̂1(n)
�	

. (2.64)

where V is given by Eq. 2.42, ρ̂(x)T = (ρ̂1(x), ρ̂2(x), ρ̂3(x)) denotes the microscopic

state at the site x , and is transverse to the columnar vector ρ̂(x). At each lattice site

there can be one of the 3 microscopic states (1,0, 0), (0, 1,0), or (0, 0,1). In terms

of the transfer matrix Ξam takes the form

Ξam = TrTL = λL
1 +λ

L
2 +λ

L
3 , (2.65)

whereλi is the eigenvalue of the transfer matrix. If we denoteλ1 = max i∈{1,2,3}(|λi|),

the partition function for the system size L � 1 takes the even simpler asymptotic

form

Ξam ' λL
1 . (2.66)

In the thermodynamic limit the grand potential in b units, Ω∗am = Ωam/b, is given by

the exact formula

lim
L→∞

Ω∗am/L = −p∗ = −T ∗ lim
L→∞

lnΞam

L
= −T ∗ lnλ1, (2.67)

where p∗ is 1d pressure in b/a units.
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The average density of the i-th state is independent of x because of the translational

invariance, and is given by

〈ρ̂i(1)〉=
1
Ξam

∑

ρ̂(1)

. . .
∑

ρ̂(L)

L
∏

n=1

ρ̂i(1)exp
�

−β∗
�

ρ̂T (n)Vρ̂(n+ 1)−µρ̂1(n)
�	

. (2.68)

If we change the basis of T with a help of the invertible matrix P such that P−1TP is

diagonal, then the average density in thermodynamic limit is given by the following

expression:

〈ρ̂i〉= 〈ρ̂i(1)〉= lim
L→∞

1
Ξam

P−1
1i λ

L
1Pi1 = P−1

1i Pi1. (2.69)

The correlation function Gii(n) between two sites in the same state i separated by n

sites is given by

Gii(n) = 〈ρ̂i(1)ρ̂i(n+ 1)〉 − 〈ρ̂i(1)〉〈ρ̂i(n+ 1)〉, (2.70)

where

〈ρ̂i(1)ρ̂i(n+ 1)〉=
1
Ξam

Tn[ρ̂i(1), ρ̂i(n+ 1)]TL−n[ρ̂i(n+ 1)ρ̂i(1)]. (2.71)

We change the basis to the one in which T is diagonal, take the thermodynamic limit

and obtain the exact formula,

< ρ̂i(1)ρ̂i(n+ 1)> =
3
∑

k=1

�λk

λ1

�n
PikP

−1
kiPi1P−1

1i

= < ρ̂i >
2 +

3
∑

k=2

�λk

λ1

�n
A(k)i B(k)i , (2.72)

where

A(k)i = PikP
−1
1i , B(k)i = P−1

ki Pi1 (2.73)

From (2.70) and (2.72) we obtain the correlation function

Gii(n) =
3
∑

k=2

�λk

λ1

�n
A(k)i B(k)i . (2.74)

Eq. (2.74) can be further simplified for n � 1. In such a case we can neglect the

smallest components of the sum in Eq.(2.74). If the second largest (in absolute
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value) eigenvalue λ2 is a pure real number, then Gii(n) =
�

λ2
λ1

�n
A(2)i B(2)i , but if the λ2

has a non-zero imaginary part, then we have to take into account also the eigenvalue

λ3, complex conjugate to λ2. Let us introduce the notations

λ2 = Zλeλi A(2)1 = Zαeαi B(2)1 = Zγe
γi (2.75)

and

ξam =
�

ln
�λ1

Zλ

��−1
. (2.76)

In terms of these parameters the correlation function for large separations between

the particles in an infinite system takes the asymptotic form

G11(n)
n�1
' 2ZαZγe

−n/ξam cos
�

nλ+α+ γ
�

. (2.77)

Equation of state

We choose stronger interactions between the amphiphilic than between the sol-

vent molecules, c = g = 2. For such interaction parameters the periodic phase is

present on the ground state (GS) (see the dashed line in Fig. 2.26b). In Fig.2.31

we show the concentration ρs (average density of the amphiphile) as a function

of the reduced chemical potential difference µ. Note the rounded steps for µ ≈ 0

and µ ≈ 1.5. The steps occur for the values of µ corresponding to the GS phase

transitions between the periodic and the amphiphile-rich or solvent-rich phases re-

spectively. Between the steps the plateaus for the three densities, ρs = 1,2/3, 0

occur. For increasing T ∗ the ρs(µ) lines become smoother, but the inflection points

exist up to T ∗ ≈ 0.2.

In Eqs.(2.67) and (2.69) the pressure and the average density are expressed in terms

of T ∗ and the reduced chemical potential difference µ. By eliminating µ we can ob-

tain the dependence of the amphiphile density on p∗. We present ρs(p∗) in Fig.2.32.

Note that although there are no phase transitions in the strict sense in 1d, for low T ∗

there is a rapid change in ρs between ρs = 1 and ρs = 2/3 for a very small p∗ interval

near p∗ ≈ 2, almost constant amphiphile density between p∗ ≈ 2 and p∗ ≈ 2.5, and

again a rapid change of ρs between 2/3 and nearly 0 for p∗ ≈ 2.5. This behavior

suggests the pseudo-phase transitions between the amphiphile-rich and the periodic
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FIG. 2.31: Average density of the amphiphile, ρs = 1−ρ1 = ρ2+ρ3, for c = g = 2 at
T ∗ = 0.05, 0.15,0.3, 0.45 as a function of the reduced chemical potential difference

µ.

FIG. 2.32: Average density of the amphiphile as a function of pressure p∗, ρs =
1−ρ1 = ρ2+ρ3, for c = g = 2 at T ∗ = 0.05, 0.15,0.3,0.45. As the energy unit we
choose the interaction b between the two solvent molecules, and the length unit is
the lattice constant a. We assume that a is of order of the size of the amphiphilic

molecules. In the case of lipids a ∼ 2nm.

pseudo-phase with the density ρs ≈ 2/3 (see Fig.2.26b) and next between the pe-

riodic pseudo-phase and the solvent-rich pseudo-phase. For increasing temperature

the changes of the slope of the ρs(p∗) line for increasing p∗ become smaller. This

result should be contrasted with the pressure-concentration dependence shown in

Fig.2.33 for the interaction parameters such that the periodic phase is not stable at

the GS.

Correlation function

In the case of the periodic boundary conditions the system is translationally in-

variant, and the assembly into bilayers should be reflected in the shape of the cor-

relation function. When the bilayers are formed, then the correlation function for
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FIG. 2.33: Average density of the amphiphile, ρs = 1 − ρ1 = ρ2 + ρ3, for c = 1
g = 2 and T ∗ = 0.15,0.3, 0.45. As the energy unit we choose the interaction b
between the two solvent molecules, and the length unit is the lattice constant a.
We assume that a is of order of the size of the amphiphilic molecules. In the case

of lipids a ∼ 2nm.

the solvent, G11(x) should be negative for two subsequent values of x , where the

properly oriented amphiphilic molecules should appear with larger probability than

the solvent molecule. The exact results for G11(x), given in Eq.(2.74), are shown in

Fig.2.34 for µ = 1, i.e. for the GS stability of the periodic phase, for a few rather

high temperatures. We can see the oscillatory decay of correlations, with the period

3 as in the case of the concentration in the GS periodic phase. The decay length

decreases with increasing temperature. Only for short distances G11(x)< 0 for two

subsequent values of x , however.

In Figs.2.35 and 2.36 we show G11(x) for very low T ∗ and a few values of µ close to

the GS coexistence between the periodic and the solvent- or amphiphile-rich phases.

Very large correlation length, 3 orders of magnitude larger than the molecular size,

can be seen inside the GS stability of the periodic phase.

The correlation length ξam (see Eq. 2.76) and the period of the damped oscillatory

decay (see Eq. 2.77) are shown in Fig.2.37. We can see that ξam→ 0 beyond the GS

stability of the periodic phase, i.e. for µ < 0 and µ > 1.5. Moreover, for 0< µ < 1.5

the period of the damped oscillations is 2π/λ≈ 3.

Let us focus on the structure for the interaction parameters corresponding to the

absence of the periodically distributed bilayers in the GS. We choose c = 0.623 and

g = 0.25. The correlation length ξam and the period 2π/λ of the damped oscillatory

decay for c = 0.623 and g = 0.25, and different temperatures are shown in Fig.2.38.

For T ∗ ≤ 0.2 the eigenvalue λ2 is a pure real number for any value of the chemical
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FIG. 2.34: Correlation function between the solvent molecules at T ∗ =
0.15,0.3, 0.45 for g = c = 2 and µ= 1.
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FIG. 2.35: Correlation function between the solvent molecules at T ∗ = 0.005 for
g = c = 2 and µ = 1.46 (a), µ = 1.48 (b), µ = 1.5 (c), with µ = 1.5 being the
value of the chemical potential at the coexistence between the periodic and the

solvent-rich phases at the GS.

potential, and the correlation function decays monotonically. The change of the ξam

slope around µ= −0.39 at T ∗ = 0.2 indicates the point where λ2 changes sign. The

period of the oscillatory decay jumps from zero to infinity at this point. Both cases

correspond to the monotonic decay of correlations, but at this point (µ= −0.39 and

T ∗ = 0.2) an oscillatory decay for T ∗ > 0.2 and a range of µ around µ = −0.39

begins. This is because for T ∗ > 0.2 there are two discontinuities of the derivative

of ξam (e.g. at µ1 and µ2 for T ∗ = 0.3). Between the two points of discontinuity of

∂ ξam/∂ µ, theλ2 is a complex number, and hence for this interval ofµ the correlation

function has an oscillatory decay. Note that for c = 0.623, g = 0.25 the periodic
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FIG. 2.36: Correlation function between the solvent molecules at T ∗ = 0.005 for
g = c = 2 and µ = 0.04 (a), µ = 0.02 (b), µ = 0 (c), with µ = 0 being the value of
the chemical potential at the coexistence between the periodic and the amphiphile-

rich phases at the GS.

FIG. 2.37: The correlation length ξam and the period of the oscillatory decay of
correlations (Eqs.(2.76) and (2.77)) for g = c = 2 and T = 0.1. For µ = 0 and
µ= 1.5 the periodic phase coexists with the amphiphile and the solvent respectively

at T ∗ = 0.
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FIG. 2.38: The correlation length ξam and the period of the oscillatory decay of
correlations for c = 0.623, g = 0.25 at T ∗ = 0.2,0.3, 0.4,0.6. For µ = −0.75 the
amphiphile and the solvent coexist at T ∗ = 0. For T ∗ < 0.2 the monotonic decay of
correlations between the solvent molecules is obtained. At T ∗ = 0.2 the period of
the oscillatory decay jumps from zero to infinity for µ ≈ −0.39. For T ∗ > 0.2 the
correlation function for the solvent exhibits an oscillatory decay for some range of
µ. In the case of T ∗ = 0.3 the oscillatory decay occurs for µ1 < µ < µ2. Note the

logarithmic scale on the vertical axis.
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phase is not stable on the GS, and counterintuitively the oscillatory decay of G11(x)

occurs at higher T ∗. However, the correlation length is smaller than the period of

the damped oscillations.

Specific heat

In this section we consider the specific heat for a fixed concentration. Fixed con-

centration imposes a global constraint on the microstates, therefore exact analytical

calculations directly in the Canonical Ensemble are more difficult. To overcome this

difficulty, we first calculate the specific heat for fixed chemical potential and then

by using thermodynamic relations between the ensembles we compute the specific

heat for fixed concentration. For verification we perform Canonical Ensemble Monte

Carlo simulations.

The specific heat of a mixture with fixed number of all particles and fixed chemical

potential difference between the components, µ, is given by

cµ = −
T
L

�

∂ 2Ω∗am

∂ T 2

�

µ,V

, (2.78)

where the exact expression for Ω∗am is given in Eq. 2.67. We compute cv using the

following relations,

cv = cµ − T

�

∂ ρµ

∂ T

�2�∂ ρµ

∂ µ

�−1

(2.79)

and

ρµ (T,µ) = −
1
L

�

∂Ω∗am

∂ µ

�

T,V

. (2.80)

In order to verify the exact calculations based on the Grand Canonical Ensemble, we

performed MC simulations in the Canonical Ensemble with the sampling procedure

based on the Metropolis algorithm [35]. The sampling is made with two kinds of

MC steps: (i) the exchange of lipid and water molecules positions (ii) the change of

lipid molecule orientation. The specific heat per lattice site is computed using the

fluctuation formula:

cv =
1

LkB T 2

�

〈U2
am〉 − 〈Uam〉2

�

, (2.81)
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FIG. 2.39: The specific heat for fixed concentrationρs as a function ofρs for c = g =
2 and different temperatures. Top: per unit volume (cv). Bottom: per amphiphilic
molecule (cv/ρs). Symbols denote the results of the Monte Carlo simulations for
L = 4800, and lines represent the analytical results in thermodynamic limit (Eqs.

(2.78)- (2.61) and (2.67)).

where 〈·〉 is the average over the microstates in the Canonical Ensemble and Uam is

the Canonical Hamiltonian

Uam[{ρ̂i}]/b =
1
2

L
∑

x=1

L
∑

x ′=1

ρ̂i(x)Vi j(x , x ′)ρ̂ j(x
′), (2.82)

where the Einstein summation convention for repeated indices is used. The sim-

ulations were performed for L ≤ 4800. We verified that the finite size effects are

negligible for L = 4800 (see Fig.2.39a).

The results of the specific heat calculations are presented in Fig.2.39. The specific

heat assumes a maximum for the density or concentration corresponding to the GS

periodic phase. In addition, the specific heat per amphiphilic molecule increases for

decreasing number of amphiphilic molecules. This behavior is associated with the

equilibrium between the bilayers (or micelles) and isolated amphiphiles.
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FIG. 2.40: The specific heat for fixed concentration ρs as a function of temperature
for c = g = 2.

From Figs.2.40 and 2.41 it follows that the dependence of cv on T for fixed ρs is

nontrivial, and differs qualitatively from cv(T ) in the lattice gas or Ising model. In

the latter models a single maximum of cv(T ) occurs, whereas in this model two

maxima separated by a minimum are present. The simulation snapshots indicate

formation of solvent-separated bilayers at low T ∗ for ρs ≤ 1/3. Between the two

maxima of cv(T ) the amphiphiles, oriented head-to-head or tail-to-tail, form larger

domains separated by domains of solvent. At the second maximum random positions

and orientations of the amphiphiles appear. The two maxima of cv(T ) are present

even for c, g such that only the pure solvent and pure amphiphiles are present at the

GS. In such a case phase-separated solvent and amphiphiles, or random positions

and orientations are present for low T ∗ or for high T ∗ respectively, whereas between

the two maxima of cv(T ) domains of solvent and properly oriented amphiphiles are

formed.

2.1.2.5 Summary

We have developed a simple lattice model for water-lipid mixtures. The ground-state

and the MF stability analysis as well as the exact results show that the model predicts

the key properties of aqueous solutions of amphiphilic molecules. It also helps to

understand the relation between the low surface tension and the degeneracy of the

ground state. The main results are:

• The ground state (T ∗ = 0) shows a sequence of phases: lipid - periodic -

water for increasing µ∗ when the attraction between the water and properly
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FIG. 2.41: The specific heat for fixed concentration ρs as a function of ρs for c = 1
and g = 2 and different temperatures. Top: per unit volume (cv). Bottom: per am-
phiphilic molecule (cv/ρs). Lines represent the analytical results in thermodynamic

limit (Eqs. (2.78)- (2.61) and (2.67)).

oriented amphiphilic molecules is sufficiently strong, otherwise only lipid and

water phases are stable (Fig. 2.26).

• System consisting only of amphiphiles self-assemble into a lamellar structure

with periodic order.

• The equation of state exhibits significant slope changes for thermodynamic

parameters values close to phase transitions at T = 0.

• At T > 0 the correlation function for µ corresponding to the GS stability of the

periodic phase oscillates, what indicates stability of alternating layers of the

solvent and the properly oriented amphiphiles.

• The correlation length at low T and µ corresponding to GS stability of the

periodic phase is several orders of magnitude larger than the molecular size.

• The pseudo-phase transition to the periodic phase is associated with a peak in

the specific heat.
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2.1.3 Comparison of the SALR and the amphiphilic self-assembly

The colloidal system with the SALR competing interaction potential and the sys-

tem of amphiphiles, despite qualitatively different potentials share many properties,

with the topology of the high-T phase diagram among them (see Sec. 1.3). In what

follows, we discuss the common structural, mechanical and thermal features of the

SALR and amphiphilic systems at low-T , based on the results obtained in Sec. 2.1.1

and 2.1.2.

The ground states of the model for colloidal (Fig. 2.2) and amphiphilic (Fig. 2.26)

self-assembly show strong similarities. The phases with oscillatory density or con-

centration occur when the repulsion in the case of colloids or attraction between

the water and properly oriented amphiphilic molecules are strong. When the above

interactions are weak, only two phases are present in the ground state - the gas and

liquid in the SALR case and the water- and amphiphile rich phases in the amphiphilic

system. This behavior agrees with the reentrant melting observed experimentally in

several systems [71, 72]. In both models the surface tension between the water and

the periodic phase vanishes for T = 0, and the ground state is strongly degenerated.

Arbitrary number of arbitrarily small droplets of the coexisting phases can be present

at the phase coexistence. This degeneracy of the ground state means that the macro-

scopic separation of the two phases at T = 0 is not possible, since the formation of

an interface does not lead to any increase of the grand potential. At the same time,

because of the microscopic size of the droplets, one can interpret the degenerated

ground state as a disordered phase. The region of the ground state corresponding to

the stability of this phase is of zero measure, however, in contrast to the remaining,

ordinary phases. The properties of this phase resemble the sponge phase in the am-

phiphilic model or a cluster fluid in the case of the model of colloids. Note that the

inhomogeneous density, leading to the formation of the clusters, micelles or bilayers

results from competing tendencies in the interactions, and not exclusively from the

amphiphilic nature of the molecules.

The exact results for the models of amphiphilic and colloidal self-assembly show that

the low surface tension is a more general property of systems with competing interac-

tions, and is not limited to amphiphilic molecules. This confirms the observation of
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universality of the periodic ordering on the mesoscopic length scale that was derived

under the assumption of weak ordering (see Sec. 1.3).

Moreover, we have found strong similarity between the equations of state, that is

the pressure-density isotherm in the colloidal system (Fig. 2.13) and the pressure-

concentration isotherm in the model of the amphiphilic mixture (Fig. 2.32). The

characteristic feature of these lines is the plateau in the density or concentration as

a function of pressure, which does not occur in simple fluids. Similar shapes have

also the density - chemical potential and the concentration - chemical potential lines

(Figs. 2.12 and 2.31 respectively). The plateau occurs when the density or concen-

tration takes the value corresponding to the periodic distribution of the clusters or

the bilayers, and indicates extremely low system compressibility. For the correspond-

ing range of the chemical potential and the temperature the correlation functions

in both models exhibit exponentially damped oscillatory decay with a very large cor-

relation length. The plateau is limited by regions with high slopes, which indicate

high system compressibility.

A surprising phenomenon of ordering upon heating associated with the properties

of the correlation function was reported in both models. We have found that if the

repulsion between the colloids or the interactions between water and amphiphiles

are relatively weak, then the correlation function can cross over from a monotonic

decay at low T ∗ to an oscillatory decay for higher T ∗. The unusual appearance of

the periodic short-range order at intermediate temperatures that for weak repulsion

is neither energetically nor entropically favored is a surprising and interesting exact

result. It means that for competing interactions the inhomogeneities may appear

as a compromise between the macroscopic phase separation that is energetically fa-

vorable but entropically unfavorable, and the disordered structure that is favorable

entropically and unfavorable energetically.

The thermal properties of the models are also similar, but in order to compare them

we should note that in the case of the colloidal self-assembly the specific heat was

calculated per colloid particle, and the solvent was disregarded. The specific heat

per unit volume calculated for the model of the amphiphilic mixture is a different

quantity, therefore in Fig.2.39b we present cv/ρs representing the specific heat per
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amphiphilic molecule. Note that for the model of amphiphilic self-assembly the

specific heat of the pure solvent (i.e. for ρs = 0) vanishes, since the energy does not

fluctuate when all the sites are occupied by the solvent. In this respect the solvent

is analogous to the disregarded solvent in the SALR model. Thus, to compare the

thermal effects of the amphiphilic and the colloidal self-assembly, we shall compare

cv/ρs and the specific heat per colloid particle.

Let us first discuss the specific heat for such values of the interaction parameters

that three phases are present on the GS. In the amphiphilic model at T = 0 for

c = g = 2 the stable phases are: the solvent-rich for ρs = 0, the periodic array

of bilayers for ρs = 2/3 and the amphiphile-rich for ρs = 1. The formation of the

periodic phase at T ∗ > 0 is indicated by the cv/ρs peak for ρs = 2/3 that becomes

narrower for decreasing temperature (Fig.2.39a). In Fig. 2.39b an increase of cv/ρs

for ρs → 0 can be observed for the range of ρs that increases with increasing T ∗.

This behaviour may be associated with an equilibrium between bilayers and isolated

amphiphilic molecules. In the SALR system the qualitative behavior of the specific

heat is similar. For sufficiently strong repulsion (J∗ > 1/3) three phases are stable

in the ground state: the gas (ρ = 0), the periodic (ρ = 1/2), and the liquid phase

(ρ = 1). The peak for the density corresponding to the stability of the periodic

phase (ρ ≈ 1/2) that becomes narrower for decreasing temperature, and another

maximum for a very small density are both present (Fig. 2.22). Analogously as

in the model for amphiphilic self-assembly the presence of the maximum for small

densities can be explained as an effect of the equilibrium between isolated particles

and clusters of several particles. Given the Hamiltonian of the model, these clusters

are likely to be triples in the case of J∗ = 3. At low temperature and low density

the loss of entropy due to the formation of clusters is compensated by the energetic

effect due to the attractive interaction between the nearest neighbors.

Let us focus now on the specific heat for such values of the interaction parameters

that only two phases are present on the GS. In the case of the model for amphiphilic

self-assembly for c = 1, g = 2 only the solvent-rich and the amphiphile-rich phases

are stable, while in the case of model of colloids for J∗ < 1/3 the only two stable

phases at the GS are the gas and the liquid. For both models the absence of the

periodic phase in the GS leads to a lack of the peak in the specific heat for the den-

sities corresponding to the periodic phases (i. e. ρs = 2/3 and ρ = 1/2). However,

still an increase of the specific heat for decreasing ρs and ρ can be observed (Figs.
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2.23 and 2.41). The above signals that precursors of the ordered phase (present for

T ∗ = 0) have a strong effect on the thermal system properties.

In both models the specific heat as a function of temperature has two maxima for

the densities corresponding to the ground state periodic phases (Fig. 2.40). The

maxima at lower temperatures are associated with the phase transitions which oc-

cur at T ∗ = 0, whereas the higher-T maxima correspond to structural changes of the

system which are not coupled with a phase transition.

We conclude that measurements of the specific heat in self-assembling systems can give

information on the formation and properties of clusters or bilayers for very small densi-

ties, and on formation of phases (or pseudo-phases) with periodically ordered structures

for higher densities. While in the latter case thermal properties are consistent with the

EOS and the correlation function, for very small densities they provide additional

information on the equilibrium between isolated particles and clusters or bi-

layers.

The stability analysis shows that the main difference between the self-assembly in

the amphiphilic and colloidal systems concerns the periodic ordering of the pure

amphiphiles into the lamellar structure that is absent in the colloidal systems. Be-

cause of this crystal-like order of amphiphiles, the characteristic shape of the line

of instability, similar to the spinodal line of the phase separation, is only found for

g = 0, where the amphiphiles do not order in the absence of water. For g > 0 the

shape of the line of instability in this model is similar to the corresponding line in

the SALR system only for low volume fraction of amphiphiles.

To conclude, the exact results in the model for amphiphilic systems and in the lattice

model for the SALR systems demonstrate close similarity between different types of

self-assembly.
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2.2 Two-dimensional model

In the previous section we have shown that the colloidal and the amphiphilic self-

assembling systems have similar equations of state, structural and thermal proper-

ties, as well as the same topology of the ground state. For this reason, from the two

generic models studied in 1d, for further studies we choose only one model - the one

which was by now much less investigated that is the model of colloidal self-assembly.

In this section we introduce a model of the colloidal self-assembly at an interface

between two phases, that is in two-dimensional space (Sec. 2.2.1). The model was

developed in order to mimic colloidal self-assembly, however it can be also related

with self-assembly of particles on a solid substrate that has hexagonal topology, or

self-assembly of proteins on a lipid membrane. We derive the ground state of the

model (Sec. 2.2.2) and present the results for the phase diagram within approximate

theories (2.2.3), and Monte Carlo simulation (Sec. 2.2.4).

2.2.1 Introduction of the SALR model on a triangular lattice

We consider a system in equilibrium with a bulk reservoir with temperature T and

chemical potential µp. The interaction h of the particles with the binding sites on

a solid substrate, or with the lipids in the membrane plays analogous role as the

chemical potential, and we introduce µ = µp + h. This time we assume that the

particles can occupy sites of a triangular lattice. We assume that the lattice constant

is comparable with the diameter of the adsorbed particles σ. This way we allow

for close packing of the particles. Because of this property the triangular lattice can

yield more realistic results than the square lattice. In the case of adsorption on a solid

substrate the model is appropriate for a triangular lattice of adsorption centers. The

lattice sites are x = x1e1 + x2e2, where e1, e2 and e3 = e2 − e1 are the unit lattice

vectors on the triangular lattice, i.e. |e1| = |e2| = |e1 − e2| = 1 (in σ-units), and x i

are positive integers. We assume 1≤ x i ≤ L, where L is the size of the lattice in the

directions e1 and e2. We also assume periodic boundary conditions.

In order to mimic the SALR interactions and to stay consistent with assumptions

made in the 1d case, we assume that the nearest-neighbors attract each other, then

the interaction changes sign for the next-nearest neighbors, becomes repulsive for

the third neighbors, and vanishes for larger separations (see Fig.2.42).

httt://rcin.org.pl



Chapter 2. Self-assembly in the bulk 100

1
1 1

1
112
2

2

2
2

2
3

3 3

3

33

FIG. 2.42: The interactions in the lattice model. The occupied central site (black)
attracts each one of the occupied nearest-neighbor sites labelled 1 (yellow) and
repels each one of the occupied third-neighbor sites labelled 3 (red). The interac-
tions between the central site and the remaining sites vanishes. The strength of the

attraction is J1 and the strength of the repulsion is J2.

The Hamiltonian and the interaction potential have analogous forms as those de-

fined in Sec. 2.1.1.1, but this time the distance is measured in a two-dimensional

space, hence the Hamiltonian is

H =
1
2

∑

x

∑

x′
ρ̂(x)V (x− x′)ρ̂(x′)−

∑

x

µρ̂(x), (2.83)

where ρ̂(x) = 1 (0) when the site x is (is not) occupied, and the interaction energy

between the occupied sites x and x+∆x is given by

V (∆x) =















−J1 for |∆x|= 1,

+J2 for |∆x|= 2,

0 otherwise,

(2.84)

where−J1 and J2 represent the attraction well and the repulsion barrier respectively.

The grand potential is expressed in terms of the grand statistical sum

Ξ=
∑

{ρ̂(x)}

exp(−βH[{ρ̂(x)}]) (2.85)

in the standard way

Ω= −kB T lnΞ= −pa0 L2, (2.86)

where a0 = σ2
p

3/2 is the area per lattice site, L2 is the number of sites and p is 2d

pressure.
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Because the probability of the state {ρ̂(x)} for µ = Ṽ (0)/2−∆µ is the same as the

probability of the state {1− ρ̂(x)} for µ= Ṽ (0)/2+∆µ (see Sec. 2.1.1.1), where

Ṽ (0) =
∑

x

V (x) = 6(J2 − J1), (2.87)

we expect symmetry of the phase diagram with respect to the symmetry axis µ =

Ṽ (0)/2= 3(J2 − J1).

As previoulsy, we choose J1 as the energy unit, and use the notation X ∗ = X/J1 for

any quantity X with dimension of energy.

2.2.2 The ground state

The ground state of the lattice gas (Ising) class of models on a triangular lattice

is of interest since the middle of the previous century, because in the case of a re-

pulsion between the nearest neighbors it violates the Nernst’s theorem (non-zero

entropy at zero temperature limit) [87–93]. All the ground state configurations

for the lattice gas models on the triangular lattice with interactions up to the third

nearest-neighbors were determined by Kaburagi and Kanamori [89, 91], but only

for vanishing external field and for a few fixed values of the particle density. The

ground state of the lattice gas model in a presence of the external field was found

in Ref.[90], but only interactions between the first and the second neighbors were

taken into account. The GS for various interactions on the triangular lattice were

studied in detail by Dublenych [91–93]. In the particular case of our model, how-

ever, the GS in the (J∗,µ∗) variables was not presented in the literature.

The grand potential for T = 0 reduces to the minimum of H∗[{ρ̂(x)}]/L2. We have

calculated H∗[{ρ̂(x)}]/L2 for a number of various periodic structures. The structure

for which H∗[{ρ̂(x)}]/L2 takes the lowest value is the stable one for given µ∗ and T ∗.

Two phases can coexist when H∗[{ρ̂(x)}]/L2 = −p∗ in these phases takes the same

value (equal to the global minimum). We have found that apart from the empty

and fully occupied lattices five periodic structures are stable in different regions on

the (J∗,µ∗) diagram. The stable structures agree with those found in Ref.[89]. We

have verified that no other ordered structures appear by MC simulations for low T ∗.

The GS and the structure of the stable phases are shown in Fig.2.43 and 2.44. The

topology of the ground state is similar to the one found before in the 1d version
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of the model (Sec. 2.1.1.2) and the one found for the 2d model with interactions

between the first and the second nearest-neighbors [90, 91].

Let us decribe the GS. For weak repulsion, J∗ < 1/2, the vacuum (p∗v = 0) and the

fully occupied lattice (p∗d = −3+ 3J∗ − µ∗ ) coexist for µ∗ = 3J∗ − 3. For J∗ > 1/2

the stability regions of the two homogeneous phases are separated by the region of

stability of the following periodic structures: hexagonally ordered clusters of rhom-

boidal (OR) or hexagonal (HC) shape, the stripe (lamellar) phase (L) and hexago-

nally ordered rhomboidal (RB) or hexagonal (HB) bubbles. By the model symmetry,

the bubble phases are “negatives“ (i.e. ρ̂(x)→ 1− ρ̂(x)) of the cluster phases.

(a) (b) (c)

(d) (e)

FIG. 2.43: Ground state of the model. µ∗ and J∗ denote the chemical potential and
the third-neighbor repulsion respectively, both in units of the nearest-neighbor at-
traction. The structures of the stable phases are shown in the panels (a)-(e), with:
(a) vacuum, (b) ordered rhomboidal clusters (OR), (c) and (d) lamellar phase (L),
(e) hexagonal clusters (HC). Dense phase, hexagonal bubble phase (HB) and rhom-
boidal bubble phase (RB) are ”negatives“ of the phases (a), (b) and (c) respectively,
i.e. the occupied sites are replaced by the empty ones and vice versa. The symme-
try line is given by µ∗ = 3J∗ − 3. Configurations stable at the coexistence lines are

shown in Fig. 2.44.

For J∗ > 1/2 the ground state is strongly degenerated at the coexistence lines, and

the entropy per lattice site does not vanish for such state points. This can be easily
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

FIG. 2.44: Examples of the ground state structures stable at the coexistence lines.
Left panels: vacuum - OR phase coexistence (a)-(b) and vacuum - HC phase coex-
istence (c)-(d). Central panels: OR - lamellar phase coexistence. Right panels: HC

- lamellar phase coexistence.

shown for the coexistence between the vacuum and the OR or HC phases. In the

vacuum H∗ = 0. The change of H∗[{ρ̂(x)}] when a single rhomboidal or hexagonal

cluster appears in the vacuum is −5 − 4µ∗ or −12 + 3J∗ − 7µ∗, respectively. For

µ∗ = −5/4 or µ∗ = (−12+ 3J∗)/7 the Hamiltonian does not change if an arbitrary

number of noninteracting rhomboidal or hexagonal clusters appears in the system.

The clusters do not interact if the distance between them is sufficiently large. There

are no more restrictions on the positions and orientations of the clusters in the states

with H∗ = 0 at the vacuum - OR and vacuum - HC phase coexistences (Fig.2.44a,c).

For this reason the entropy per lattice site does not vanish. Note that the surface

tension between the vacuum and the OR phases as well as between the vacuum

and the HC phases vanishes, because H∗ = 0 when the interface between the two

phases is present (Fig.2.44b,d). For −5− 4µ∗ < 0 and −12+ 3J∗ − 7µ∗ < 0 the OR

and HC phases respectively are more stable than the vacuum. In these phases the

noninteracting clusters are packed as densely as possible (Fig.2.43 b and e).

The HC and OR phases coexist with the lamellar phase for µ∗ = (13J∗ − 14)/5 and

µ∗ = 3J∗ − 7/2 respectively, which can be easily verified by comparing p∗ for these

structures.

Note that p∗ takes the same value in the lamellar phase shown in Fig.2.43c, and in
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the zig-zag lamellar phase shown in Fig.2.43d. There are many configurations of

the zig-zag stripes having thickness 2 in one of the lattice directions and separated

by empty regions of the same shape. In what follows we will describe how the GS

lamellar structures can be constructed and characterized. This description will allow

us to make an estimation of the entropy of this phase, which will be useful later to

find the phase transitions. Let us consider lamellas with periodicity in direction e3,

as shown in Fig. 2.45. We start by setting three occupied positions defining an

elementary triangle on the left end of the lattice (labelled as 1 in Fig 2.45). In order

to proceed, after setting this first triangle (or whatever triangle with an odd label)

we occupy a lattice position that closes an adjacent triangle (chosen between those

labelled with even numbers in Fig. 2.45, which are those at the top or at the right

of the previous triangle). Then after each triangle with even index is added the next

triangle has to be that on its right, since the choice of the one on the left would break

the periodicity in direction e3.

e
1

e
2

e
3

1

2

2
3
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4
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10

10
11

12

12
13

14

14
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FIG. 2.45: Sketch of the construction of the ground state lamellar structures.

Once we get the reference lamellar stripe following the simple rules given above, it is

straightforward to build up the GS lamellar structure by replicating each piece with

translations. The occupied sites are x = x0 + 4ke3, where x0 is the position of the

site at the reference stripe and k > 0 is an integer number. The structures generated

in this way fulfill ρ = 1/2, and their internal energy per particle is −2+ J∗.

Taking into account the procedure to construct the GS lamellas it is possible to com-

pute the entropy of this phase at T ∗ = 0. PBC add some restrictions to the building

procedure. If we follow one lamella stripe through PBC, it is clear that the number

of choices of growing the reference lamella stripe in the vertical direction must be

zero or a multiple of four. In addition, L must be a multiple of four.
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Taking into account the number of ways of creating lamellar structures with trans-

lational order in, at least, one direction, and the restrictions due to PBC, we can

estimate the entropy of the system as

S/L2 =
kB

L2
lnQ '

kB ln 2
L
+O(L−2). (2.88)

where Q is the number of ways of building up the ordered lamellar structures fol-

lowing the previous procedure. The correction term O(L−2) includes the transla-

tional degeneracy from the location of the triangle 1 in Fig. 2.45; the possibility of

considering three directions in the construction of the reference lamella stripe; the

overcounting of straight lamellas, that show periodicity of length four in two direc-

tions; and the restrictions due to the PBC, that eliminate about 3/4 of the reference

stripes.

At the coexistence between the lamellar and the ordered cluster phases there exists

a large number of disordered states with the same value of p∗ as for the two coex-

isting ordered phases. Characteristic examples of such states are shown in Fig.2.44

e-j. Note that these states include the interface between the ordered cluster and

the lamellar phases (Fig.2.44 e,f,i). In Fig.2.44g closely packed zig-zag clusters of

different length are present. The thickness of the clusters in direction e3 is 2 ex-

cept at the two opposing vertices where the thickness is 1. In Fig.2.44j the clusters

are surrounded by lamellar rings. Structures with a few closely packed clusters sur-

rounded by one or a few lamellar rings are stable too. All the clusters, layers or rings

are packed as densely as possible under the constraint that the neighboring objects

do not repel each other. More precisely, the polygons obtained by surrounding the

clusters or stripes by a single layer of empty sites must cover the whole lattice. This

requirement follows from the negative value of the grand potential per site in the

L, HC and OR phases, and from equal values of p∗ in the coexisting phases. We call

the phase stable along the coexistence between the lamellar and the OR phases a

’molten lamella’. The GS at the HC - OR coexistence, µ∗ = (36J∗ − 49)/8, is not

degenerated.

The strong degeneracy of the GS at the coexistence lines between different structures

was observed before by Dublenych [91]. Unlike Dublenych, we interpret the collec-

tion of the disordered states present at the coexistence between two ordered phases

as a distinct, disordered phase. At T ∗ = 0 the cluster fluid and the molten lamella are
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stable only at the phase coexistences, i.e. for a single value of the chemical potential

for a given interaction strength. As we will show later by the preliminary investiga-

tion of the effects of fluctuations (Sec. 2.2.3.4) and by MC simulations (Sec. 2.2.4),

these disordered phases remain stable for T ∗ > 0 for some interval of µ∗. Let us

finally note that the degeneracy of the GS at the phase coexistence and the vanish-

ing surface tension are closely related, as observed previously in 1d. An arbitrary

number of interfaces can appear when the surface tension vanishes. As a result, the

number and the size of the droplets of the coexisting phases can be arbitrary. This

leads to disordered states that can be considered as fluids of clusters or stripes.

2.2.3 Mean-field phase diagram

In this section we present the MF phase diagram obtained by the methods described

in Sec. 2.1.1.3. Note, however that although the notation used here is consistent

with that of Sec. 2.1.1.3, the space argument of the considered functions is no longer

a scalar, x , but a vector denoting a point on the triangular lattice, x.

2.2.3.1 The structure of the disordered phase

In MF the structure factor in the disordered phase (with ρ̄ = const.) is obtained from

the relations G̃M F(k) = 1/C̃M F(k) [94], where C̃M F(k) is given by Eq. (2.14) and the

vector in the dual space k in the case of the triangular lattice is k≡ (k1, k2) = k1f1+

k2f2, where the unit vectors of the dual lattice satisfy fi · e j = δKr
i j and |fi| = 2/

p
3,

where x · y is the standard scalar product in R2 and | · | is a norm induced by it. The

interaction potential (Eq. 2.84) in the Fourier representation is

β Ṽ (k) =
∑

x

βV (x)eik·x = 2β∗
�

J∗
�

cos(2k1)+cos(2k2)+cos(2(k1−k2))
�

−

cos k1−cos k2−cos(k1−k2)
�

. (2.89)

For J∗ < 1/4 the function given by Eq.(2.89) assumes the minimum for k = 0,

whereas for J∗ ≥ 1/4 the minimum occurs for k1 = 2k2 = kb with

kb = 2 arccos
�J∗ +

p
J∗2 + 2J∗

4J∗

�

. (2.90)
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FIG. 2.46: The correlation function for J∗ = 3 and ρ = 0.5. Red circles and solid
lines correspond to T ∗ = 2.6 while blue squares and dashed lines to T ∗ = 2.8.
Left column: G in Fourier space; top panel: G̃M F (k, 0), bottom panel: G̃M F (k, k/2).
Right column: G in real space; top panel: GM F (x , 0), i.e. for points x = xe1, and
bottom panel: GM F (x , x), i.e. for points x = xe1 + xe2. The temperature of the λ-

line is T ∗
λ
= 2.575.

By symmetry of the lattice there are two other minima of the same depth. Thus,

Ṽ (k) takes the global minima for the wavevectors

k(i)b = kbei. (2.91)

We used the relations e1 = f1 +
1
2 f2 and e2 = f2 +

1
2 f1. Note that the characteristic

length 2π/kb is noninteger. Thus, the period of damped oscillations in the corre-

lation function is incommensurate with the lattice. Similar result was obtained by

the exact transfer matrix method for the 1d version of our model (Sec. 2.1.1.4). In

Figs.2.46 and 2.47 we show the correlation function GM F in Fourier and real-space

representation for J∗ = 3 and J∗ = 1/4 respectively.

2.2.3.2 Boundary of stability of the disordered phase

The disordered phase is unstable if the grand potential decreases when the density

wave with an infinitesimal amplitude and some wavevector k appears, i.e. when

C̃M F(k) < 0. The boundary of stability of the disordered phase is given by Eq. 2.17

in which for the Fourier transform of the interaction potential we use Eq. 2.89. In
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FIG. 2.47: The correlation function for J∗ = 1/4 and ρ = 0.5. Red circles and
black solid lines correspond to T ∗ = 1.128 while blue squares and dashed lines
to T ∗ = 1.13. Left column: G in Fourier space; top panel: G̃M F (k, 0), bottom
panel: G̃M F (k, k/2). Right column: G in real space; top panel: GM F (x , 0), i.e. for
points x = xe1, and bottom panel: GM F (x , x), i.e. for points x = xe1 + xe2. The

temperature of the λ- line is T ∗
λ
= 1.124.

the density waves that destabilize the disordered phase the density oscillates in the

principal directions of the lattice (see (2.91)). In the case of the lamellar structure

the layers of constant density are perpendicular to one of the unit lattice vectors

ei (three-fold degeneracy). In the case of the hexagonal structure the density is a

superposition of 3 planar density waves in the principal lattice directions.

The shape of the λ-line in the (ρ, T ∗) variables is the same as the shape of the

spinodal line of the phase separation, except that the temperature scale is given

by −Ṽ (kb) rather than by −Ṽ (0). This property is common for different forms of the

SALR potential [39, 41]. However, in (µ∗, T ∗) variables the shapes of the spinodal

and the λ-lines differ significantly from each other. Moreover, the shape of the λ-

line depends on J∗ (Fig.2.48). For J∗ < 1/4 the two branches of the spinodal form a

cusp. On the low-T ∗ side of these lines there are two minima of Ω∗M F , corresponding

to the gas and liquid phases. For J∗ > 1/4 the two branches form a loop for high

T ∗. The grand potential assumes a minimum for periodic structures for the state

points inside the loop, while for the gas and liquid phases - inside the cusp below

the loop. For increasing J∗ the size of the loop increases, and for J∗ > 1 the gas-

and liquid branches of the instability line disappear. Since the instability and the
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FIG. 2.48: MF lines of instability (solid) of the homogeneous phase in the (µ∗, T ∗)
variables for a range of J∗. We used ∂ΩM F/∂ ρ = 0, and 2d analogues of Eq. (2.11)

and Eq. (2.17).

transition lines are not the same, the first-order gas-liquid transition may disappear

for some different value of J∗. Similar shapes of the instability lines were obtained

in the one-dimensional lattice model (Sec. 2.1.1.3) and in the three-dimensional

model [70]. Thus, the above evolution of the MF lines of instability for increasing

repulsion seems to be a generic property, independent of the particular shape of the

SALR potential and dimensionality of the system.

2.2.3.3 First-order transitions

In order to determine the MF phase diagram we use the iterative method described in

Sec. 2.1.1.3. We assume PBC and consider different values of L. This way structures

with periods L/n where n is integer can be generated. We find very large number of

metastable states, especially for high T ∗, where the order is weak (small amplitude

of the density oscillations). To overcome this problem we assume that when the

amplitudes of the density oscillations in the periodic phases are small, the density

has the form

ρp(x) = ρ0 +δρp +Φp gp(x). (2.92)

In the above ρ0 is the position-independent density corresponding to the extremum

of ΩM F for given µ∗ and T ∗. The δρp is the shift of the average density in the

periodic phase p, and gp(x) is the normalized periodic function with the symmetry

of the corresponding p phase, where p = l, h for the lamellar and the hexagonal
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phase respectively. For the densities of the form (2.92) the excess grand potential,

∆Ωp[ρp] = ΩM F[ρp]−ΩM F[ρ0], (2.93)

is a function of δρp and Φp. It takes a minimum for δρp and Φp corresponding to

a stable or a metastable phase p. We limit ourselves to δρp → 0 and Φp → 0, and

from the conditions ∂∆Ωp/∂ δρp = 0 = ∂∆Ωp/∂Φp obtain the approximate values

of δρp and Φp, and of the excess grand potential in the lamellar and hexagonal

phases. Next, from ∆Ωh = 0 and ∆Ωh = ∆Ωl we obtain the transitions between

the disordered and hexagonal, and between the hexagonal and the lamellar phases

respectively. These transition lines are shown as dashed lines in Fig.2.49. Some

details of the calculation are given in Appendix 6.3.

The phase diagram obtained in the MF approximation described above is presented

in Fig. 2.49 for J∗ = 3. F, H, OR, L1 and L2 denote the disordered fluid, the high-

T ∗ hexagonal phase, the ordered rhombus, and the low-T ∗ and high-T ∗ lamellar

phases respectively. The MF density distribution in the H and L2 phases is shown in

Fig. 2.50, and the structure of the OR and L1 phases for T ∗→ 0 is shown in Fig.2.43b

and Fig.2.43c,d respectively. In the H phase the clusters form a hexagonal pattern,

but in contrast to the OR phase the orientation of the long axes of the rhombuses is

not fixed. The OR phase can be present only in the case of small asymmetric clusters,

i.e. for large repulsion. For J∗ = 1 (hence for
∫

drV (r) = 0) hexagonal clusters

appear for T ∗ = 0 (Fig. 2.43 e) and only positional ordering of the clusters can

occur. In the L2 phase the orientation of the lamellas differs from the ground-state

orientations, and agrees with the orientation of the density waves that destabilize

the homogeneous phase. Because of a very large number of metastable structures

characterized by very similar values of the grand potential, it is likely that some

details of the phase diagram are not reproduced in Fig.2.49 with full precision.

2.2.3.4 The effect of the degeneracy of the ground state on the phase diagram

for T ∗ > 0 beyond mean-field.

In MF the self-assembled clusters and stripes are present only in the ordered phases,

and for T → 0 the density of the disordered phase at the coexistence with the OR

phase is very small. This is because in the case of delocalized clusters the average

density is position independent, and the repulsion contribution to the mean-field
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(a)

(b)

FIG. 2.49: Mean-field phase diagram for J∗ = 3 in (µ∗, T ∗) (Panel (a)) and (ρ, T ∗)
(Panel (b)) variables. F, H, OR, L1 and L2 denote disordered fluid, hexagonal phase,
ordered rhombuses and low- and high temperature lamellar phases respectively.
Typical microstates of the OR and L1 phases are shown in Figs. 2.43b and 2.43c,d
respectively. MF density profiles in the phases H and L2 are shown in Fig.2.50.
The L1 lamellar phase is stable for T ∗ < 0.65 and ρ ≈ 0.5 (the density interval is
within the thickness of the line). When temperature rises (T ∗ > 0.65), the L2 phase
(see Fig.2.50b) becomes stable. The density ranges of the two-phase regions for

temperatures T ∗ > 2 (dashed lines) are also within the thickness of the line.

grand potential for large position-independent density is large (see (2.11)). In the

case of rhomboidal clusters separated by distances larger than the range of the repul-

sion, however, the repulsion contribution to the internal energy is absent. Therefore

for low T ∗ the density of the disordered phase at the coexistence with the ordered

cluster phase is significantly underestimated in the mean-field approximation. Here

we take into account the degeneracy of the GS and present a semi-quantitative anal-

ysis of the disordered cluster fluid for β∗(5+ 4µ∗)→ 0 and β∗� 0.

For J∗ > 1 and the state points that satisfy β∗(5+4µ∗)→ 0− all the microscopic states

consisting of N noninteracting rhombuses are almost equally probable, since the

probability of such states is proportional to exp[β∗(5+ 4µ∗)N]≈ 1, and for β∗� 0

the other states (with H∗ > 0) are rare. We can obtain an upper bound for the grand
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FIG. 2.50: A: Structure of the hexagonal phase H for J∗ = 3, T ∗ = 0.925 and
ρ = 0.15364. Site colors represent different ranges of probability for a particle
to occur at the given site, namely: white - (0,0.065), light gray - (0.206, 0.213)
, dark gray - (0.37,0.4), black - (0.5,0.57). B: Structure of the lamellar phase L2
for J∗ = 3, T ∗ = 1 and ρ = 0.4905. Sites colors represent different ranges of
probability for a particle to occur at the given site, namely: white - (0, 0.045), light

gray - (0.6758, 0.676), black - 0.9955.

FIG. 2.51: Panel (a): The black solid circles represent sites of the sublattice con-
sidered in Sec. 2.2.3.4. The corresponding sites are occupied if they belong to a
rhomboidal cluster. The dark blue color indicates one of the possible orientations
of the rhomboidal clusters. Panel (b): A portion of the (ρ,T ∗) phase diagram for
J∗ = 3 with the coexistence region between the cluster fluid (CF) and the OR phase

(dash-dotted lines) estimated on the basis of the sublattice shown in panel (a).

potential of the cluster fluid by considering a subset of all such microscopic states.

Let us consider the sublattice shown in Fig.2.51a. The sites of the sublattice can be

empty, or occupied by noninteracting rhombuses. There are 6 possible orientations

of the rhombuses at each site of the sublattice and the number of sublattice sites

is L2/19. The sublattice sites are occupied or empty independently of one another,

and the grand potential and the average density can be obtained immediately,

Ω∗/L2 = −
T ∗

19
ln

�

1+ 6eβ
∗(5+4µ∗)

�

(2.94)

and

ρ̄ =
4

19
6eβ

∗(5+4µ∗)

1+ eβ∗(5+4µ∗)
. (2.95)
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For β∗(5 + 4µ∗) = 0 we obtain ρ̄ ≈ 0.18. This gives the order of magnitude of

the density in the cluster fluid for µ∗ = −5/4. We compare the grand potential per

lattice site, Eq. (2.94), with Ω∗M F/L2 calculated in the MF approximation for the OR

phase. This way we obtain a rough estimate of the coexistence region between the

cluster fluid and the OR phase. The corresponding portion of the phase diagram is

shown in Fig.2.51b. Since only a subset of the microscopic states was considered

and in the disordered phase the positions of the rhombuses are not restricted to the

sublattice sites, the stability region of the CF phase is expected to be larger than

shown in Fig.2.51b. By analogy we expect that the molten lamella phase found at

the coexistence between the OR and lamellar phases for T ∗ = 0 will remain stable

for T ∗ > 0 for the state points that satisfy β∗(2µ∗ + 5− 6J∗)→ 0.

2.2.4 Phase diagram - results of the Monte Carlo simulation

In this section we present the phase diagram obtained by the MC simulation meth-

ods. The techniques used for the derivation (the Metropolis algorithm, thermody-

namic integration or parallel tempering scheme) are standard methods [95, 96].

However, for the clarity of the presentation they will be briefly described in Sec.

2.2.4.1. Sec. 2.2.4.2 is devoted to specific methods used for computation of phase

equilibria between the OR and F phases, while Sec. 2.2.4.3 and Sec. 2.2.4.3 describe

the lamellar phases: the order parameters used for their identification and the phase

transitions.

2.2.4.1 Simulation methodology

Grand Canonical Monte Carlo procedure

The simulation procedures make use of the Metropolis criterion [97] implemented

for two kinds of MC steps: translations of one particle and particle insertions or

deletions. For each step a trial configuration is generated and it is accepted with the

probability: min [1, exp(−β∆H)], where∆H is the change of the Hamiltonian in the

trial step. The trial configuration for a particle translation is generated by moving

a randomly chosen particle to a randomly chosen empty site, which is equivalent to

choosing two sites of the lattice, x and x ′, so that ρ̂(x) 6= ρ̂(x ′), and interchange

their occupancy states, so that ρ̂trial(x) = ρ̂(x ′), and ρ̂trial(x ′) = ρ̂(x). A Monte

Carlo step characteristic for the Grand Canonical simulations implies the insertion
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or deletion of one particle, this is achieved by choosing at random one site of the

lattice, x , and generating the trial configuration by flipping its occupancy state from

its current value ρ̂(x) to the trial value ρ̂trial(x) = 1− ρ̂(x).

Thermodynamic integration

According to the GS analysis for J∗ = 3 and at low temperature we expect the

presence of the lamellar phase with ρ = 1/2 for values of µ∗ ≈ 6, and the ordered

rhombus phase for −5/4 < µ∗ < 11/2. At high temperature, the state of the sites

should be essentially dictated by the value of the chemical potential, i.e., we will

have a disordered phase with the average density given as ρ = eβµ/(1+ eβµ). Then

we can expect some phase transition(s) connecting the high-temperature disordered

phase with the low-temperature ordered phases. At low temperature and µ∗ ≈ −5/4

we can expect to find the disordered CF phase composed of different aggregates of

particles (mainly four particle clusters), while for increasing chemical potential the

system should exhibit a phase transition into the OR phase. Similarly, for µ∗ ≈ 11/2

the molten lamella (ML) phase present in the GS is expected to be stable for T > 0.

Taking the above facts into account we have used thermodynamic integration (TI)

techniques [95, 96, 98] to locate the phase transitions. These techniques are based

on the numerical integration of thermodynamic potentials using simulation results.

The integration of the grand potential is carried out as

Ω(L,β ,µ1) = Ω(L,β ,µ0)− L2

∫ µ1

µ0

ρ̌(L,β ,µ) dµ, where ρ̌ ≡
〈N〉
L2

, (2.96)

when the temperature is fixed, or:

Ω(L,β1,µ) = Ω(L,β0,µ) +

∫ β1

β0

H(L,β ,µ) dβ , (2.97)

for fixed value of the chemical potential. The values of the grand potential in the

thermodynamic limit are known for the ordered phases at low temperature, for the

high-temperature limit β = 0, and for the vacuum system ρ = 0.

In the first attempt to compute the phase diagram we run sequences of simulations

starting either from high temperatures (β = 0) or from low temperatures. In the

latter case we used initial configurations of the corresponding stable phases at the

GS. Then by applying TI we could get a draft of the shape of the phase diagram.
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Parallel tempering

We found some features in the results which introduced some difficulty in the

analysis. When considering the sequences of simulations starting from high temper-

ature, we found non-monotonic behavior with the system size for different proper-

ties. In addition to the expected transitions corresponding to the melting of the GS

ordered structures, we found signatures of a number of additional thermodynamic

transitions, which seemed to be either continuous or weakly first-order. Moreover, in

some cases the number of these apparent transitions depends on the system size: As

one increases the system size for a given value of µ, the number of these transitions

can increase. The presence of these transitions, and the atypical dependence of the

results on the system size moved us to make use of parallel tempering (or replica

exchange) MC sampling [99, 100] in order to improve the sampling quality of the

simulation.

The aim of using the parallel tempering scheme is to allow the system for jumps over

high potential barriers. This algorithm involves simulations of many system copies

each with different temperature values. It allows for the exchange of configurations

between the i-th and j-th copy with the probability of transition

pt = min
�

1, e(Hi−H j)(βi−β j)
�

. (2.98)

Phase diagram

The phase diagram obtained via MC simulation is presented in Fig. 2.52. In order

to get a reliable estimation of the phase diagram, we have focused the simulation

effort into a relatively large system, L = 120. Other system sizes were also consid-

ered, but only for some representative values of the temperature and the chemical

potential. We have found, however, that the topology of the phase diagram did not

change and only minor displacements of the transitions loci are to be expected. In

what follows we describe in detail the different phase equilibria shown in the dia-

gram.

2.2.4.2 Ordered rhombus and fluid phases

We start the phase diagram presentation with the description of the phase transition

between the ordered rhombus phase and the fluid phase. Firstly, we discuss the limit

of low temperature where the standard MC algorithms described in Sec.2.2.4.1 are
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FIG. 2.52: Phase diagram in the temperature-chemical potential (a) and in the
temperature-density (b) planes. OR stands for ordered-rhombus phase, F (fluid) for
the disordered phase(s), L represents ordered lamellas, and ML molten lamellas.

inefficient and the use of different simulation technique was necessary. Secondly,

we describe the results for the OR - F transition at finite temperature obtained with

standard algorithms.

The limit of low temperature

It is possible to compute the phase equilibria between the OR and CF phases in

the limit T → 0 (for µ∗ = −5/4). In this limit the system is composed exclusively by

noninteracting rhomboidal clusters. In order to analyze the possible phase transition

of the system we consider the concavity/convexity properties of the entropy as a

function of the density of these clusters (See Refs. [80, 101] for similar situations,

in which a low density phase can appear due to the presence of repulsive interactions

between particles). In short, we can simulate an athermal lattice gas model where
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FIG. 2.53: The Kagomé lattice. The sites of the original triangular lattice are in-
dicated by the filled green circles. Rhomboidal clusters (shaded region) are repre-

sented by the occupied nodes of the Kagomé lattice (filled red rhombuses).

the elementary units are four-particle clusters, with exclusion rules compatible with

the lack of repulsive interactions between clusters in the SALR model. Such hard-

core lattice gas model allowed us to compute the phase equilibria at conditions for

which our standard MC algorithm is inefficient.

The possible positions of a rhomboidal cluster on the triangular lattice with L2 sites

can be described by considering the bond connecting the two sites of the rhombus

that have three particles in the nearest neighbor positions. These bond positions de-

fine a Kagomé lattice [102] (See Fig.2.53). Each rhombus of the SALR model on the

triangular lattice is mapped on a site of the Kagomé lattice (small solid rhombuses in

Fig.2.53). Taking into account the interactions of the model it is easy to determine

the exclusion rules on the new lattice, i.e. which sites cannot be occupied due to the

presence of a particle (occupied site).

The simulation of the hard-core lattice model is performed using two types of moves:

translations and changes of the number of particles. Translations are carried out by

(1) Selection of a particle at random, (2) Deleting it from the system and updating

the list of non-excluded positions, and (3) Inserting it back in one of the allowed

positions (chosen at random with equal probabilities). The second type of moves

involves changes in the number of particles. This is performed by choosing at ran-

dom with equal probabilities either an insertion or a deletion attempt: If insertion

is chosen and there are allowed positions, one of these allowed positions is selected

at random, and acceptance rules are applied. If there are no allowed positions the

insertion attempt is directly rejected. Deletion attempts are done by choosing at

random a particle in the system to be removed.
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FIG. 2.54: Density as a function of the logarithm of the fugacity for the hard-core
lattice gas model representing the F-OR equilibrium for T → 0. Continuous line
represents the results for the fluid phase and L = 120. Dashed lines are used for
the fluid phase and L = 60. Lines with symbols mark the results for the OR phase
(filled circles for L = 120, and squares for L = 60). Thick vertical lines mark the

estimates for the F-OR transition (ln z ' 7 ).

Considering detailed balance [96] the ratio between the acceptance probabilities,

A(N → N ′) of an insertion and its reversal deletion move must fulfil

A(N → N + 1)
A(N + 1→ N)

=
(N + 1)z
Npos(N)

, (2.99)

where z ≡ exp [βµ] is the fugacity, and Npos(N) is the number of non-excluded

positions in the configuration with N particles. Using this simulation procedure

for L = 120, coupled with parallel tempering and thermodynamic integration, we

obtain the densities of the two phases at coexistence: ρF ' 0.30, and ρOR ' 0.3330.

This result is consistent with the estimate ρ > 0.2 for the density in the CF phase at

the coexistence with the OR phase obtained beyond MF (Sec. 2.2.3.4).

Interesting features appear at the plots of the density of the fluid phase as a function

of z. For values of z close to the transition, but still in the region where the fluid

phase is the stable one, the quantity: (∂ ρ/∂ (ln z)) shows an oscillatory behavior. In

the plot of ρ vs. ln z (Fig. 2.54) signatures of apparent weak transitions (steps-like

changes in the density) can be seen. The number of these steps seems to increase

with the system size, which implies that the results for the density of the fluid phase

close to the transition depend on L. We cannot provide a definitive explanation of

this behavior. It might occur that in the fluid phase, close to the transition, the system

exhibits a short-range order, with small domains of rhombi arranged according to the
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OR structure. The size of these domains is expected to increase with z, the growth

of the domains might be conditioned by the effects of the PBC, which impose some

correlations which might be relevant as the correlation length of the short-range

order increases. Moreover, the use of a lattice model implies additional spatial and

orientational correlations which might amplify the effects described above. Within

this scenario we could expect that the lines ρ vs ln z will become smoother for larger

system sizes.

Ordered rhombus - fluid transitions at finite temperature

For T > 0 we used the standard algorithms described in Sec. 2.2.4.1. The re-

sults showed that the OR phase melts irreversibly upon increasing T ∗. However, the

simulations give no evidence that the cluster fluid and the dilute gas are distinct

phases. For this reason, at finite temperature F, instead of CF, will be used to denote

the disordered phase.

In order to determine the loci of the OR melting transitions we firstly assumed that

for−1.25< µ∗ ≤ 5.50 only the OR and the F phases can stabilize. Simulation results

suggested that the above assumption was appropriate provided that µ∗ < µ∗2 ' 5.07.

For values in the range µ∗ ∈ [µ∗2, 5.5], after the melting of the OR phase, the system

can adopt structures with lamellar character that exhibit orientational order, but that

case will be discussed later in Sec. 2.2.4.3.

For µ∗ < µ∗1 ' 2.4 the F phase is less dense than the OR phase. As one increases the

chemical potential from µ∗ = −1.25, the temperature at the phase equilibrium in-

creases and for temperatures T ∗ > 0.5 the density of the fluid branch also increases.

At µ∗ = µ∗1 the coexistence line reaches a maximum in temperature at T ∗2 ' 0.95.

At these conditions both phases have the same density ρ ' 1/3, however the OR-F

phase transition is still first-order, with a discontinuity in the energy [80, 101]. For

µ∗ > µ∗1 the density is larger in the F phase at F-OR coexistence.

The F phase shows different types of structures depending on the values of µ∗, and

T ∗. At low temperature, T ∗ ® 0.5, and low values of µ∗ the system can be described

as a gas formed mostly by four-particle clusters (rhombuses, as in Fig. 2.44f), re-

sembling the CF phase found for µ∗ = −5/4 at T = 0. These clusters are favored

by energy considerations (Sec. 2.2.4.2) and they will be predominant for not too

low densities. At higher temperature and density this phase appears as a mixture of
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(a) T* = 0.833 (b) T* = 1

(c) T* = 3

FIG. 2.55: Representative configurations for µ∗ = 1 with (a) T ∗ = 0.833 (OR), (b)
T ∗ = 1 (fluid) and (c) T ∗ = 3 (fluid).

clusters of different sizes, which eventually percolate as the chemical potential ap-

proaches µ∗ = 6 [102]. Typical snapshots of the high-T OR and F phases for µ∗ = 1

are shown in Fig.2.55.

2.2.4.3 The lamellar phases

In this section we focus on the lamellar phases present in the phase diagram. In

order to characterize them and determine the loci of the phase transitions we in-

troduce two order parameters (OP): the translational OP which quantifies at what

level the stable configuration consists of identical stripes, thus it says how much the

stable configuration resembles the GS lamellar cofiguration (panel (c) and (d) of

Fig. 2.43), and the orientational OP which describes if the particles self-assemble

into structures with a dominant orientation. The simulation results show that the

two OP have values close to one at low temperature lamellar phase L. Upon heating

the system first looses the translational order and next the orientational order. We

call the phase which has the orientational order, but lacks the translational order,

the molten lamella phase and its description is one of the main thesis results.
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Order parameters

An ordered lamellar phase, characterized by the long-range translational and ori-

entational order, is stable at low temperature and for the chemical potential values

close to µ∗ = 6. We have found that for this value of the chemical potential non-

trivial qualitative changes of the stable structure occur if one changes the system

temperature. In Fig. 2.56 we show representative configurations for the system at

µ∗ = 6 and different temperatures. At high temperatures isotropic configurations of

the system are stable (panel (a)). Note, however that although in panel (b) short

lamella-like stripes and other cluster structures with local period of 4 in one direction

are present, the structure has not any preferential orientation as well. A structure

shown in panel (c) consists of lamellar pieces that have a preferential orientation,

but since the structure has many defects it is still qualitatively different then the

ground state lamellar phase. In panel (d) probably a metastable configuration of

the same phase is plotted. Finally, at sufficiently low T an ordered lamellar struc-

ture with no defects stabilizes (panel (e)). In order to quantify these changes in

the structures, and to analyze how the ordered structures are transformed, in what

follows we define appropriate order parameters.

Translational order parameter

Translational order can be checked for a given set of simulation configurations,

using the following procedure for each of the three main directions of the lattice:

For each row r = 0, 1, . . . , L − 1 in the selected direction eα, where α = 1, 2 or 3,

we consider the states of its j sites: ρ̂(r, j) ≡ ρ̂( jêα + rêβ) for j = 0, 1,2, · · · , L − 1

and β 6= α. The four-site periodicity in the row r in direction α can be checked by

computing the parameters prα(k)

prα(k) =
1
L

�

�

�

�

�

L−1
∑

j=0

{[2ρ̂ (r, j)− 1] gk( j)}

�

�

�

�

�

, (2.100)

where gk(i) takes the form of a square wave (Fig.2.57) with the values

gk(i) =

(

1 ; if mod (i + k, 4)< 2

−1 ; if mod (i + k, 4)≥ 2,
(2.101)
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FIG. 2.56: Representative configurations for the lattice SALR model at µ∗ = 6
(〈ρ〉= 1/2). The system size is L = 48.

where k = 0 or 1 and mod is the Modulo operation. A global translational order

parameter can be defined for the selected direction, say eα, by combining the results

for k = 0 and k = 1:

Pα =
1
L

L−1
∑

r=0

max [prα(0), prα(1)] . (2.102)

Lamellar structures with long-range translational order can be identified as those

structures for which the order parameter P defined as

P ≡max[〈P1〉, 〈P2〉, 〈P3〉], (2.103)
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FIG. 2.57: The function gk(i) (see Eq.2.101)) for k = 0 (top) and k = 1 (bottom).
The lines connecting values of the function for i = 0,1, 2, . . . are to guide the eyes.

is close to 1.

Lamellar stripes and orientational order parameter

First, we need criteria to decide if a group of particles in a given region of the

system belongs to a lamellar stripe. We consider sets of three sites forming elemen-

tary triangles on the lattice. The triangles are the units which we will characterize

as either lamellar or non-lamellar. Only triangles with 3 sites occupied qualify to

be lamellar, such triangles will by denoted as T3. Given a T3 triangle, we look at

0

1 1

22
3

1 1

0

1 1

2
3

2

1

0

1 1

2
3

2

FIG. 2.58: Sketch of the definition of the lamellar triangle. Filled circles represent
occupied sites, empty circles are vacant sites.

the structure of its neighbor triangles. Lets consider the triangle labelled as 0 in

the local structures plotted in Fig. 2.58. The triangle 0 can be a lamellar triangle

if precisely two of its nearest-neighbor triangles (labelled as 1 in the figure) have

their three sites occupied. Thus, to be lamellar, a T3 triangle must have 2 out of 3

neighbors that are also from the T3 class. Note that the second criterion excludes

the T3 triangles which belong to the OR structure (Fig. 2.2b). Finally, in order to

exclude the triangles which belong to seven-site hexagonal clusters, we consider the

triangles labelled as 2 and 3. We say that the triangle 0 is a lamellar triangle if, in

addition to the fulfillment of the previous conditions, the triangle labelled as 3 is not
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fully occupied. According to these rules, the triangle 0 in all panels of Fig. 2.58 is

lamellar.

In addition to classifying the fully occupied triangles as lamellar or non-lamellar, by

checking which two out of the three nearest-neighbor triangles are fully occupied,

this method also gives the orientation of the lamellar stripe. There are three possible

orientations which coincide with the principal directions on the triangular lattice.

Taking into account the ground state structures for the lamellar phases, and the abil-

ity of the lamellar stripes to bend (See Fig. 2.45 and 2.56), we compute separately

the number of lamellar triangles that exhibit one of the three possible orientations:

N (1)LT , N (2)LT , and N (3)LT . If the orientational order exists, two of the orientations will be

preferred by the lamellar triangles. Accordingly, we have defined the orientational

order parameter for lamellas as:

OL =
NLT − 3

�

min
�

N (1)LT , N (2)LT , N (3)LT

��

NLT
, (2.104)

where NLT =
∑3

i=1 N (i)LT is the total number of lamellar triangles. If no lamellar orien-

tational order exists, then OL will be close to zero, whereas it will approach OL = 1

if the lamellar stripes exhibit preferential orientations.

Phase transitions of lamellas

At low temperatures the structure of the ordered lamellar phase hardly deviates

from the GS, and therefore one can consider directly the ideal structure of this phase

and its entropy to compute Ω(L,β ,µ). We found that the ordered lamellas melt

irreversibly to produce a phase with orientational, but without translational order.

In Fig. 2.59 we show some results for the case of µ∗ = 6 and L = 120. The melting

temperature is relatively low (T ∗ ≈ 0.24 for L = 120 and µ∗ = 6) and decreases for

µ∗ < 6 (See Fig. 2.52).

Simulation results indicate that molten lamellas with only orientational order is a

distinct phase (See Fig. 2.59). Looking at the variation of the order parameter OL

with temperature a sharp transition can be observed. The temperature where this

transition occurs depends on µ, and on the system size L. At this transition the heat

capacity cµ ≡ L−2 (∂ H/∂ T )L,µ, has a clear peak. The position and the height of this

peak have non-monotonic dependences with L (in the range 24 ≤ L ≤ 120), but

the transition is observed for all the system sizes. In spite of the non-monotonic
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FIG. 2.59: Simulation results for the analysis of phase transitions in the lamella
region. µ∗ = 6, L = 120. In the top panel we plot the translational order parame-
ter, P (See Eq. (2.103)), as a function of the temperature: Circles mark the results
for a sequence of simulations starting at high temperature, squares represent the
results when starting at low T ∗ with the initial configuration corresponding to one
of the GS lamellar microstates. Only in the latter case the system exhibits transla-
tional order, which is lost when the ordered lamella melts irreversibly at T ∗ ' 0.3.
In the central panel the orientational order parameter for lamellas, OL (See Eq.
(2.104)) is plotted for a sequence of simulations starting at high temperature: the
order-disorder transition at T ∗ ' 0.75, marked with the dashed vertical lines, can
be clearly appreciated. Finally, in the lower panel the Grand Canonical Energy H∗

per site is plotted: Diamonds mark the results obtained using the Parallel temper-
ing scheme starting from disordered configurations, whereas squares represent the
results for the sequence of simulations starting from the ground state configura-
tion. The results from Parallel tempering exhibit signatures of a likely continuous
transition at the temperature where the OL indicated an order-disorder transition.
In addition some step-like transitions (denoted by arrows) are observed below that

temperature.

dependence of the local maximum value of the heat capacity cmax
µ

(L) with L, the

value of cmax
µ

seems to increase slightly with L (see Fig. 2.60). These results suggest

that the transition is continuous in the range 5.5 < µ∗ ≤ 6.0. A weakly first-order

transition, however, cannot be ruled out.

For temperatures below this order-disorder transition, a number of apparent weak

transitions was found. As observed for the F phase close to the F-OR transition, the

number of these transitions increases with the system size, whereas the individual

jumps in H/L2 and ρ (for µ∗ < 6) decrease with L. Visual inspection of the con-

figurations (Fig.2.56) and of the plots of the order parameters as a function of the
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FIG. 2.60: The heat capacity at the constant chemical potential cµ∗ for µ∗ = 6 and
different system sizes. cµ∗ exhibits a clear peak at the F-ML transition, but also
non-monotonic behavior of its position and height for different system sizes. For
L = 240 two peaks can be observed, the one at T ∗ ≈ 0.75 corresponds to the F-ML
phase transitions, whereas that appearing at T ∗ ≈ 0.72 is associated with a step-like

transition similar to the transitions shown in Fig. 2.59 for L =120.

temperature (Fig.2.59) did not provide any clear conclusion about the nature of

these apparent transitions. As in the F case this behavior could be due to effects of

compatibility of the stable patterns with the PBC, and the restrictions introduced by

considering a lattice model. Note also that the MF stability analysis predicts noninte-

ger period 2π/kb of the density oscillations (Sec.2.2.3), which for the lattice system

together with the PBC can lead to strong and nonmonotonic dependence on L.

The temperature of both the F-ML and the ML-L phase transitions depends on the

chemical potential, and for both transitions assumes the maximum for µ∗ = 6.

The lines plotted on the (ρ, T ) diagram for the threshold value of µ∗ = 5.5 have to be

seen as conjectural. The simulation results showed that for L = 48,60, the parallel

tempering procedure reaches at low temperature configurations with the energy of

GS and ρ ≈ 5/12, which correspond to the ML phase shown in Figure. 2.43 h.

However, for L = 120 the simulation scheme did not reach these GS configurations.

Nevertheless, the trends of the properties suggest that also in this case the ML will

be the stable phase.

A complex phase behavior was found for µ∗2 ≤ µ
∗ < 5.5 (with µ∗2 ' 5.07 for L =

120). Although the GS for this range of the chemical potential is the OR phase, on

cooling the system at constant µ one finds a F→ML transition at some temperature

TF−M L(µ, L). Depending on the value of µ this ML phase can eventually melt again at

a lower temperature, and the isotropic phase is recovered. Similar re-entrant melting
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of the periodic phase was found in MF in the one-dimensional version of the present

model (Fig. 2.49). This reentrant melting appears for µ∗2 ≤ µ ≤ µ
∗
3 ' 5.30, and the

transition seems to be discontinuous, with a finite change both in H/L2 and in the

density. Further cooling of the system transforms the fluid into the OR phase in a

discontinuous transition.

The reentrant behavior of the F-ML tranistion can be observed in the (µ, T ) repre-

sentation of the phase diagram shown in Fig.2.52. The results for L = 120 suggest

that the transition changes from a continuous to a weakly first order at a tempera-

ture T ∗ ' 0.6 (Fig.2.52b), and that this change occurs at, or close to, µ∗2, i.e. the

minimum value of the chemical potential with the F-ML equilibrium.

β* = 1.6

β* = 1.7

β* = 1.8

β* = 2.0

β* = 2.2

β* = 2.5

ρ

0.42

0.41

0.40

0.39

0.38
5.0 5.1 5.2 5.3

μ*

FIG. 2.61: Density as a function of the chemical potential for different values of β∗.

The calculation of the F-ML transition below T ∗ ' 0.6 was carried out by fixing

the temperature and running parallel tempering MC simulation using several values

of the chemical potential. The plots of the density as a function of the chemical

potential indicated a continuous transition for β∗ = 1.60, whereas for β∗ ≥ 1.70, a

clear discontinuity was observed (Fig.2.61). From these plots it was possible to get

estimates for both, the chemical potential at the transition, and the density of the

two phases.

The topology of the phase diagram implies the existence of a triple point where the

OR, F, and ML phases coexist. Using the results of simulations with L = 120 we have

estimated the locus of this point as: µ∗T P = µ
∗
3 ' 5.3, T ∗T P ' 0.38.
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2.2.5 Comparison between phase diagrams obtained by the Mean-

Field and the Monte Carlo techniques.

Let us compare the MF and the MC phase diagrams for the repulsion to attraction

ratio J∗ = 3. In the (µ∗, T ∗) variables the phase diagrams (Fig. 2.49 and Fig.2.52)

are similar for low T ∗, except that in MC the stability region of the ML phase extends

down to T ∗ = 0, while in MF the L2 phase appears for T ∗ > 0.65. The relation

between the ML and the L2 phases obtained in MC and in MF respectively is not

entirely obvious. In the L2 phase the density oscillates in one of the lattice directions

ei, i.e the distinguished directions in the L2 and the ML phases are the same. The

structure of the ML phase resembles the structure of the L phase with defects. The

defects do not destroy the orientational order, but the translational order is lost (see

Fig.2.56c). We attribute the stability of the ML phase for T ∗→ 0 to the effect of the

degeneracy of the GS that cannot be properly described within MF.

For high T ∗ the differences between the MF and MC phase diagrams in the (µ∗, T ∗)

variables are more pronounced. In MF the stability region of the ordered phases

extends to much higher temperatures than found by MC simulation. Moreover, for

high T ∗ the H (hexagonal) phase with translational and without orientational order

of the rhomboidal clusters appears in the MF, but not in the MC phase diagram. Al-

though we were not able to identify the H phase using MC simulation, we cannot

rule out the physical significance of this MF result. Notice that in our analysis of the

simulation results (see for instance Fig. 2.54) we found some anomalous behavior

both in the equations of state (either ρ(T ) at constant µ, or ρ(µ) at constant T),

and in the dependence of the results on the system size in the putative region of the

F phase close to the transition to the OR phase. In this regard, it is interesting to

point out that other models on the triangular lattice and related models containing

competing interactions [91, 103–105] exhibit modulated structures, and the phe-

nomenology of Devil’s staircase [106]. Our simulation analysis cannot answer if it

is the case for our lattice SALR model, but both the behavior of the fluid phase close

to the transition to the OR phase, and the results in the region described as molten

lamellas exhibit some similarities with those reported for this kind of systems.

Further differences between the phase diagrams concern the sequences of phase

transitions for high T ∗. In MF the L2 phase coexists with the H phase for high T ∗,

and extends to higher T ∗ than the OR phase. In contrast, in MC we find that the
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ML phase coexists with the disordered F phase for high T ∗, and extends to lower T ∗

than the OR phase. We attribute the stability of the F phase between the OR and ML

phases to the effects of fluctuations.

In our MC simulation we do not discriminate between possibly distinct fluid F phases,

despite signatures of the phase transitions both in the density and in the energy.

Thus, the region marked as F in Fig.2.52 might in fact represent stability of a few

different phases (see the snapshots in Fig.2.56).

The differences between the MF and MC phase diagrams are even stronger in the

(ρ, T ∗) variables. The density ranges of the stability regions of the ordered phases

and the two-phase regions are quite different in MF and in MC. The exception is the

ordered L phase. It is stable for very narrow range of densities, ρ ≈ 1/2 both in MF

and in MC.

Based on the comparison of the MF and MC phase diagrams we conclude that if

the amplitude of the density wave in an orderd phase is small in MF, then only a

short-range order (such as in Fig 2.56b) is left in a presence of fluctuations. The MF

ordered phases with a large amplitude of the density oscillations remain stable in a

presence of fluctuations. However, instead of a coexistence of two different ordered

phases, we find a transition between each of them and a less ordered phase above

a triple point. We found the OR-ML-L triple point at T ∗ = 0, and the OR-F-ML triple

point at T ∗ ' 0.38. We may observe that the temperature of the triple point is higher

when the coexisting phases are less ordered.

2.2.6 Short summary

We have studied a model of the colloidal self-assembly at an interface between two

phases, that is, in two-dimensional space. We have derived its ground state (T ∗ =

0) (Sec. 2.2.2) and presented the results for the phase diagram (T ∗ > 0) within

approximate theories (2.2.3), and Monte Carlo simulation (Sec. 2.2.4). The main

results are:

• The ground state shows stability regions of periodically distributed clusters,

bubbles or stripes (Fig.2.44).

• The ground state at the coexistence between the vacuum and cluster phases,

and between the cluster and stripe phases is strongly degenerated. The de-

generacy leads to positive entropy per lattice site at T ∗ = 0 and vanishing
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surface tension. We interpret the states stable at the coexistences as different

disordered phases.

• The approximate theories predict stability of the cluster fluid phase at low T

(Fig. 2.51), and the cluster phase with positional order, but without orienta-

tional order at high T (Fig. 2.49). Both cluster phases were not distinguished

as distinct phases found by the MC simulation techniques, despite different

structures visible in the snapshots.

• The phase diagram obtained via Monte Carlo simulations (Fig. 2.49) shows

stability of two lamellar phases. The lamellar phase characterized by orienta-

tional and translational order, and the molten lamella phase which has only

orientational order, but no translational order. Stability of the molten lamella

phase is a novelty in comparison to previously published phase diagrams of

the SALR systems [35, 39, 107].

2.3 Self-assembly in the bulk - summary

In order to investigate the impact of boundary conditions on self-assembling systems

we have to know their general bulk properties. For that reason, we have developed

two generic models with pair potentials that can lead to spontaneous pattern forma-

tion: the model for colloidal self-assembly induced by isotropic competing interac-

tions and the model for amphiphilic self-assembly with anisotropic pair interactions.

We have started our investigation by considering one-dimensional models. Our re-

sults reveal that the two systems, beside the common topology of the mean-field

phase diagram at high T , share many properties at low T . We have shown that for

the two systems the equation of state, the correlation function and the specific heat

are qualitatively similar, and that the ground states also have the same topology.

What is more, the systems share such specific property as infinite degeneration of

the ground state at the coexistence lines, which for both models leads to vanishing

surface tensions between the coexisting phases.

Because of the strong similarities between the properties of the amphiphilic system

and the colloidal system with the SALR potential, we decided to continue the study

of bulk properties of self-assembly only for the colloidal system. We have introduced

a two-dimensional model for self-assembly of nanoparticles or proteins on surfaces,
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interfaces or membranes. We have assumed nearest-neighbor attraction and third-

neighbor repulsion. Such interaction ranges were found for example for lysozyme

molecules in water [66]. We have determined the ground state of the model, the

phase diagram within the mean-field approximation and the phase diagram obtained

via Monte Carlo simulation.

The topologies of the ground states of the one- and two-dimensional models are

similar, with the proviso that the region of stability of the 1d periodic phase in 2d is

splitted between different inhomogeneous phases: periodically distributed clusters,

bubbles or stripes. Independently of dimensionality, the ground state is strongly

degenerated. The ground state of the 1d model is degenerated at the coexistence

between the periodic and homogeneous phases, while the 2d model is degenerated

additionally at the coexistence between ordered phases of different symmetry. Due

to the infinite degeneracy, the entropy per site at the coexistence between different

ordered phases does not vanish. We identify the disordered states stable at the phase

coexistence between vacuum and hexagonally ordered clusters (Fig.2.44a,c) as a

disordered cluster fluid. The disordered states stable at the coexistence between the

ordered clusters and stripes (Fig.2.44e-j) correspond to a disordered phase called

molten lamella. The structures stable at the above phase coexistences include the

interface between the two phases. Thus, the surface tension vanishes. We conclude

that, because of its ubiquity, the vanishing surface tension at the ground state

coexistence may be a universal property of self-assembling systems.

The λ lines, which describe the MF boundary of stability of the disordered phase,

have the same qualitative dependence on the strength of the repulsion for both 1d

and 2d models (see Fig. 2.4 and 2.48 respectively). What is more, also for 3d axial

next-nearest-neighbor Ising model similar dependence was found [70]. What seems

to be surprising, in all the cases for a range of moderate repulsions the system is

unstable with respect to a periodic ordering for high T ∗ and with respect to a gas-

liquid separation for low T ∗. However, the phase separation for low T ∗ and the

periodic ordering for high T ∗ are consistent with the ground state, which is an exact

result. Similar trend was observed before for different forms of the SALR potential

for moderate repulsion in MF theories [40, 73]. The corresponding types of (µ, T )

phase diagrams can be found in Ref. [108]. The periodic structures present only

above a certain temperature are a compromise between the energetic and the en-

tropic contributions to the grand potential. The above evolution of the MF lines of
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instability for increasing repulsion is probably a generic property of SALR sys-

tems, which is independent of the particular shape of the potential and system

dimensionality.

We have determined the phase diagram of the SALR model within the mean-field

approximation. We have obtained the same sequence of the ordered periodic phases

as in Ref.[39]. For increasing density the stable phases are: fluid, hexagonally or-

dered clusters, lamellar phase and hexagonally ordered bubbles. For high T ∗ the

phase diagrams on the lattice and in continuum are very similar. However, on the

lattice there are two lamellar phases with different orientations of the stripes w.r.t

the lattice directions. For strong repulsion (J∗ = 3) we obtain two hexagonal phases,

with and without orientational ordering of the long axes of the rhomboidal clusters.

The regions occupied by the ordered phases and the extent of the two-phase regions

on the (ρ∗, T ∗) phase diagram are also different than in Ref.[39]. For weak repul-

sion (J∗ = 1, i.e.
∫

drV (r) = 0) the clusters are symmetrical and there is a single

hexagonal phase, as in Ref.[39]. Unfortunately, in the mean-field approximation

the effect of the degeneracy of the ground state cannot be correctly described. In

mean field the mesoscopic fluctuations are neglected, whereas in the SALR systems the

displacements of the clusters or stripes lead to formation of the disordered cluster fluid

or molten lamella. The dominant role of mesoscopic fluctuations makes the studies

of the SALR systems particularly difficult.

The phase diagrams obtained by the Monte Carlo simulation and the mean-field

phase diagram differ significantly. The differences were discussed in Sec. 2.2.5.

The main novelty of the MC phase diagram is the stability of the molten lamella

phase, which was not previously reported for the systems with the SALR poten-

tial [35, 39, 107]. The molten lamella phase denoted by ML on the phase diagram

in Fig. 2.52 is characterized by global orientational order and lack of translational

order, which are both present in the case of the lamellar phase. The typical particle

configuration of the ML phase at high T and µ∗ ≈ 6 consists of stripes with many

defects of different kind, but with the same orientation in one of the main lattice

directions (see Fig. 2.56c). At low T and µ∗ corresponding to the coexistence of the

lamellar and rhomboidal phases, the ML typical configuration is a mix of rhomboidal

clusters and short zig-zag stripes oriented in the same direction (see Fig.2.44g for the

ground state configuration of the ML phase). Such characterization was quantified

by appropriate order parameters described in Sec. 2.2.4.3. The use of specific order
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parameters was crucial and necessary to determine the loci of the phase transitions

between the ML phase and other phases. In Ref. [39] Archer used the DFT, hence a

period patterning was assumed and differentiation of the phase with structural de-

fects was unreachable. On the other hand in Ref. [35] the phase transitions to the

ML phase on the MC phase diagram could have been found, but the authors decided

to determine the loci of phase transitions by maxima of the heat capacity, which in

the case of the SALR systems do not necessarily indicate a transition. As we have

shown, the heat capacity in the SALR system may have two maxima as a function

of T even in one-dimensional system, where the peak in the heat capacity at lower

temperature signals an approach to the transition at T ∗ = 0, while the maximum at

higher temperature is not associated with any phase transitions. What is more, in

Fig. 2.60 we have shown that the position and the hight of the heat capacity peak

at the F-ML transition has nonmonotonic dependence on the system size, and thus

cannot quantitatively determine the location of the phase transition.

It is worth noticing, that the 1d model with the SALR potential discussed in Sec. 2.1.1

to some extent can describe properties of the lamellar phases in a two-dimensional

system. In such sense, the coexistence of the two periodic phases with different

degree of order found within the MF approximation in 1d (Fig. 2.10), reflects the

coexistence of the lamellar and molten-lamellar phases found in 2d space by the MC

simulations. The change of the degree of order in a 1d system in the MF approx-

imation captures to some extent the nature of the phase transitions in the 2d sys-

tem, where the more ordered lamellar phase transforms to the less ordered molten

lamella.

An interesting question is: to what extent the results for the lattice SALR model

can be extrapolated to the corresponding models in the continuum? Regarding this

point we could expect that the existence of low density ordered phases analogous

to our OR phase might strongly depend on the details of the interaction potential.

In the continuum, a low density cluster ordered phase could be expected only if the

clusters formed at low temperature show little amount of polydispersity both in the

number of particles and shape. On the other hand, the transitions involving isotropic

phases and lamellar structures seem to appear easily for systems in the continuum

[34–36, 39, 109]. We think that the presented results will provide a convenient

framework to analyze the possible transitions between fluid and lamellar phases,

and the possible order-disorder transition between different lamellar phases.
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Chapter 3

Effects of confinement in the

one-dimensional model of colloidal

self-assembly

In this chapter we study colloidal self-assembly in confined systems. We focus on

the effect of imposing rigid or elastic boundary conditions. In Sec. 3.1 permeable

boundaries are assumed, while in Sec. 3.2 we study the effect of imposing a con-

strain on the number of confined particles. The results are compared in Sec. 3.3.

3.1 Open system

In this section we consider only permeable confining walls. Our first question is how

the structural defects in the case of incommensurability between the system size and

the period in the bulk phase depend on thermodynamic state and on the interaction

with the surfaces. The second question concerns the fluid-induced effective interac-

tions between the confining surfaces for different values of the chemical potential.

The periodic order on the mesoscopic length scale can induce a periodic effective

interaction between confining surfaces on the same length scale. This is analogous

to the periodic solvation force on the atomic length scale in simple fluids [19, 47].

135
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In contrast to the amphiphilic systems, where the effective interaction was inten-

sively investigated both experimentally [50, 51] and theoretically [52–56, 110], in

the case of the SALR potential it has not been studied yet.

In biological systems or in pores of a soft porous material the compartments are

surrounded by lipid bilayers or by elastic material. The separation between the

confining surfaces can be varied, and this change is associated with elastic energy.

Mechanical equilibrium between the solvation force resulting from the stress in the

confined self-assembling system, and the elastic force resulting from a deformation

of the confining elastic material (eg. lipid bilayer) determines the equilibrium shape

of the system boundary. Changes of a thermodynamic state, leading to the change

of the solvation force, might lead to shape and/or size transformations. In this sec-

tion we consider the equilibrium wall separation in a pore of an elastic material

containing particles interacting with the SALR potential. It is interesting what is the

equilibrium separation between the elastic walls when the equilibrium thickness of

the pore in the absence of particles, and the period of the bulk phase are incommen-

surate.

In Sec. 3.1.1 we introduce the model for colloidal self-assembly between rigid per-

meable walls and give the exact expressions for the partition function, the average

density and the effective interaction between the confining walls. In Sec. 3.1.2 we

present asymptotic expressions for the local density and for the effective potential

between the confining surfaces. We determine the range of validity of these formu-

las by comparison with exact results. In Sec. 3.1.3 we discuss the dependence of

the distribution of the particles inside the pore on the chemical potential when the

width of the slit and the period of the bulk structure are incommensurate. We also

compare the shape of ρ(µ) for various slits with the result obtained in Sec. 2.1.1

for the bulk. In addition, we consider periodic boundary conditions in the case of

incommensurability, in order to help to interpret simulation results. The effective in-

teraction between the walls for different thermodynamic states, and the equilibrium

width of a system with elastic boundaries are determined in Sec. 3.1.4.
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3.1.1 Model introduction and exact results

3.1.1.1 Imposing rigid boundary conditions

In the case of the rigid boundary conditions (RBC) we assume that the confining

walls are electrically neutral, hence they interact only with the particles located at

the first and the last site of the system (see Fig. 3.1). The confining walls represent

real physical confinement e.g. in a porous material or in a thin film on a solid sub-

strate. The thermodynamic Hamiltonian which contains the energy and the chemical

potential term is

HW [{ρ̂}] =
1
2

L
∑

x=1

L
∑

x ′=1

ρ̂(x)V (x − x ′)ρ̂(x ′) + h1ρ̂(1) + hLρ̂(L)−µ
L
∑

x=1

ρ̂(x), (3.1)

where the particle-particle interaction potential is the same as considered for the

bulk (Eq. 2.44).

FIG. 3.1: Scheme of the model for a system of size L = 15. The lattice constant a
is equal to the particle diameter σ. The particles attract or repel each other with
the energy −J1 or J2 when they are the nearest or the third neighbors respectively.
If a particle occupies the first or the last site of the lattice, then it interacts with the

confining wall with the energy h1 or hL respectively.

3.1.1.2 Exact solution

We solve the model exactly by the transfer matrix method (see Sec. 2.1.1.4). Since

the range of particle-particle interactions did not change, we use boxes consisting of

three neighboring lattice sites defined in Eq. 2.20. For the system of size L = 3M+ j,

where j = 0,1, 2, the boxes can be labeled by integer r = 1,2, . . . M . For M > 1

(L ≥ 6) the Hamiltonian can be written in the form

H∗W [{ρ̂}] = ρ̂(1)h
∗
1 + ρ̂(L)h

∗
L +H∗j [Ŝ(M)] +

M−1
∑

r=1

H∗t [Ŝ(r), Ŝ(r + 1)]. (3.2)
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where H∗t which contains the interaction between two neighboring boxes and the

chemical potential term in the first box is given by Eq. 2.22 and

H∗j [Ŝ(M)]=



































−(
∑1

i=0 ρ̂(3M−i)ρ̂(3M−i −1))−µ∗(
∑2

i=0 ρ̂(3M − i)), if j=0

−(
∑2

i=0 ρ̂(3M+1− i)ρ̂(3M−i)) + J∗ρ̂(3M−2)ρ̂(3M+1)

−µ∗(
∑3

i=0 ρ̂(3M + 1− i)), if j=1

−(
∑3

i=0 ρ̂(3M+2− i)ρ̂(3M+ 1− i))+

J∗(
∑1

i=0 ρ̂(3M−2+ i)ρ̂(3M+1+ i))−µ∗(
∑4

i=0 ρ̂(3M + 1− i)), if j=2

contains the particle-particle interactions between the particles which occupy the

sites within the M -th box, and in addition the interactions between the particles at

the sites labeled 3M+1 and 3M+2 (if such sites exist for given L). Finally, ρ̂(1)h∗1
and ρ̂(L)h∗L are the energies of interaction between the particles and the two walls.

For M = 1 the Hamiltonian does not contain the last term in (3.2). We consider only

M > 1.

Partition function

The partition function in terms of the transfer matrix (Eq. 2.23) has the following

form

ΞW =
∑

Ŝ(1)

′
∑

Ŝ(M)

eβ
∗ρ̂(1)h∗1TM−1[Ŝ(1), Ŝ(M)]eβ

∗ρ̂(L)h∗L eβ
∗H∗j [Ŝ(M)], (3.3)

where
∑′

Ŝ(M) denotes

′
∑

Ŝ(M)

=















∑

Ŝ(M) if j=0
∑

Ŝ(M)

∑

ρ̂(3M+1) if j=1
∑

Ŝ(M)

∑

ρ̂(3M+1)

∑

ρ̂(3M+2) if j=2.

We transfer T to the base in which it is diagonal and the matrix elements of TM−1

can be easily expressed by the sum over the eigenvalues λi and the matrix elements

Pi(Ŝ(n)) of the matrix transforming T to its eigenbasis

TM−1(Ŝ(n), Ŝ(m)) =
8
∑

i=1

Pi(Ŝ(n))λ
M−1
i P−1

i (Ŝ(m)). (3.4)
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Hence the partition function is

Ξ=
∑

Ŝ(1)

′
∑

Ŝ(M)

8
∑

i=1

eβ
∗ρ̂(1)h∗1 Pi(Ŝ(1))λ

M−1
i P−1

i (Ŝ(M))e
β∗ρ̂(L)h∗L eβ

∗H∗j [Ŝ(M)]. (3.5)

Average density

The framework of the transfer matrix allows us to find a formula for the average

density at the site x = 3n+ l, where n is the number of the triple to which the x-th

site belongs and l = 1,2, 3 is the label of the site within the triple. For 1 < n < M

the average density at the x-th site is

〈ρ̂(x)〉=
1
Ξ

∑

Ŝ(n)

∑

Ŝ(1)

′
∑

Ŝ(M)

eβ
∗ρ̂(1)h∗1Tn(Ŝ(1), Ŝ(n))ρ̂(x)TM−(n+1)(Ŝ(n), Ŝ(M))eβ

∗ρ̂(L)h∗L eβ
∗H∗j [Ŝ(M)].

(3.6)

In terms of the eigenvalues it takes the form

〈ρ̂(x)〉=
1
Ξ

∑

Ŝ(n)

ρ̂(x)

 

∑

Ŝ(1)

eβ
∗ρ̂(1)h∗1

8
∑

r=1

Pr(Ŝ(1))λ
n
r P−1

r (Ŝ(n))

!

×

 

′
∑

Ŝ(M)

eβ
∗ρ̂(L)h∗L eβ

∗H∗j (Ŝ(M))
8
∑

r=1

Pr(Ŝ(n))λ
M−(n+1)
r P−1

r (Ŝ(M))

!

. (3.7)

Effective interaction between the walls

When the correlation length between the particles is comparable with the distance

between the confining walls, then the distribution of the particles is influenced by

both walls. This leads to the excess of the grand potential depending on the distance

between the walls [46]. The thermodynamic effects of confinement are described

by the excess grand thermodynamic potential

Ωex ≡ ΩW −Ω= γ1 + γL +Ψ(L), (3.8)

where ΩW = −kB T lnΞW is the grand potential in the slit, Ω is the grand potential in

the bulk (Eq. 2.6), L is the size of these systems, γ1 and γL are the wall-fluid surface

tensions and Ψ(L) corresponds to the effective interaction between the confining

walls [46] (The effective force between the surfaces is −∇Ψ(L)).

In order to obtain the expressions for Ψ(L) and γi we have to note that the grand

thermodynamic potential for the bulk system of the size L = 3M + j, where j =
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0,1, 2, and M →∞ is

βΩ'M→∞ −
L

3M
lnλM

1 = − lnλM
1 −

j
3

lnλ1. (3.9)

Whereas from Eq. 3.5 we get

lnΞW = ln
�

8
∑

r=1

λM−1
r Cr( j)

�

, (3.10)

where

Cr( j) =
∑

S(1)

′
∑

Ŝ(M)

eβ
∗ρ̂(1)h∗1 Pr(Ŝ(1))P

−1
r (Ŝ(M))e

β∗ρ̂(L)h∗L eβ
∗H∗j (Ŝ(M)). (3.11)

From (3.8)-(3.11) we obtain

βΩex '
3+ j

3
lnλ1 − ln C1( j)− ln

�

1+
8
∑

r=2

Cr( j)
C1( j)

�λr

λ1

�M−1�

. (3.12)

The sum of the surface tensions and the effective potential between the confining

surfaces in Eq.(3.8) are given by

β(γ1 + γ2) = lnλ1 − ln C1(0), (3.13)

and

βΨ(L) = − ln
�

1+
8
∑

r=2

Cr( j)
C1( j)

�λr

λ1

�M−1�

(3.14)

respectively, since we have verified that the sum of the first two terms in Eq. (3.12)

does not depend on j.

The exact expressions take much simpler asymptotic forms for M � 1 and n' M/2.

We present the asymptotic formulas for M � 1 for the density and for Ψ(L), and

compare them with the exact results in the next section.
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3.1.2 Asymptotic expressions for large slits and the range of their

validity

In the energetically favourable structure clusters composed of 3 particles are sepa-

rated by 3 empty sites. For this reason the properties of the system confined in the

slit of a large width L = 3M + j depend on both, the number of the triples of sites,

M ≈ L/3, and the number of the additional sites, j = 0,1, 2. Let us first consider the

average local density in the central part of the slit of large width, M � 1. We divide

the system into triples of sites. Each site x is characterized by the number of the

triple to which it belongs, n, and the position inside the triple, l, so that x = 3n+ l

with l = 1,2, 3. The expression for 〈ρ̂(3n + l)〉 depends on n and l, as well as on

M and j. From the exact formulas derived in the previous section we obtain the

asymptotic expression for M →∞ and n' M/2 (central part of the slit)

〈ρ̂(3n+ l)〉 ' ρ̄+A1(l) cos(nλ+θ1(l))e
−3n/ξ+AL(l) cos((M − n)λ+θL(l))e

−3(M−n)/ξ.

(3.15)

The explicit expressions for ρ̄, the amplitudes A1(l), AL(l) and the phases θ1(l),θL(l)

are given in Appendix 6.4 (these quantities depend also on M and j). The decay

length ξ is given by the same expression as the correlation length in the bulk (Eq.

2.32),

ξ= 3/ ln

�

λ1

|λ2|

�

, (3.16)

where λ1 and λ2 = |λ2|exp(iλ) are the largest and the second largest eigenvalues

of the transfer matrix. The transfer matrix is not Hermitian, and some of the eigen-

values can be complex. The presence of the imaginary part of λ2 depends on J∗,

and on the thermodynamic state. The monotonic decay of the density near a single

surface occurs when λ2 is real and positive ( λ = 0). The exponentially damped

periodic structure with the period 6 occurs when λ2 is real and negative, (λ = π).

In most cases, however, including J∗ = 3 for the range of µ∗ studied in this work, λ2

is complex and the period of the damped oscillations is noninteger.

The asymptotic formula for the effective interaction potential for M →∞ is

βΨ(3M + j)' A( j) cos(λM +φ( j))e−3M/ξ. (3.17)
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The explicit expressions for the amplitude A( j) and the phase φ( j) are given in

Appendix 6.4.

The asymptotic formulas are simply the exponentially damped periodic functions.

Similar expressions, but without the amplitude modulations, were obtained in mean-

field theories of confined self-assembling systems [24, 54, 111, 112]. These rather

simple asymptotic forms are strictly valid for M � 1 and n ' M/2. We check the

validity of the asymptotic expressions by comparing them with the exact results in

case of strong repulsion, J∗ = 3.

As shown in Fig.3.2, the agreement of the asymptotic expression for the local density

with the exact result is very good already for L = 42, and the discrepancy between

the exact and asymptotic expressions appears only very close to the surface. For

L = 30 the accuracy of the asymptotic expression is less good but it is still satisfactory,

except from the clusters adsorbed at the surfaces, where some discrepancy can be

observed. Thus, the asymptotic formula is sufficiently accurate not only in the center,

but inside the whole slit for slits containing 5 or more clusters.

FIG. 3.2: Comparison of the exact (3.7) and approximate (3.15) formulas for the
average density for J∗ = 3, µ∗ = 0, T ∗ = 0.5 and h∗1 = h∗L = −1. Upper panel

L = 30, lower panel L = 42.

In the asymptotic expressions the decay length and the period of oscillations of the

local density in the slit, and the correlation function in the bulk are the same. In

Fig.3.3 we compare the exact results for the local density and for the correlation

function. In order to compare the two functions, we add the average density of the

bulk system to the linearly scaled correlation function, and obtain good agreement

for the distance from the surface x > 10. We conclude that the correlation function
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in the bulk describes very well the local structure (up to an amplitude that depends

on the kind of the wall) except for the first cluster adsorbed at the surface.

FIG. 3.3: Comparison of the density profile in a slit (dashed line) for J∗ = 3,
µ∗ = −0.66, T ∗ = 0.0125, h∗1 = h∗L = −1 and L = 96, and the bulk correlation
function obtained in Sec. 2.1.1.4 (solid line) for the same thermodynamic state.
The correlation function was linearly scaled and shifted by the average density of

the bulk system, ρ = 0.3841.

In Fig. 3.4 the exact and approximate results for the effective interaction between

the walls are compared. As expected, the accuracy of the asymptotic formula im-

proves with increasing system size. Close to the minima, i.e. near the equilibrium

separations between the surfaces, the approximate formula works well also for small

systems. On the other hand, for small and incommensurate system sizes the approx-

imate formula highly underestimates the interaction potential, therefore for small

systems it underestimates the effective force between the walls.

Notice that for some system sizes there is no clear minimum and Ψ(L) takes almost

equal values for two consecutive system sizes. However, for the exact and the ap-

proximate formulas this phenomenon occurs for different system sizes eg. in Fig. 3.4

for L = 39,40 for the exact result, and for L = 27, 28 for the approximate formula.

3.1.3 Effects of incommensurability of the system size and the

period of the bulk structure

In this section we study the effect of the incommensurability of the system size and

the period of the bulk structure on the distribution of the particles and on the de-

pendence of the average density on the chemical potential. Our aim is to verify how
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FIG. 3.4: The effective wall-wall interaction Ψ(L) for J∗ = 3, µ∗ = 0, T ∗ = 0.2 and
h∗1 = h∗L = −1. Dashed line with squares - the exact formula, Eq. (3.14). Solid line

with circles - the approximate formula, Eq. (3.17).

ρ(µ∗) is influenced by the presence of structural defects that must be present in the

case of the incommensurability. We first consider PBC, and next RBC.

3.1.3.1 The case of periodic boundary conditions (PBC)

We focus on L such that mod (L, 6) = 3, i.e. the remainder after division of L by

6 is 3 and thus the mismatch between L and 6 (the low-T period in the ordered

phase) is the largest. Let us first investigate the ground state (GS), i.e. the case

FIG. 3.5: Schematic representation of the ground state (T ∗ = 0) for J∗ = 3 for
the bulk system ( mod (L, 6) = 0) (a) and for the system of size L = 9 (b). For
µ∗ < −2/3 or µ∗ > 14/3 the stable phase is the vacuum or the fully occupied
lattice. For −2/3< µ∗ < 14/3 the periodic phase is stable in the bulk. For L = 9 the
stability region of the periodic phase is split into µ∗ < 2 and µ∗ > 2 corresponding

to enlarged void or cluster respectively.

of T ∗ = 0. For mod (L, 6) = 3 we may expect that in the periodic phase either a

separation between some clusters is larger than 3, or some clusters are larger than

3 (see Fig.3.5). When the separation between the clusters is larger than 3 and we
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add one particle to a cluster consisting of at least 3 particles, then the increase of

the Hamiltonian is ∆H∗ = −1 + J∗ − µ∗. For µ∗ < J∗ − 1 or µ∗ > J∗ − 1 we have

∆H∗ > 0 or ∆H∗ < 0 respectively. Thus, in the GS corresponding to the minimum

of the Hamiltonian H∗ the voids in the first case and the clusters in the second case

occupy 3 more sites. At T ∗ = 0 the average density jumps by 3/L for µ∗ = J∗ − 1.

The GS in the bulk ( mod (L, 6) = 0) and for L = 9 is shown in Fig.3.5 for J∗ = 3.

Note that we have ∆H∗ = −1 + J∗ − µ∗ = 0 for µ∗ = 2 in this case, therefore for

µ∗ = 2 the GS is degenerate, and the cluster can consist of either 3,4,5 or 6 particles.

In Fig.3.6 we show ρ(µ∗) for T ∗ = 0.15. Note that the transition between the two

types of defects, i.e. larger voids or larger clusters could be misinterpreted as a

transition between different phases, because when a system undergoes a first-order

phase transition, steps in ρ(µ∗) appear. The results of simulations in the case of

systems with spatial inhomogeneities on a mesoscopic length scale should be in-

terpreted with special care, especially when several periodic phases with different

periods can appear. Our results show that in the case of structural defects the height

of the step decreases as ∼ 1/L for increasing L, and for certain system sizes the step

disappears (Fig.3.6).

FIG. 3.6: The average density ρ∗ as a function of the chemical potential µ∗ for
J∗ = 3 and T ∗ = 0.15, for a system with PBC and L = 9 (red dashed line), L = 12

(blue dotted line) and L = 15 (black solid line).

3.1.3.2 The case of rigid boundary conditions (RBC)

We first focus on attractive surfaces. Let us consider the Hamiltonian for a single

cluster composed of n ≤ 3 particles adsorbed at the surface, H∗ = h∗1 − (n − 1) −

nµ∗. The adsorption of the cluster is energetically favourable compared to vacuum

for µ∗ > (h∗1 + 1 − n)/n. In order to fix attention, we assume that the interaction
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with the surfaces is the same as the particle-particle attraction, h∗1 = h∗L = −1. In

this case a cluster adsorbed at each attractive surface is energetically favourable

for µ∗ > −1. Thus, for µ∗ > −1 the largest mismatch between the system size

and the structure of the bulk periodic phase occurs for mod(L, 6) = 0 when both

surfaces are attractive. For mod (L, 6) 6= 3 the GS of the system is degenerate in

the whole stability region of the periodic phase, because the defects in the periodic

structure that are caused by the incommensurability of the period and the system

size are not localized. Moreover, the stability region of the periodic phase splits into

4 regions, corresponding to different numbers and sizes of the clusters present in the

slit. We choose L = 19 and present typical microscopic states of the GS in Fig.3.7.

For µ∗ < 0 there are 3 clusters in the slit. Each of them consists of 3 particles, and

the neighboring clusters are separated by at least 3 empty sites. Apart from this

limitation the position of the central cluster can be arbitrary. For 0 < µ∗ < J∗ − 1

there are 2 clusters consisting of 3 particles and 2 clusters consisting of 2 particles

in the slit. The clusters do not repel each other, i.e. there are 3 empty sites between

the neighboring clusters. For J∗ − 1 < µ∗ < 2(J∗ − 1) there are 4 clusters consisting

of 3 particles. Finally, for µ∗ > 2(J∗− 1) there are 3 clusters separated by two voids

composed of 3 empty sites, and each cluster consists of at least 3 particles.

FIG. 3.7: Typical microstates in the degenerate GS for a slit of size L = 19 with
attractive walls. The range of the chemical potential corresponding to the shown
microstates is (a) −2/3 < µ∗ < 0, (b) 0 < µ∗ < J∗ − 1, (c) J∗ − 1 < µ∗ < 2(J∗ − 1)

and (d) 2(J∗ − 1)< µ∗ < 2J∗ − 4/3.

In Fig.3.8 we present ρ(µ∗) for the slit with L = 19 at T ∗ = 0.15. The average

densities corresponding to the plateaus are shown in the insets. Note the similarity

between the average densities in the GS (Fig.3.7 (a)-(d) ) and the insets (a)-(d) in

Fig.3.8.

In the case of confinement in a slit the steps in ρ(µ∗) represent a physical effect,

namely structural changes such as a jump of a number of the clusters or a change

of their size as a function of the chemical potential. Such abrupt changes in a slit
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FIG. 3.8: Density ρ as a function of the dimensionless chemical potential µ∗ for
J∗ = 3 and T ∗ = 0.15 in a slit of size L = 19 with attractive walls. For increasing
µ∗ we observe 4 plateaus. The plateaus from (a) to (d) correspond to the average
densities shown in the insets. The steps between them occur for µ∗ ≈ 0, 2,4, i.e.
near the GS coexistence between different structures in confinement (see Fig.3.7).

induced by small changes in the surroundings occur when the size of the system and

the period of the bulk phase are incommensurate.

Let us focus on the role of the interaction with the confining surfaces. The attractive

and repulsive surfaces are compared in Fig. 3.9 for a large slit. When the walls

are attractive, we observe steps in ρ(µ∗) associated with adsorption of a particle

or a cluster. The first step is present only if h∗1, h∗L < −1 and it originates from the

adsorption of a single particle at each wall, while the second step corresponds to the

adsorption of clusters. Note that for µ∗ > −1 the ρ(µ∗) curves are essentially the

same for h∗1 = h∗L = −1 and h∗1 = h∗L = −1.5. This shows that for strong wall-fluid

attraction the results are independent of h1, hL.

In the case of short-range interactions with the walls, the density profiles in the slits

with attractive and repulsive surfaces are very similar for −0.75 < µ∗ < −0.5 (Fig.

3.9b). This rather surprising property follows from the fact that even though the

clusters do not touch the repulsive surfaces, they are located very close to them. A

significant difference between the attractive and repulsive surfaces appears only for

µ∗ > −0.45 - there is one more cluster, and one more step in ρ(µ∗) in the slit with

the attractive surfaces for L = 20,26, 32, . . ..
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FIG. 3.9: Panel (a) ρ(µ∗) for J∗ = 3, T ∗ = 0.03 and L = 50 for systems with
PBC (red solid line), RBC with attractive walls for h∗1 = h∗L = −1 (dashed line)
and for and h∗1 = h∗L = −1.5 (dash-dotted line), and RBC with repulsive walls for
h∗1 = h∗L = 1 (blue solid line). The rapid changes of the density at µ∗ ≈ −1.5 and
at µ∗ ≈ −1 correspond to the adsorption of a particle and a cluster respectively
at the attractive walls. Panels (b) and (c) show density profiles for µ∗ = −0.55
and µ∗ = −0.4 respectively for attractive (dotted lines) and repulsive (solid lines)
surfaces. Note the change of the number of clusters for µ∗ ≈ −0.45 when the walls

are attractive.

3.1.4 Effective interaction between the confining walls and de-

formations of elastic containers

In this section we discuss the effective potential between the confining surfaces sep-

arated by the distance L. We first consider walls separated by a fixed distance. Next

we assume that the walls are elastic, and the change of the wall separation is pos-

sible at the cost of elastic energy. When the equilibrium width of the empty slit,

L0, and the period of the ordered phase do not match, the elastic energy and the

fluid-induced stress are in competition. We ask how the equilibrium width of the slit

filled with the inhomogeneous fluid differs from L0.
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3.1.4.1 The case of fixed distance between the confining walls

The exact results for the effective potential between the confining walls separated

by a fixed distance, Ψ(L), are presented in Fig. 3.10 for the chemical potential corre-

sponding to the GS stability of the vacuum, the periodic phase and the dense phase

(see Fig.3.5). Note that the confined fluid leads to repulsion or attraction between

the walls when the dilute or the dense pseudo-phase is stable in the bulk respectively.

The repulsion may follow from the adsorption of the clusters at the surfaces, since

the clusters repel each other. The oscillations of Ψ(L) are present if the periodic

distribution of clusters is thermodynamically preferred. These oscillations should be

interpreted as follows: the minima of Ψ(L) correspond to the system sizes commen-

surate with the periodic structure, therefore if we would allow the system to shrink

or expand, then in order to suppress the internal stress the system would change

its size to the value corresponding to the nearest minimum of Ψ(L). The bigger is

the slope of the oscillations, the stronger is the effective force leading to the nearest

minimum of Ψ(L).

FIG. 3.10: Ψ(L) for J∗ = 3 and T ∗ = 0.2 for different values of the chemical poten-
tial µ∗ and both walls attractive. (a) µ∗ = −1, (b) µ∗ = 0, (c) µ∗ = 4, (d) µ∗ = 5. L

is in units of the particle diameter σ

For large L the decay rate of Ψ(L), ξ, is equal to the bulk correlation length (see

Eq.(3.17)). In Sec. 2.1.1.4 it was shown that the correlation length in the considered

model can be a few orders of magnitude larger than the molecular size for µ∗ corre-

sponding to the stability region of the periodic phase on the GS (−2/3< µ∗ < 14/3

for J∗ = 3). In Fig. 3.11 we show that for µ∗ = 2, where ξ takes the maximum,

Ψ(L)∼ 0.1kB T even for system sizes 4 orders of magnitude larger than the particle

diameter.
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FIG. 3.11: Ψ(L) for J∗ = 3, T ∗ = 0.2 and µ∗ = 2 for non-interacting walls. L is in
units of the particle diameter σ.

3.1.4.2 The case of elastic confining walls

We assume that the width L of the slit can oscillate around L = L0, where L0 is the

equilibrium width in the absence of particles inside the slit. This oscillation can be

controlled by a harmonic potential energy Uw(L) = k · (L − L0)2 (see Fig. 3.12).

Next we assume that when the slit is in contact with the reservoir of particles, and

FIG. 3.12: Illustration of the system with elastic walls with the spring constat k.

the chemical potential µ∗ and temperature T ∗ are fixed, then in mechanical equi-

librium the sum of Uw(L) and the particle-induced effective potential Ψ(L) reaches

the minimum. In Fig. 3.13 we present the sum of Ψ and Uw as a function of the

system size. Note that when L0 corresponds to the maximum of Ψ(L), i.e. to a large

stress induced by the confined fluid, then Uw(L) + Ψ(L) may have two minima of

very similar depth for wall separations that differ approximately by the period of

the bulk structure. The number of clusters in these two states differs by one. As can

be seen in Fig.3.13, the barrier between the two minima is of order of kB T for the

assumed elastic constant k = 0.1kB T/σ2.

In Fig.3.14 we show how the bistability appears when the chemical potential changes

from µ∗ = 0 or µ∗ = 4 towards µ∗ = 2. The barrier between the two minima

decreases for increasing |µ∗ − 2|. Thus, by changing the concentration of particles

in the surroundings we can change the hight of the barrier and induce or suppress

the jumps between the two widths of the confined system.
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FIG. 3.13: The sum of the elastic energy of the confining boundaries, and the effec-
tive interaction induced by the confined self-assembling system for different equi-
librium width of the empty slit L0. J∗ = 3, T ∗ = 0.5, µ∗ = 2, h∗1 = h∗L = −1, and the

spring constant k = 0.1kB T/σ2, where σ is the particle diameter.

FIG. 3.14: The sum of the elastic energy of the confining boundaries and the ef-
fective interaction induced by the confined self-assembling system for various val-
ues of µ∗. J∗ = 3, T ∗ = 0.5, h∗1 = h∗L = −1, L0 = 24, and the spring constant

k = 0.1kB T/σ2.

3.2 Fixed number of particles

Some membranes are permeable, while some other are not. Thus, a question arises

if fluctuations of the number of confined particles have any effect on the properties

of a self-assembling system confined by rigid or adaptive boundaries. This question

motivates the study in this section. We ask how the effects of confinement on the

self-assembling system depend on the contact with a reservoir of particles.

In the case of fixed boundaries we address the question of how the fluctuations of

the positions and sizes of the clusters (their dynamical assembly and dissociation)

are coupled with the fluctuations of the number of particles in the system. In the
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case of inhomogeneous distribution of particles it is not a priori obvious that the

largest fluctuations in the total number of particles lead to the largest differences

between the density profiles in the canonical and grand canonical ensembles. We

shall compare the density profiles and the pressure in the Grand Canonical Ensemble

(GCE) and Canonical Ensemble (CE), with the average number of particles in the

GCE equal to the number of particles N0 in the CE. We shall pay particular attention

to values of N0 that are too small or too large for a given system size L for formation of

periodically distributed layers of particles that minimizes the system energy. Roughly

speaking, in the SALR systems the minimum energy is assumed when the individual

clusters have the lowest energy (no intra-cluster repulsion), and are separated by the

smallest distances corresponding to no inter-cluster repulsion. When the number

of particles is too small or too large for a given L for formation of the optimal bulk

structure, some structural deformations must occur. Our purpose is to compare these

deformations and their effect on the mechanical properties in the GCE and CE.

In the case of permeable and elastic confinement we have shown in Sec. 3.1 that the

system size fluctuations are accompanied by absorption or evaporation of a whole

cluster. Clearly, for fixed number of particles such large size fluctuations are not pos-

sible. Hence, the permeability plays an important role in the case of elastic bound-

aries. In this section we verify if in the case of fixed number of particles the bistability

of the system size can still exist due to some other mechanism.

This section is organized as follows: the simulation methods are presented in Sec.

3.2.2. The CE and GCE density profiles are compared in Sec. 3.2.3. The mechanical

properties are discussed in Sec. 3.2.4. We compare the dependence of pressure on

density in the CE (fixed N and varying L) and in the GCE for several fixed values of

L and varying 〈N〉. The dependence of pressure on the system size for fixed N or

〈N〉 in the CE or GCE respectively is also discussed. In Sec. 3.2.5 we consider elastic

boundaries and compute the average system size as a function of N for various elastic

constants of the walls. For selected cases the histograms for the fluctuating width of

the system are presented.

3.2.1 The model

In the current study we continue the investigation of the confined system with par-

ticles interacting via the pair potential given by Eq. (2.44). The confinement is

httt://rcin.org.pl



Chapter 3. Effect of confinement in 1D model of colloidal self-assembly 153

assumed to be electrically neutral, hence the interaction of the particles with the

walls is short range. The Hamiltonian U in the Canonical Ensemble takes the form:

U[{ρ̂}] =
1
2

L
∑

x=1

L
∑

x ′=1

ρ̂(x)V (x − x ′)ρ̂(x ′)+h1ρ̂(1)+hLρ̂(L) ( fixed N); (3.18)

The number of particles N (fixed in the Canonical Ensemble) is given by:

N =
L
∑

x=1

ρ̂(x). (3.19)

As in Sec. 3.1, we assume that the confinement can be either rigid or elastic. For

rigid boundary conditions the distance L between the confining walls is fixed, while

in the case of elastic walls we assume that it may oscillate around L0, which is the

equilibrium width of an empty system. For the fixed number of particles the Hamil-

tonian takes the form:

U= U + k(L − L0)
2. (3.20)

3.2.2 The simulation methods

In the current study we compare the exact solution obtained in the GCE with the

results of MC simulation in the CE. In addition to the simulations in the CE we also

carried out some runs in the GCE with the aim of cross-checking the consistency

between the simulation codes and the numerical treatments based on the transfer

matrix method.

The basic sampling steps follow the Metropolis scheme described in Sec. 2.2.4.1. For

the GCE simulation both particle translations, deletion and insertion steps were car-

ried, while for the CE simulation only the particle translation steps were performed.

The computation of pressure from simulation of lattice models is usually carried

out by means of the integration of the Grand Potential in the GCE, because the

known relation for the Canonical Ensemble: βp = − (∂ (βA)/∂ V )N ,T (where A is

the Helmholtz free energy, and V the generalized volume) is hard to translate into

an efficient numerical procedure due to the discreteness of the volume in lattice

systems. We have found, however, that for our 1d system it is feasible to compute

the pressure p(N , L, T ) in the CE, by an algorithm based on the discretization of the
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derivative of A(N , L, T ) with respect to the system size as:

p±(N , L, T ) = ∓[A(N , L ± 1, T )− A(N , L, T )]. (3.21)

The pressure, in terms of the canonical partition function Q(N , L, T ) can be written

as

p±(N , L, T ) = ±
1
β

ln
Q(N , L ± 1, T )

Q(N , L, T )
. (3.22)

The two ways of discretization, p+ and p−, lead to two different methods of comput-

ing the pressure, the virtual expansion and the virtual contraction respectively, from

a direct analysis of the configurations from a simulation run at conditions (N , L, T ).

In the virtual expansion an empty site is added at a randomly chosen position of the

system. For a confined system of size L, there are L + 1 possibilities of performing

such an insertion, namely L − 1 cases where the inserted site is located between

two sites of the system plus two insertions between the walls and the first or last

site. Considering the L + 1 possible ways of inserting an empty site on each of the

microstates of the system of size L with N occupied sites (with 0 ≤ N ≤ L), we get

L + 1− N identical copies of each of the microstates of the system of size L + 1 and

N occupied sites (see Appendix 6.5). Let us denote by ~ρL a given configuration of

the system with N particles and L sites, with potential energy given by U( ~ρL). If we

define ~ρL+1( ~ρL, k) as the configuration with N particles of a system with L + 1 sites

built from ~ρL by inserting a site at position k, and denote by
∑

~ρL
the sum over all

possible microstates of this system with N particles and L sites, then we can write

Eq. (3.22) as:

p+(N , L, T ) =
1
β

ln

∑

~ρL
exp [−βU( ~ρL)]

∑L
k=0 exp [−βU( ~ρL+1( ~ρL, k)) + βU( ~ρL)]

(L + 1− N)
∑

~ρL
exp [−βU( ~ρL)]

= kB T ln


L + 1
L + 1− N

exp [−β∆Uins]
·

L
, (3.23)

where 〈·〉L is the average value of · when sampled on a system of size L, and ∆Uins

is the difference between the energies of the systems with L + 1 and L sites. Anal-

ogously, a formula for pressure p− computed by the virtual contraction scheme can

be derived

p−(N , L, T ) = −kB T ln


L − N
L

exp [−β∆Udel]
·

L
, (3.24)
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where∆Udel = U( ~ρL−1)−U( ~ρL) is the variation of energy when a configuration ~ρL−1,

of N particles and L−1 sites is generated by eliminating one of the empty sites from

the configuration ~ρL of a system with N particles and L sites. The virtual contraction

method is inefficient at high densities, therefore we used it only for verification of the

results obtained via the virtual expansion method, since by construction we expect:

p+(N , L, T ) = p−(N , L + 1, T ). (3.25)

In order to calculate properties of the system with elastic boundary conditions de-

scribed by the Hamiltonian U given in Eq. (3.20), one needs to perform two addi-

tional types of MC steps. The first one is the intercalation of an empty site into a

randomly chosen place of the system, the second one is the removal of a randomly

chosen empty site of the system. The acceptance probability of the first move for

system with L sites and N particles is

A(L + 1|L) =min
¦

1, exp[−β∆U]
L + 1

L + 1− N

©

, (3.26)

where ∆U is the change of the energy after the size modification. Analogously the

probability of acceptance of the move in which an empty site is removed is given by:

A(L − 1|L) =min
¦

1, exp[−β∆U]
L − N

L

©

. (3.27)

Notice that this procedure resembles a lattice version of isothermal-isobaric (N pT )

simulation, in which the energy term introduced through the elastic force plays the

role of the external field.

3.2.3 Distribution of particles between rigid walls

In this section we consider a system containing N0 particles between rigid walls

separated by a fixed distance L. The main question is how the particles self-assemble

if N0 is such that the equilibrium bulk structure is not possible. The distribution of

particles for fixed N0 will be compared with the distribution of particles in the open

system, where the number of particles N fluctuates in such a way that 〈N〉= N0.

In Fig.3.15 the density profiles obtained by the MC simulations in the CE are com-

pared with the exact results obtained in the GCE by the transfer matrix method

httt://rcin.org.pl



Chapter 3. Effect of confinement in 1D model of colloidal self-assembly 156

described in Sec. 3.1. We chose L = 50, T ∗ = 0.3 and several values of N0. In each

case the chemical potential in the GCE was fixed to the value that corresponds to

〈N〉= N0. We used the exact expression for density as a function of the chemical po-

tential that was obtained in Sec. 3.1. For L = 51 the optimal number of clusters for

the considered range of µ∗ is 9 (hence N = 27), since the sequence of three occupied

sites followed by three empty sites can be formed, with two clusters adsorbed at the

attractive surfaces. The energy for such a structure assumes a minimum (there are

as many attracting pairs as possible with no repulsion). For L = 50 only a small

defect in the ordered structure occurs. We can see a very good agreement between

the two ensembles for small as well as for large number of particles. For N = 24

corresponding to eight clusters, however, the number of maxima in the GCE is larger

than in the CE. This result is even more surprising when we consider the fluctuation

of the number of particles in the GCE (Fig.3.16). One can see that the largest dis-

crepancy between the density profiles does not occur for the largest fluctuation of

the number of confined particles in the GCE.

In order to understand why the distributions of the particles in the two ensembles

are different when one cluster in the CE “is missing”, let us consider the ground

state (GS), T ∗ = 0. The microstates present in the GS for L = 15 and N = 5, 6,7

are shown in Fig.3.17. The GS in Fig.3.17 shows that even small fluctuations of the

number of particles - addition of one particle in our case - can lead to a significant

change in the distribution of the particles. This is the case when 〈N〉 is a multiple of

3, and there is a free space for an extra cluster (with no cluster-cluster repulsion).

When one additional particle enters the system, the energy change is J∗−1 when one

of the clusters grows to contain 4 particles, or 0, when the new particle is sufficiently

far from the clusters, or one of the clusters together with the new particle form two

clusters composed of two particles. In Fig.3.17, bottom row, the two latter cases are

shown. The states shown in Fig.3.17 are energetically favorable for J∗ > 1. Thus,

in the GCE with 〈N〉 = 6 such microstates will appear quite often. As a result, an

additional maximum in the average density profile occurs.

The above simple considerations show that spatial distribution of particles in the CE

and GCE can be qualitatively different. This qualitative difference is not present for

the largest fluctuation of the number of particles in the GCE. Even a small fluctuation

of the number of particles can lead to a change of the number of clusters, because the

sizes of the clusters can fluctuate, especially when N is not a multiple of 3. When
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FIG. 3.15: Comparison of the GCE (dashed line) and the CE (solid line) density
profiles for L = 50 at T ∗ = 0.3 and N0 = 22 or µ∗ = −0.33904 (a), N0 = 23 or
µ∗ = −0.21127 (b), N0 = 24 or µ∗ = −0.02632 (c), N0 = 25 or µ∗ = 0.22159 (d),
N0 = 26 or µ∗ = 1.08857 (e). Repulsion to attraction ratio J∗ = 3 and attractive

walls with h∗1 = h∗L = −1 are considered for all the cases.

〈N〉 is small enough, the additional clusters can occupy the empty space and no

inter-cluster repulsion appears.

3.2.4 Equation of state in a system confined by rigid walls

In this section we compute the pressure for fixed number of confined particles N0 as

a function of the distance between the confining surfaces L. From these results we

obtain the pressure as a function of density, p(ρ), for given N0. For comparison we
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FIG. 3.16: The standard deviation of the number of particles σN divided by the
average number of particles 〈N〉 for L = 50, T ∗ = 0.3, J∗ = 3 and attractive walls
with h∗1 = h∗L = −1. The red squares indicate the values of the chemical potential

taken for the density profiles in Fig. 3.15.

FIG. 3.17: Typical microscopic states present in the GS of the model with J∗ = 3,
attractive walls with h∗1 = h∗L = −1 and L = 15 in the CE with N = 5 (a), N = 6 (b)

and N = 7 (c). For N = 5, 7 the GS is degenerate.

present p(ρ) calculated exactly in the GCE by the transfer matrix method described

in Sec. 3.1. In the GCE we consider fixed L and µ, and calculate p(µ) and ρ(µ) to

obtain p(ρ) for given L. The shape of p(ρ) in the GCE depends on the commensu-

rability between L and the period of the energetically favorable structure. We shall

compare the results obtained in the CE for fixed N0 with the p(ρ) lines obtained in

the GCE for six system sizes L.

In Fig. 3.18 the results for the reduced pressure as a function of the average den-

sity for CE and GCE are presented. Note the discrepancy between the CE and GCE

for ρ ≈ 0.55, where the periodically ordered clusters consisting of 3 particles are

separated by 3 empty sites. In the GCE p(ρ) increases monotonically, although for

ρ ≈ 0.55 the slope is very large, and an inflection point is present. We should stress

that in the CE N0 is fixed and the density changes because of the change of L. In con-

trast, in the GCE L is fixed, and the density changes because µ, and as a result 〈N〉,

changes. In the GCE there are different branches of p(ρ) for different L. One may

interpret the nonmonotonic p(ρ) in the CE as a consequence of the jumps between
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the different branches of p(ρ) in the GCE for L and L − 1.

In order to separate the effect of the fluctuation of the number of particles and the

effect of the method by which the density changes, we compare the p(L) curves in

the CE with N0 particles and in the GCE with 〈N〉 = N0. In Fig. 3.19 the pressure is

shown as a function of L for the CE with N0 = 21 and for the GCE with 〈N〉= 21. The

GCE curve was obtained by finding for each system size L the value of the chemical

potential µ0 such that ρ(µ0) ≈ N0/L. We used the exact expression for density

obtained in Sec. 3.1. For such chemical potential the pressure was computed from

the approximate formula βp = − lnΞ(µ0, L + 1, T ) + lnΞ(µ0, L, T ), which is the 1d

lattice version of the standard expresion p = −(∂Ω/∂ V )µ,T . We also present the

density profiles for L = 35, 36,37, 38, where p changes rapidly in a nonmonotonic

way. In the case of attractive surfaces the periodic structure where three occupied

sites are separated by three empty sites is possible for L = 39, and corresponds to

seven clusters. For L < 39 either the clusters are bigger, or the distances between

them are smaller. In both cases the repulsion between the particles is present, and

pressure increases. In Fig.3.19 we can see six clusters for L < 37, and seven clusters

for 37 ≤ L ≤ 42. Note that the nonmonotonic dependence of p on L corresponds

to the jump of the number of clusters. The unusual increase of pressure in the

expanding system results from the transition to a larger number of smaller clusters.

The clusters repel each other for L < 39. Upon increase of the system size from

L = 38 to L = 39 the separation between the clusters becomes large enough to put

the clusters at the separations larger than the range of repulsion, and the pressure

drops.

It is interesting that although both the average densities and density profiles for

L = 42 in the two ensembles are the same, the pressure is different. The reason is

that the pressure depends not on the values of the thermodynamic potentials at a

given state, but on their change, and as can be seen on panel (f) of Fig. 3.19, for

L = 43 the profiles differ significantly.

We conclude that the mechanical properties of a confined self-assembling system

depend significantly on whether the system expands for given (fixed) number of

particles, or the separation between the system boundaries is fixed, and the number

of particles decreases due to a change of the chemical potential. In both cases we can

have the same change of density, but different changes of pressure. The unusual in-

crease of pressure upon system expansion is found only in the case of fixed (average)
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number of particles, and is connected with a significant structural reorganization.

FIG. 3.18: Reduced pressure as a function of density for J∗ = 3, T ∗ = 0.5 and
attractive walls (h∗1 = h∗L = −1). Upper panel: Canonical Monte Carlo (CMC) simu-
lation for the number of particles N0 = 25 and different system sizes L, obtained via
virtual insertion method. Lower panel: GCE exact results for pressure vs. density

for different system sizes, L = 50,51, 52,53, 54,55.
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,

FIG. 3.19: Upper panel: reduced pressure as a function of the system size L for
J∗ = 3 and T ∗ = 0.5 in the case of attractive walls (h∗1 = h∗L = −1). Red curve with
squares: Canonical Monte Carlo (CMC) simulation for 21 particles. Black curve
with bullets: exact results in the GCE with the average number of particles equal
to 21. Lower panels: (a-d) CE density profiles in systems with L = 35 (a), L = 36
(b), L = 37 (c) and L = 38. (indicated on the p(L) plot as blue triangles). Panels
(e-f): comparison of the density profiles in CE (solid line) and GCE (dashed line)

for L = 42 (e) and L = 43 (f).
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3.2.5 The case of elastic boundaries

In this section we assume that the separation between the system boundaries is not

fixed, but can fluctuate around L = L0, as in Sec. 3.1.4.2. The change of the wall

separation is associated with the energy cost ∆U∗ = k∗(L − L0)2. Here k∗ denotes

the elastic constant in units J1/σ
2. In Fig.3.20 the average system size 〈L(N)〉 as a

function of the number of particles N is presented. The confining surfaces are kept

at the separation L by the spring that is at rest for L0 = 21. We assume attractive

walls and T ∗ = 0.5. In a system with rigid boundary conditions, attractive walls and

L = 21, the periodic structure made of 12 particles is energetically favorable. Thus,

for N ≤ 12 only for small values of the spring constant (e.g. k∗ = 0.1) significant

deviations of the average system size from the reference value are present. For

N > 12 the internal stress of the fluid competes with the elastic forces and 〈L〉> L0

even for k∗ = 1.

We can distinguish two limiting cases: (i) stiff spring, where the system size saturates

and the particles become densely packed when N increases, and (ii) soft spring,

where the average system size increases with increasing N , and the clusters are

separated by empty sites. If k∗ is small enough, then the slope of 〈L(N)〉 increases

when a new cluster made of 3 particles is introduced to the system (see panels (a)-

(f) of Fig. 3.20). On the other hand, for larger values of k the elastic forces are

stronger, and the system tends to modify the structure of the fluid rather then the

system size. Between the two limiting cases there is an interesting region where the

elastic and the solvation force are comparable and compete.

In Fig.3.21 we show 〈L(N)〉 for L0 = 21 and k∗ = 0.2 for several temperatures. At

low temperatures three regimes with significantly different slopes of the lines 〈L(N)〉

can be distinguished. For N ® 12 the slope of the line 〈L(N)〉 is small, because in this

case the separation between the clusters ensures no repulsion between them. For

12® N ® 15 the system expands significantly upon addition of particles, because for

N = 14 an additional cluster appears. In this region the average size of the clusters

and the distance between the them is 3. For N ¦ 15 the slope is small again. Here

the elastic stress dominates and the cluster average size increases until the system

becomes densely packed. Note that in this region and at low T , before the system

gets filled with particles, we obtain an oscillatory dependence of 〈L(N)〉 on N , with

the minima occuring when the number of particles is a multiple of 3. Note also that
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FIG. 3.20: Average system size as a function of the number of particles for different
spring constants k∗. The walls are attractive, h∗L = h∗1 = −1, J∗ = 3, T ∗ = 0.5 and
L0 = 21. Thick solid black lines, L = L0 and L = 2N − 3, correspond to rigid walls
and to walls fully adapting to the optimal structure respectively. In the panels (a-f)
the density profiles for the number of particls and the system size marked by the red
squares along the black solid curve ( k∗ = 0.1) are shown. (a) L = 23 and N = 12,
(b) N = 13 and L = 25, (c) L = 28 and N = 16, (d) L = 29 and N = 17, (e) L = 32

and N = 19, (f) L = 34 and N = 23.

for a given N , 〈L〉 increases with temperature except from 13 < N < 21, where for

L = L0 the density is between the density of the periodic and the closely packed

structures.We verified that the anomalous contraction of the heated system is no

longer observed at high T. Finally, note that there is some similarity of the shapes of

the 〈L(N)〉 and p(ρ) lines (Figs.3.21 and 3.18).

The average wall separation and the average density profile give insufficient infor-

mation about the system behavior. In Figs.3.22 and 3.23 we present histograms for
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FIG. 3.21: Average system size as a function of the number of particles for different
temperatures. Attracting walls assumed (h∗1 = h∗L = −1), J∗ = 3, spring constant
k∗ = 0.2 and L0 = 21. The inset presents the average density 〈ρ〉 ≡ N/〈L〉 as a

function the number of particles.

the wall separation. Two cases can be distinguished - a single maximum in the prob-

ability of the appearance of the wall separation L, and a bistability with two maxima

in this probability, separated by ∆L = 3.

FIG. 3.22: The histograms for the wall separation in the case of elastic boundaries
with the spring constant k∗ = 0.2, N = 16, L0 = 21, J∗ = 3 and attractive walls

(h∗1 = h∗L = −1) for T ∗ = 0.2 (left panel), and T ∗ = 0.5 (right panel).

In order to understand the energetics associated with the bistability, let us consider

the GS for L0 = 10 and N = 7. The microstates shown in Fig. 3.24 correspond to the

same energy of the confined system (3.20), when J∗ = 3 and k∗ = 2/9. Two different

system sizes in the GS can occur when N is not a multiple of 3, and for L = L0 an

intra-cluster repulsion is present. The expansion is associated with a simultaneous

increase of elastic energy of the walls, and decrease of the internal energy of the

particles, when the separations between them are such that the repulsion is absent.
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FIG. 3.23: The histogram for the wall separation in the case of elastic boundaries
with the spring constant k∗ = 0.06607. J∗ = 3, T ∗ = 0.5, N = 17, L0 = 19,

attractive walls (h∗1 = h∗L = −1).

Each microstate in Fig. 3.24 occurs with the same probability, but because of the

difference in the degeneracy for L = L0 and L = L0 + 3, the probability ratio for

the two lengths is p(L0 + 3)/p(L0) = 3. To estimate the spring constant leading in

the above example to equal probability of L0 and L0 + 3 for low T ∗, we take into

account only the microstates shown in Fig. 3.24, and require that exp(−β∗(−5 +

J∗)) = 3 exp(−β∗(−4+9k∗)) (see (3.20) for L = L0, L0+3). For T ∗ = 0.2 we obtain

k∗ ≈ 2/9+0.0244136 in very good agreement with the results of simulations shown

in Fig. 3.24.

FIG. 3.24: Left panel: The microstates in the GS of a system consisting of 7 particles
with the repulsion to attraction ratio J∗ = 3, confined by attractive walls (h∗1 = h∗L =
−1) on a spring with the spring constant k∗ = 2/9 that is at rest for L0 = 10. In panel
(a) L = L0 while in panel (b) L = L0 + 3. Note that the microstates symmetric to
those also have the same energy, hence for L = 10 there are 2 different microstates
with the same energy, and for L = 13 there are 6. These microstates correspond
to the maxima of the probability shown in the right panel, in which we present the
histogram for the wall separation in the above system in the case of T ∗ = 0.2 and

elastic boundaries with the spring constant k∗ = 2/9+ 0.0244135.
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3.3 The role of fluctuating number of confined

particles

We have studied the effect of various constraints on colloidal self-assembly in ther-

modynamic states that correspond to self-assembly into small clusters separated by

voids. In our model system small clusters with no intra-cluster repulsion yield a neg-

ative contribution to the internal energy, and do not interact with one another if the

separation between them is larger than the range of repulsion. The positions, the

size and the number of clusters can fluctuate and different deformations of the bulk

structure are possible in confinement. In order to determine the role of constraints

imposed on the number of particles, we have compared density profiles, equations

of state, and effects of elastic boundary conditions.

Structure: If the number of particles in the CE (fixed N) is too small for formation

of the bulk structure, then one more cluster can be present in the GCE (fixed µ) despite

the same average number of particles (Fig 3.15). Interestingly, the different number

of clusters in the two ensembles is observed for thermodynamic states that do not

correspond to the maximum of the fluctuation of the number of particles. This is

because the fluctuations of the number of particles are coupled with the fluctuations

of the size of the clusters. Even a small increase of the number of particles in the GCE

together with the splitting of the clusters can lead to formation of a larger number

of smaller clusters. The qualitative difference between the two ensembles occurs

for quite large number of particles. This behavior is different than in simple fluids,

where the difference between the two ensembles was observed only for very small

number of particles confined in very small pores [113, 114].

Equation of state: In the bulk the isotherms p(ρ) do not depend on the way in

which the variation of density is attained. In the confined inhomogeneous systems

it is no longer the case: Different curves p(ρ) are obtained when the size of the system

changes with fixed number of particles, or when the number of particles changes at fixed

system size.

The shape of the p(ρ) curve obtained in the GCE with fixed L depends significantly

on L, or more precisely on the commensurability of L and the period of the ordered

structure (Fig 3.18). In the CE with fixed N we have obtained anomalous decrease
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of pressure for increasing density for small density intervals below and above the

density of the equilibrium bulk structure (Fig 3.18). Inspection of density profiles

shows that the anomalous increase of pressure for increasing system size with fixed

number of particles is accompanied by increased number of clusters (the larger cluster

splits) (Fig 3.19). Recall that at short separations the clusters repel each other, and

this leads to the increase of pressure. The pressure rapidly drops when L further

increases and the clusters do not repel one another any more. In order to check if

the anomalous dependence of pressure on density follows from the fixed number

of particles or from the process by which the density varies, we computed the p(L)

curve in the GCE with fixed average number of particles. We have obtained similar

curves in the two ensembles except for large slits. In both ensembles the anomalous

increase of pressure for increasing L is associated with the increasing number of

clusters. For some large L the number of clusters increases with the system size in

the GCE but not in the CE (Fig.3.19 e,f). In this case a maximum in the p(L) curve

is present only in the GCE.

Bistability in elastic confinement: If the width of the slit can vary, then the system

tends to equilibrate the competing solvation and elastic forces. We have found that

the equilibrium size of the system is not always unique. In Sec. 3.1 we observed a

bistability in a system confined by elastic walls with permeable walls (fixed µ). Two

different system sizes can be equally probable: one with expanded and the other

one with compressed boundaries. The size fluctuations are accompanied by an ab-

sorption or evaporation of a whole cluster. In the case of impervious walls (fixed N)

considered in Sec. 3.2 a bistability exists too. In both cases the origin of the bistability

is the change of the number of clusters, but the mechanisms which lead to the change are

different. The number of clusters can fluctuate for fixed number of particles, when

the state with a smaller number of bigger clusters and the state with a larger number

of smaller clusters are equally probable. When the intra-cluster repulsion in large

clusters competes with the elastic energy of stretched boundaries, the clusters can

split and separate. The difference between the two equilibrium widths of the system

is equal to the period of the bulk structure in the case of permeable walls, and to

half the period of the bulk structure when the number of particles is constrained.
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Our results show that different anomalies in the confined inhomogeneous systems

occur when the release of some constraint or a change of the thermodynamic state

leads to a change of the number of clusters. In particular thermodynamic states

the structure and anomalies depend qualitatively on the ability of the system to

interchange particles with its surroundings.

3.4 Summary

We have studied a system interacting with the SALR potential in slits of various

widths with electrically neutral surfaces. We have considered different types of con-

finement: permeable or impervious, as well as rigid or elastic. In the case of per-

meable confinement, we have solved the model exactly, while for impervious walls

Monte Carlo simulations were performed. In the case of rigid confinement we have

studied: the distribution of the particles in confinement, the dependence of pres-

sure on the system size or the average density and the effective potential between

the confining surfaces. In the case of elastic confinement we have focused on the

distribution of the system size. We paid particular attention to the values of the

chemical potential and the number of confined particles which correspond to inho-

mogeneous distribution of the particles in the bulk.

The bistability of the system confined by elastic walls (Figs.3.13 and 3.23) is our

most interesting result in this chapter. The bistability in the system size distribution

occurs when the equilibrium between the competing solvation and elastic forces is not

unique. The difference between the two equally probable system sizes depends on

whether the confinement is permeable or impervious. In the case of permeable walls

the size difference is equal to the period of the bulk structure, while in the case of

impervious walls the size difference is equal to half of the period. Hence, the larger

is the period, the greater is the distance between the two almost equally probable

system sizes. It should be stressed that the period of the bulk structure is determined

by the range of attractive and repulsive parts of the effective pair interaction poten-

tial and in the case of colloids can be as large as hundreds of nanometers or even

micrometers. What is more, since in our 1d system the energy barrier is ∼ kB T ,

spontaneous changes of the system size may be induced by thermal fluctuations.

Thus, a self-assembly of nano-objects can lead to spontaneous changes of the
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system size on a micrometer scale. Apart from ranges of the competing interac-

tions, the bistability phenomenon should not depend on the specific shape of the

effective interparticle potential as long as it leads to formation of relatively small

clusters. On the other hand, we cannot exclude the possibility that for large clusters

the fluctuations of the cluster size can suppress the bistability effect.

The confined self-assembling system behaves as a soft elastic material itself (Fig.3.10),

and the bistability takes place when its elastic constant is similar to the elastic con-

stant of the boundaries. The elastic constant of the self-assembling system depends

on particle concentration inside the pore. Thus, interestingly, in the case of per-

meable confinement the bistability can be induced or suppressed by changing

the concentration of particles in the surroundings. On the other hand, if the

elastic constant of the boundaries is very small, then the system can accommodate

to the bulk structure and hence, the effects related with the incommensurability or

particles interactions with the confinement are softened or even they vanish.

In the case of permeable walls the conditions in the surroundings influence also

the deformations in the confined system. We found that by changing µ∗ we induce

changes in the number and size of the layers in the confined system. These structural

changes are reflected in “steps” in ρ(µ). In order to help to interpret simulation re-

sults we obtained exact expressions for ρ(µ∗) in the case of PBC and various system

sizes. We obtained steps in ρ(µ∗) corresponding to the change of the type of de-

fects resulting from the incommensurability. In order to avoid misinterpretation

of ρ(µ∗) steps as phase transitions, one should verify if the steps disappear for

commensurate system sizes, or if their heights decays as ∼ 1/L for increasing

system size L.

The confined simple fluids and the SALR systems differ significantly. Packing effects

of molecules or clusters play important role in both cases, especially for the solva-

tion force that exhibits oscillatory decay on the corresponding length scale in each

case. However, the clusters can split or merge, unlike the molecules. This leads to

qualitative differences between the ensembles, the bistability of the system size and

anomalies in the p(ρ) and the 〈L(N)〉 curves. The p(ρ) curve is nonmonotonic

for both the imperious and the permeable confinement (Fig. 3.19), while the

〈L(N)〉 curves show that in some ranges of N and T the system may shrink upon
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heating in the case of impervious walls (Fig. 3.21).

We expect that different shapes of the SALR potential will lead to similar results, pro-

vided that the clusters contain only a few particles. In the case of the SALR potential

leading to large clusters, as those studied in Ref.[38], the effects of confinement may

be different because of the cluster-size fluctuations. This expectation is based on the

observation that quite different effects of confinement were observed in the case

of small- and large-periods of the bulk structure in systems containing amphiphilic

molecules [48]. Based on similarities between amphiphilic and SALR systems dis-

cussed in Chapter 2, we expect that the effects of confinement in the SALR and in

the amphiphilic systems are similar too, but this expectation should be verified.
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Chapter 4

Effects of confinement in the

two-dimensional model of colloidal

self-assembly

In this chapter we study the effect of imposing rigid boundary conditions on the sys-

tem of particles interacting via the SALR potential on a two dimensional triangular

lattice. In particular, we will consider self-assembly of particles on the surface of

a cylinder. In the first step, the influence of the confinement on the ground state

will be studied. In particular, we will characterize the effects of confinement for slit

widths optimal and not optimal for the bulk structures to stabilize. Since the model

is only virtually infinite (via periodic boundary conditions in one of the directions),

therefore from a strict thermodynamic point of view, at T > 0 we should not expect

real thermodynamic transitions. Nevertheless, the fact that the bulk system exhibits

different thermodynamic phases, might produce significant changes of the proper-

ties of the confined system when varying the temperature or the chemical potential.

171
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4.1 The model

We continue the study of colloidal self-assembly driven by competing interaction po-

tential, hence we assume the same form of the potential as in Sec. 2.2, that is: the

attractive interactions between first neighbors on the triangular lattice, and repulsive

interaction between third neighbors. In order to mimic the topology of a cylinder, we

assume periodic boundary conditions in the e1 direction, while rigid boundary con-

ditions are considered in the direction perpendicular to e1 (see Fig. 4.1). The length

of the system in the e1 direction we denote by L1. In what follows, we focus on the

impact of the wall-wall separation on the self-assembling structures, hence we will

choose only such L1 that are commensurate with the period of the stable structures

in the e1 direction. As in Chap. 3, we assume that the confinement is electrically

neutral, therefore the walls interact only with the particles that occupy the nearest

neighboring sites of the walls. Thus, if we denote the distance between the confining

walls by L2, then the walls interact only with the particles which (x1, x2) position

has x2 = 1 or x2 = L2 (in Fig. 4.1 we chose L2 = 8). We assume that the energy

of the particle-wall interaction, h, is independent of the particle position in the e1

direction and is equal for both walls. With such assumptions the grand-canonical

Hamiltonian can be written as

HW2d[{ρ̂}] =
1
2

∑

x

∑

x′
ρ̂(x)V (x− x′)ρ̂(x′)−

∑

x

µρ̂(x) (4.1)

+h
L1
∑

x1=1

(ρ̂(x1, 1) + ρ̂(x1, L2)) ,

where the pair interaction potential V is given by Eq. (2.84). As previously, we will

use reduced units X ∗ ≡ X/J1.

Along this chapter we used the simulation techniques described in Sec. 2.2.4.1 for

the colloidal self-assembly in the bulk, that is: Metropolis Monte Carlo, thermody-

namic integration and parallel tempering technique.
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FIG. 4.1: Sketch of the two-dimensional triangular lattice with the slit boundary
conditions. L1 is the length of the system in direction e1 (in this direction periodic
boundary conditions are assumed), whereas L2 is the distance between the confin-
ing walls (measured in number of layers). The walls interact only with the particles

which occupy the first neighboring row of the wall.

4.2 The ground state

In this section we present how the bulk ground state is modified by imposing rigid

boundary conditions in one of the principal directions1. Firstly, we focus on the

impact of the particle-wall attraction. Hence, we consider the wall-wall separations,

L2, that are energetically optimal for the bulk structures i. e. the bulk structures can

stabilize in the interior of the slit. In such a case analytical calculations of the ground

state are performed. Secondly, we investigate the effect of the wall-wall separation.

For this second case, in order to focus attention, we consider only µ∗ = 6 and J∗ = 3,

which in the bulk GS corresponds to the stability region of the lamellar phase. The

impact of L2 is analyzed by means of MC simulations.

4.2.1 Effect of attractive walls

In order to study the effect of attractive walls on the ground state structures we

assumed that the wall-wall separation is so large, that in the middle of the slit and

far from the confining walls there is enough space for the bulk structures to stabilize.

We have found that for h∗ = −1, fixed L2 and upon a change of the chemical potential

the system exhibits phase transitions that are not present in the bulk. Namely, some

of the transitions are associated with a change of the particle distribution only in

the close neighborhood of the confining walls, i. e. some of the found transitions

1The bulk ground state in (J∗,µ∗) variables is presented in Fig. 2.43.
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FIG. 4.2: Ground state for J∗ = 3, h = −1 and L2 = 2n, with n → ∞. Panels
(a-i) present only a region of the slit close to one of the confining walls. The con-
figurations close to the opposite wall can be obtained by rotation of the presented
structures by 180◦, with the axis of rotation perpendicular to the lattice surface.

are only surface phase transitions. In Fig. 4.2 we present the ground state as a

function of µ∗ for J∗ = 3 and for L2 � 1 that is optimal for the bulk structures

in the e2 direction. The loci of phase transitions were found by comparison of the

grand canonical energy per lattice site, HW2d/(L1 L2), of the structures determined

by parallel tempering Monte Carlo simulations. The reduced chemical potentials

at particular transitions as a function of J∗, L2 and h∗ are given by the following

expressions

µ∗ab =
5L2 − 10− 12h∗

8− 4L2
−−−→
L2→∞

−1.25, (4.2)

µ∗bc = −
1
4
(5+ 2h∗), (4.3)

µ∗cd =
1
4
(8J∗ + 2h∗ − 11), (4.4)

µ∗de =
1
4
(−14+ 12J∗ + 2h∗), (4.5)

µ∗e f =
3.5L2 − 38+ 34J∗ − 3J∗L2

10− L2
−−−→
L2→∞

3J∗ − 3.5, (4.6)

µ∗f g =
−18J∗ − 12+ 3L2J∗ − 2.5L2

L2 − 6
−−−→
L2→∞

3J∗ − 2.5, (4.7)

µ∗gh = 4J∗ − 13/4, (4.8)

µ∗hi = 6J∗ − 19/4, (4.9)
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where µ∗x y corresponds to the value of µ∗ at the coexistence between the phases

presented on panels (x) and (y) of Fig. 4.2. Since at the coexistence with the

lamellar phase, L2 has to be commensurate with the period of the lamellar and

the rhomboidal or the bubble phases, the formulas for µ∗e f and µ∗f g are valid only

for L2 = 4n+ 2 with n > 3. In the other cases L2 only needs to be even and large

enough in order to avoid interference between the local structures which are ad-

sorbed at the opposite walls. Note, however that not all µ∗x y depend on L2. We have

found that the loci of the surface phase transitions are independent of L2, if the tran-

sition occurs between structures which differ exclusively by the particle arrangement

in the neighborhood of the walls. On the other hand, µ∗x y depends on the strength

of the particle-wall interaction, h∗, only if the transition takes place between phases

with structures that differ at sites that are nearest neighbors of the walls. Interest-

ingly, the increase of the chemical potential not always results in an increase of the

walls adsorption (see panels (b) and (d) of Fig. 4.2). The range of validity of the

GS phases shown in Fig. 4.2 with respect to variations of the wall attraction has

not been checked. However, based on the results for the 2d system (Fig. 3.9) one

should expect that for attraction stronger than h∗ = −1 a surface phase transition

between the vacuum and a phase with either only monomers or only rhomboidal

clusters adsorbed at the walls should appear.

These results show that if the distance between the confining walls is optimal for the

bulk phase stable at the corresponding thermodynamic conditions, then at T ∗ = 0 the

confinement may influence the stable morphologies only locally.

4.2.2 Effect of the slit width on the lamellar phase

The effects of incommensurability between L2 and the period of the bulk structures

in e2 direction, were studied only for the case of µ∗ = 6, which corresponds to

stability of the lamellar phase. The ground states for µ∗ = 6 and different wall-wall

separations were obtained with the following procedure: for given values of L2 and

h∗ we proceed by applying the parallel tempering Monte Carlo for different system

lengths, L1. We typically took 151 values of the reverse temperature β∗, given as

β∗i = i∆β∗; with i = 0,1, · · ·150, and∆β∗ = 0.10. The GS configuration and the GS

energy are taken as those corresponding to the value L1 which minimizes the grand

canonical energy per site, HW2d/(L1 L2).
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If the confining surfaces strongly attract particles, then energetically favorable con-

figurations will have double layers (stripes) of particles adsorbed onto the walls.

The configuration of the particles between the adsorbed stripes will depend upon

the distance between the confining walls, L2. If L2 = 4n+ 2, where n is a positive

integer, then the distance is commensurate with the period of the bulk structure and

the straight lamella (see panel (f) of Fig. 4.2) has the lowest energy. Note that in

the case of the straight lamella no degeneracy of the GS is present.

For L2 incommensurate with the period of the bulk structure defects, consisting of a

few additional particles, appear in the adsorbed stripes (see Fig. 4.3). In order to

avoid excess repulsion, the nearest stripe (second from the wall) has to bypass the

defect. The turns of the nearest stripe entail turns of the other stripes inside the slit

in such a way that it is energetically favorable to build a defect at the opposite wall.

Such construction ensures that the distance between every two defects is the same,

hence three consecutive defects in the e1 direction form an equilateral triangle (Fig.

4.4).

The shape of the defect envelope depends not only on the size of the defect, but also

on L2. Defects consisting of two particles indicate a shift of the nearest stripe by one

row in direction perpendicular to the walls if L2 = 4n−1, or by two rows if L2 = 4n.

A trapezoidal defect which can occur if L2 = 4n+ 1 indicates a shift of the nearest

stripe by three rows. Such shifts allow the lamellar stripes inside the slit to adjust

their positions to the stripe adsorbed at the opposite wall and minimize the effect of

the incommensurability.

Note that only for large enough L2 (> 13) the shape of the defect is determined

by mod (L2, 4). That is because for narrow slits and positive value of the chemical

potential, enlarging the defects and the size of the unit cell may result in decrease

of the grand canonical energy per lattice site. But for large enough slit width the

distance L2 determines the shape and the position of the defects, hence having L2

one can also tell the size of the unit cell in the e1 direction, L1, which is given by the

following formula

L1 =















L2 − 1 if L2 = 4n− 1

L2 − 4 if L2 = 4n

L2 − 3 if L2 = 4n+ 1.
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We cannot tell, however, if for large wall-wall separations (e. g. L2 > 30) L1 is still

determined uniquely by L2.

In comparison to the bulk, stripes in the slit confinement are allowed to turn not

only in one, but in two directions. Thanks to this additional degree of freedom the

confined system is also able to stabilize in a lamellar structure, however this time the

segments of the lamella are parallel not only to the two main lattice directions, but

to all the three directions. Nevertheless, the presence of the confining walls removes

the degeneracy of the GS. Note, however, that in the case of periodic boundary con-

ditions in both directions the lamellar phase may consist of just one stripe wrapped

around the torus, while in the case of a slit with the cylindrical geometry there are

always many parallel stripes wrapped around the cylinder, and this is a qualitative

difference.

4.2.3 Effect of the wall-particle repulsion on the lamellar phase

For the case of attractive walls, we have seen that the slit geommetry favours the

formation of stripes that are roughly parallel to the walls. In what follows we will

try to elucidate whether this behavior occurs for neutral and/or repulsive walls. To

this aim, we will consider, as above, µ∗ = 6, and systems with L2 = 16. We will look

at the GS behavior for different wall-particle interactions.

In the case of attractive walls, with h∗ = −1, the GS is shown in Fig. 4.3. Two

lamellar stripes are close to the walls, and two undulating stripes appear in the inner

region of the slit. The periodicty length of the GS configurations is L1 = 12. For

h∗ = 0 the GS configurations varies, exhibiting L1 = 16 (Left panel of Fig. 4.5).

Some empty sites appear at the rows that are nearest neighbors of the walls, but the

general structure of the system is quite similar to the one corresponding to attractive

walls. The same ground state persists for slightly repulsive walls: h∗ = 1 and h∗ = 2.

On increasing the repulsive character of the walls, at h∗ = 3 the particles are expelled

from the bottom and top rows of the slit, and the GS configuration resembles that of

L2 = 14 and attractive walls, with four parallel straight stripes that do not interact

with the walls (Right panel of Fig. 4.5). Hence having the wall separation L2 = 4n

one can remove the defects by changing the particle-wall interaction from attractive

to strongly repulsive. We expect that the defects present for L2 = 4n − 1 would

be removed if one of the walls would be attractive and the opposite wall would be
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FIG. 4.3: The ground state (T = 0) configurations for L2 = 4n − 1 (left column)
L2 = 4n (center column) and L2 = 4n+ 1 (right column), where n= 2,3, 4,5. The
confinement attracts the particles with h∗ = −1. For the sake of figure clarity the

walls are not shown.

FIG. 4.4: The defects are in the vertices of the equilataral triangle.
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strongly repulsive, while in the case of L2 = 4n+ 1 in order to remove the defects

different wall-particle interaction range would be necessary.

Thus, the presence of defects in the GS structures depends not only on the wall sepa-

ration, but also on the wall-particle interaction which sufficiently tuned may help to

remove the defects.

FIG. 4.5: Ground state configuration for L2 = 16 for different interactions with the
walls. Left panel: h∗ = 0, right panel: h∗ = 3.

4.3 Effective interaction between the walls

We start the investigation of the model at T ∗ > 0 by computing the effective inter-

action between the confining walls, Ψ(L2) (see Eq. 3.8). In order to compute Ψ(L2)

we have applied the MC thermodynamic integration procedure for fixed chemical

potential, which was previously used for the bulk system (Sec. 2.2.4).

The grand potentials per lattice site for the bulk and the slit system, necessary for

the calculation of the excess grand potential (see Eq. (3.8)) were computed using

the following relation

βΩ̃(β ,µ) = − ln2+

∫ β

0

〈H(β ′,µ)〉
L1 L2

dβ ′, (4.10)

where H is the grand canonical Hamiltonian of the corresponding model given by

Eq. (2.83) in the case of the bulk, and by Eq. (4.1) in the case of the slit, and the

term − ln2 results from the assumption that at infinite temperature our model acts

like an ideal lattice gas. To obtain Ψ(L2) out ofΩex , we note that these two quantities

at fixed temperature differ only by a constant (see Eq. (1.13) in introduction). Since

limL2→∞Ψ(L2) = 0, we have estimated the constant by the value of Ωex for which

the curve reaches a plateau.
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FIG. 4.6: The effective wall-wall interaction potential as a function of the wall-wall
separation , Ψ(L2) at temperature T ∗ = 0.5 for L1 = 120, µ= 6 and attractive walls

with h∗ = −1.

The simulations were carried out with the following model parameters: for the bulk

system we used a square lattice with L = 120, whereas for the slit we considered a

lateral length L1 = 120, and different slit widths L2, (L2 ≤ 40). We used temper-

atures ranging from β∗ = 0 up to, typically β∗ = 4 or β∗ = 5 with a grid constant

∆β∗ = 0.01. As usual, the initial configurations for all the replicas were built by

assigning at random to each site one of its possible states: 0 or 1.

A typical shape of Ψ(L2) is shown in Fig. 4.6. It can be observed that the effective

potential between the walls exhibits a significant decay length, with an oscillatory

behavior. In addition, slit widths that fulfill L2 = 4n+ 2, with n = 1,2, . . . 5 corre-

spond to local minima of Ψ(L2). We can anticipate that this effect is due to the good

fitting of the straight lamellar stripe structures to those widths. Note, however, that

for L2 > 22 the minima are located at L2 = 31 and L2 = 35, which do not correspond

to the wall separation optimal for the straight lamella structure.

The shape of Ψ(L2) is very similar to the shape of Ψ obtained for the 1d model (Fig.

3.4). The similarity follows from the fact that the lamellar phase is periodic only in

direction perpendicular to the walls. Thus, the density profile of the slit cross-section

averaged over e1 defined as

ρ(x0
2)≡

1
L1

L1
∑

x1=1

ρ̂(x1, x0
2) (4.11)

resembles the density profiles of the one-dimensional cluster phase (see Fig. 4.7 and

Fig. 3.15). Since in the 1d model, the oscillatory behavior of Ψ leads to bistability

in the system size distribution, we predict that a similar phenomenon can occur also
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in the 2d slit.

FIG. 4.7: The density profiles in the cross-section of the slit given by Eq. (4.11) for
several temperatures. Left panel: L2 = 32, right panel: L2 = 34. The color code is

the same in both panels. The walls are attractive with h∗ = −1.

In order to gain some intuition about the structural changes that happen within one

period of Ψ(L2), in Fig. 4.8 we show some representative configurations for slits

widths L2 = 30,31, 32,33, 34, with L1 = 120, and at T ∗ = 0.25. For L2 = 30 and

L2 = 34 the system presents respectively eight and nine straight stripes, which are

parallel to the walls. The periodicity of the system in direction perpendicular to

the walls is four, and the top and bottom stripes are located close to the walls. For

30 < L2 < 34 the structure of the system can be described as composed by eight

stripes, but the stripes that are not close to the walls are no longer straight, showing

some cooperative corrugation. The corrugation seems to exhibit some local order in

direction e1, similar to the way the defects in the ground state spread.

The effect of the temperature is shown for L2 = 32 in Fig. 4.9. Obviously, the

higher temperature is the more defects in the lamellar structure occur. It is not clear,

however, if the defects appear in a specific manner or not. Another question is, if a

separate phase, like the molten lamella phase in the bulk, stabilizes at intermediate

temperatures. In the following section we will propose a quantitative description of

the effects of temperature on the system.
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FIG. 4.8: Representative configurations of the systems with attractive walls (h∗ =
−1), at low temperature T ∗ = 0.25, and different pore widths. Form top to bottom:
L2 = 30, L2 = 31, L2 = 32, L2 = 33, and L2 = 34. Only the system sites are plotted.
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FIG. 4.9: Representative configurations of the system with attractive walls (h∗ =
−1) and L2 = 32 (L1 = 120) and several temperatures. Form top to bottom: T ∗ =

1.00, T ∗ = 0.50, T ∗ = 0.40, and T ∗ = 0.25.
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4.4 Spatial correlation functions

By inspection of the low temperature configurations presented in Fig. 4.8, it seems

that the system exhibits large correlation at relative large distances in the e1 direc-

tion. Since the system self-assembles in an almost periodic structure, in order to

compute an average period in direction e1 we have considered a global correlation

function along the confining walls. We define the density correlation function along

the direction e1 as

g0(x1)≡
1
L2

L1
∑

x0
1=1

�

〈 ~ρ(x0
1) · ~ρ(x

0
1 + x1)〉 − 〈 ~ρ(x0

1)〉 · 〈 ~ρ(x
0
1)〉
�

, (4.12)

where ~ρ(x0
1) ≡ (ρ̂(x

0
1 , 1), . . . , ρ̂(x0

1 , L2)), is a vector containing the densities of the

sites belonging to a compact line of sites in the direction e2 (see Fig. 4.10 ), · is the

standard scalar product, and 〈· · · 〉 indicates an average over a number Nc of different

system configurations. From g0(x1)we can define a normalized correlation function:

g(x1)≡ g0(x1)/g0(0). (4.13)

FIG. 4.10: Sketch of the definition of the density vectors, ~ρ, used in the definition
of the global correlation function g0(x1). Here the vectors are oriented in the e2
direction. The red rings connect the sites which belong to one density vector. In the
scheme two density vectors are depicted: ~ρ(x0

1) = (1, 1,0,0, 0,0, 1,1) and ~ρ(x1
1) =

(1, 1,0,0, 1,1, 0,0), with x1 = x1
1 − x0

1 .

The correlation function g(x1) is shown in the upper panel of Fig. 4.11 for L2 = 32 at

several temperatures. We found substantial dependence of the correlation functions

g(x1) on the temperature for L2 = 32. It is found that the damping of the oscillations

with the distance decreases on cooling the system. More interestingly, the apparent

wavelength increases. In order to quantify the shape of the correlation function
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FIG. 4.11: Upper panel: the correlation function g(x1) for L2 = 32. Lower panel:
Fourier transforms S(q) for L2 = 32. The pseudo-periodicity parameter x p

1(T ) ≡
2π/qmax takes the values: x p

1 = 23.9 (for T ∗ = 0.25); x p
1 = 20.3 (for T ∗ = 0.40);

x p
1 = 15.6 (for T ∗ = 0.50); and x p

1 = 6.6 (for T ∗ = 1.00).

g(x1) we have carried out a Fourier-like analysis of the results. The Fourier integral

applied to the lattice was taken as:

S̃(q) =
1
p

2π

�

g(0) + 2
L1/4
∑

x1=1

g(x1) cos(qx1)

�

. (4.14)

Examples of the results can be found in the lower panel of Fig. 4.11. Defining qmax

as the value of q that maximizes S(q)we can compute a length x p
1 = 2π/qmax , which

characterizes the typical wavelength of the oscillations in g(x1). In the caption of

Fig. 4.11 we collect the corresponding values for slits with L2 = 32 and different

temperatures. The results for x p
1 are consistent with the position of the second max-

imum of g(x1). From the trends of the correlation functions g(x1) shown in Fig.

4.11 one should expect an ordered structure at the ground state, with periodicity
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FIG. 4.12: Pseudo-periodicity parameter x p
1 as a function of the slit width at T ∗ =

0.25 (red line) and T ∗ = 0 (blue line). The walls are attractive with h∗ = −1.

in the direction e1. This result is consistent with the ground state presented in Fig.

4.3.

It seems interesting to analyze the dependence of x p
1 at low temperature on the pore

width. In this analysis the pore widths fulfilling L2 = 4n + 2 (n positive integer

number) are not considered, since no bending of the lamellar stripes occur at low

temperature for such wall separations. The results for T ∗ = 0.25 are shown in Fig.

4.12 and are compared with the period of the ground state configuration in the e1

direction. We can see that x p
1 shows some oscillation with L2, but the general trend

is to increase with L2.

The results presented in this section come from simulation of systems of different

slit widths, using a quite large value of the lateral length, namely L1 = 2520. Such

large values of L1 are required to reduce the possible effects of incommensurability

of the system size with possible quasi-ordered structures that can appear at low

temperature.

4.5 Pseudo-phase transitions

We shall not expect thermodynamic phase transitions in slit systems at T ∗ > 0, given

the fact that the system is virtually macroscopic in only one direction of the space.

However, as the slit width grows, we can expect the presence of some signatures of
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FIG. 4.13: Heat capacity, cµ(T ) for µ∗ = 6, h∗ = −1 and different pore widths.
cµ(T ) exhibits two maxima for L2 > 30.

the two-dimensional bulk transitions. In order to test these expectations, we study

the behavior of the heat capacity cµ, defined as:

cµ =
1
V

�

∂ 〈HW2d〉
∂ T

�

V,µ
, (4.15)

where V ≡ L1× L2, and the angular brackets represent the average of a correspond-

ing quantity for given conditions in the grand canonical ensemble. In particular, we

take h∗ = −1, µ∗ = 6 and the pore widths L2 = 6,10, 14,18, · · · , 38 (i.e. those sizes

whose GS present straight stripes). In Figure 4.13 we show cµ as a function of the

temperature. For the narrowest slits only one maximum of cµ(T ) appears, whereas

for the largest values of L2 (say, L2 ≥ 30) there are two maxima. One of then, is

located at T ∗ ' 0.75, and can be related with the fluid - molten lamella transition

of the bulk. The second peak appears at lower temperature and can be thought as

due to the melting of the ordered structure of the GS.

4.6 Summary

A long range arrangement of lamellar structures made of electrically conductive

particles is one of the goals in the industry aimed at device miniaturization. Hence,

description of the way in which the defects may occur in such self-assembling struc-

tures is an important issue. In this chapter, we have made an attempt to describe
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the way the defects appear in the template-assisted self-assembling systems with

competing interactions. Namely, we have studied a model system for colloidal self-

assembly in the two-dimensional slit geometry on a triangular lattice. We have paid

particular attention to confinement induced defects in the lamellar morphologies.

We have described the way the defects spread in the ground state stable structures

and we have studied the effect of the temperature. In particular, we have analyzed

correlations between the density profiles of the slit cross-sections, and the heat ca-

pacity.

The ground state of the model, was firstly studied for the case of slit widths, L2, op-

timal for the bulk structures at the corresponding thermodynamic conditions, and

for a broad range of the chemical potential (Fig. 4.2). We have found that, if L2

is large and appropriate for the bulk structures to stabilize, then the presence of

confinement does not induce any global changes in the bulk morphologies. How-

ever, in such a case upon the change of the chemical potential the system exhibits

local changes in the bulk morphologies, that is surface phase transitions. We have

shown analytically that the value of the chemical potential at phase coexistences de-

pends on the strength of the wall-particle interactions only for the cluster or lamellar

structures. For transitions between the phases with the same structure in the inte-

rior, the chemical potential at the transition is independent of the wall separation.

The structures for the chemical potential values corresponding to the coexistence

between two different phases has not been investigated yet.

For the chemical potential corresponding to the lamellar phase in the bulk, we have

studied the dependence of the ground state on L2. We have found that if L2 and

the wall-particle interaction are not favorable for the bulk structure to stabilize,

then global changes in the bulk lamellar phase may occur. The changes in the bulk

lamellar pattern, we call defects. We have found that, the defects appear in an or-

ganized manner, and for large enough L2 their shape and position depend only on

the remainder from the division of L2 by the period of the bulk lamellar phase.

Interestingly, similar shape of the lamellar phases with defects was found in the oil-

water-surfactant confined system (see Fig. 1.9). The presence of the defects strictly

depends on the particle-wall interaction. We have shown that the properly tuned

wall-particle interaction can remove the defects. What is more, the confinement re-

moves the infinite degeneracy of the lamellar phase present in the bulk ground state.
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Thus, although the confinement leads to stabilization of new complex structures, it

has an ordering effect on the system.

We conclude that at T ∗ = 0 the changes in the bulk stable structures induced by

confinement are either local (Fig. 4.2) or global (Fig. 4.3). The global changes,

however, can be suppressed by matching between the wall separation, and the

particle-wall interactions. Although in the presence of confinement new com-

plex patterns are stabilized, the confinement has an ordering effect since it

removes the infinite degeneracy of the bulk lamellar phase.

At T > 0 we have focused on the description of the defects only in the lamellar

phase. We have computed the effective wall-wall interaction Ψ, the density correla-

tion function along the slit g(x1), and the heat capacity cµ.

The study of Ψ showed that the effective wall-wall interaction potential as a func-

tion of the slit width exhibits damped oscillations. At low temperature and relatively

narrow slits the minima of Ψ correspond to L2 optimal for the ground state straight

lamellar phase. Interestingly, at higher temperature (T ∗ = 0.5) the local minima of

Ψ can correspond to wall separations not suitable for the straight lamellar stripes.

Similar phenomenon, with minima of Ψ corresponding to the system size not ap-

propriate for the bulk ground-state periodic phase was previously noticed in the 1d

model when T ∗ > 0 (see Fig. 3.11) by exact calculations. In both cases the mismatch

results from the thermal fluctuations which lead to incommensurability of the lattice

constant and the period of the average structure.

The spatial arrangement of the defects in the lamellar structures was studied with

the density correlation function, g(x1), defined in such a way that it describes the

correlations along the confining walls. We have found that g(x1) is an oscillatory de-

caying function, which period depends on the temperature and the wall separation.

Fourier analysis of g(x1) allowed to determine the pseudo-periodicity parameter, x p
1 ,

which value reflects the concentration of the defects in the system2. We have shown

that the x p
1 exhibits oscillations superimposed on an increasing function of the wall

separation and that for large separations is an increasing function of the tempera-

ture. In the future it would be interesting to check whether the number of defects

2Note that at T = 0 the pseudo-periodicity parameter x p
1 is equal to the size of the ground state

unit cell in the e1 direction, and that the larger is the cell the less defects there are in the system.
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in the slit can be quantitatively expressed as a function of the temperature. Since

defects are undesirable in nano-devices, such a result should be of interest.

Finally, we have computed the heat capacity of the system as a function of the tem-

perature. Although we do not expect phase transitions in the confined system at

T > 0, we note that the heat capacity exhibits two maxima if the slit is wide enough.

We interpret these maxima as a possible sign of the transitions present in the bulk,

thus we do not exclude the possibility that some analogue of the molten lamella

phase stabilizes.

To conclude, we note that even when the slit width and particle-wall inter-

actions are not favorable for defectless structures, the defects appear in an

organized manner with a given periodicity, leading to an ordered pattern.
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Chapter 5

Thesis summary

We have studied effects of boundary conditions on self-assembly. The study started

with determination of bulk properties of two types of self-assembling systems: the

system of amphiphilic molecules which represents self-assembly driven by anisotropic

pair interactions, and the system of particles interacting via competing potential

which represents self-assembly induced by isotropic interactions (Sec. 2.1). The

amphiphilic interactions are characteristic for surfactants, lipids in water or block

copolymers, while the competing interaction potential with short range attraction

and long range repulsion, can be observed in systems such as colloidal suspensions,

protein solutions or quantum dots. We have introduced one-dimensional lattice

models for both systems. The models were solved exactly by the transfer matrix

method. The study of the models was based on the exact solutions in the grand

canonical ensemble, but also Monte Carlo simulations in the canonical ensemble

and theoretical calculations within the mean-field theory were performed. We found

strong similarities between mechanical, structural and thermal properties of the two

systems. For this reason further studies in the two-dimensional space were carried

out only for the model with the isotropic competing interaction potential (Sec. 2.2).

The studies of the bulk properties in the two-dimensional discrete space were based

on analytical calculations at T = 0, Monte Carlo simulation techniques and numer-

ical calculations of mean-field type. In particular, for the first time the complete

191
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phase diagram of the system with isotropic competing interactions was found (Fig.

2.52). After investigation of the bulk properties, the next step was to describe the

effects of confinement on the self-assembling systems. Firstly, we have considered

one-dimensional systems and the effects of rigid or elastic walls that can be either

permeable or impervious (Chap. 3). In the case of permeable walls, which allow the

particles to adsorb or desorb, we have found the exact solution of the model, while

in the case of impervious walls the study was based on the MC simulation. Finally,

we have studied a two-dimensional system of slit geometry, that is a system with the

rigid boundary conditions in one direction and the periodic boundary conditions in

the other direction (Chap. 4). In this case we have studied the ground state (T ∗ = 0)

of the system, and the spatial organization of defects in the lamellar phase at low

temperatures. In what follows we summarize the main results of the thesis.

1. Common properties of amphiphilic and colloidal systems at low tempera-

ture. Our study of generic models for the two classes of the self-assembling systems

revealed striking similarities between them at low temperature. We have shown by

exact calculations that although for both models at T > 0 only the disordered phase

is stable in 1d, both systems can exhibit quasi-long range order manifested by an

oscillatory decay of the correlation function with the correlation length a few or-

ders of magnitude larger than the particle size (Figs. 2.15 and 2.35). This means

that, in contrast to simple fluids, the self-assembly of nano-objects can induce in-

homogeneities correlated on the length scale of micrometers. We have found that,

in the range of thermodynamic variables corresponding to these inhomogeneous

structures, the p(ρ) isotherms have a step-like shape (Figs. 2.14 and 2.32), i. e. a

sequence of very large, very small and again very large compressibility for increas-

ing ρ occurs. What is more, we have shown that at the density corresponding to the

ground state periodic phases the heat capacity as a function of temperature has two

maxima in both models (Fig. 2.40), in spite of the fact that for our 1d models phase

transitions can occur only at T = 0. Thus, in the case of complex self-assembling

systems, the heat capacity may have a maximum which does not indicate a phase

transition.

The T ∗ = 0 phase diagrams of the models for colloidal (Fig. 2.2) and amphiphilic

(Fig. 2.26) self-assembly have the same topology, i. e. phases with oscillatory den-

sity or concentration occur when the repulsion in the case of colloids or attraction
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between water and properly oriented amphiphilic molecules are strong. Surpris-

ingly, not only the topology is shared. In the case of both one-dimensional models

as well as for the two-dimensional model for colloidal self-assembly (Fig. 2.43), we

have found analytically that at some phase coexistences the ground state is strongly

degenerated and the entropy per lattice site does not vanish. The degeneracy results

in vanishing of the surface tension between the coexisting phases. The universality

of this results, leads us to the conclusion that the vanishing surface tension at the

ground state coexistence may be a general property of self-assembling systems. Note

that the lack of the surface tension indicates that macroscopic phase separation is

unfavorable and leads to disordered structures, which can be interpreted as a disor-

dered phase that is strongly inhomogeneous (Fig. 2.44).

2. Phase behavior of colloidal systems with the SALR potential in the bulk.

We have found the first complete phase diagram of the system with isotropic short

range attraction and long range repulsion interparticle potential (Fig. 2.52). Pre-

viously only very rough sketches of the phase diagram, or mean-field results were

obtained (Figs. 1.5 and 1.6). In particular, we have found that the lamellar phase,

which consists of identical stripes, looses the translational order at some T . The

orientational order, however, remains present until the stripes melt at higher T into

the fluid phase with no global order. Stability of the lamellar phase with the orienta-

tional order, but without the translational order, called the “molten lamella” phase is

a novelty 1. In addition, we have found reentrant melting in the (µ∗, T ∗) representa-

tion of the phase diagram. Namely, at constant chemical potential a counterintuitive

sequence of phases: fluid-periodic-fluid can be observed upon increase of temper-

ature. Similar phase behavior was observed in the mean-field phase diagram of

the one-dimensional model (Fig. 2.8). When in systems with competing interac-

tions the repulsion is too weak to suppress the ground state phase separation, the

inhomogeneities may still appear as a compromise between the macroscopic phase

separation (that is energetically favorable but entropically unfavorable), and the dis-

ordered structure (that is favorable entropically and unfavorable energetically).

1We should mention that a similar phase called “nematic phase” was discovered independently in
thin magnetic layers [115].
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3. The role of the mean-field approximation. In order to verify the accuracy of

approximate theories for complex self-assembling systems, we have applied the self-

consistent mean-field theory to our models. We have found that although in the

one-dimensional systems the MF theory incorrectly predicts phase transitions, it still

carries a lot of information that is related to exact results. For instance, in the region

of the MF phase diagram corresponding to stability of the periodic phase, the exact

result for the correlation function has damped oscillations with a very large corre-

lation length (Fig. 2.15). This indicates that although the system is disordered, if

one would fix a particle to its position a very long range of correlations would occur.

What is more, when the MF predicts stability of the disordered phase, the corre-

lation function decays monotonically. Even when upon heating the MF predicts a

phase transition from homogeneous to periodic phase, the correlation function also

changes from monotonic to oscillatory, but with a much shorter correlation length

(Fig. 2.21). Although the MF approximation to some extent can be a support for

exact studies of one-dimensional systems, it fails to predict correct phase diagram

in two dimensions, where phase transitions are present. Among many differences

between the MF and the MC phase diagrams of the SALR system discussed in Sec.

2.2.5, the most pronounced difference is that in the MF phase diagram (Fig. 2.49)

there is reentrant melting at constant temperature neither upon increasing the chem-

ical potential nor upon increasing the density, which are both present in the MC

result (Fig. 2.52). What is more the MF predicts stability of phases which are not

present in the MC results, such as the cluster phase with positional, but without

orientational order.

However, if we interpret the 1d model with SALR potential as a model of properties

of the lamellar phase in a two-dimensional system, then the MF approximation ap-

plied to 1d model correctly predicts some of the features of the 2d phase diagram

obtained by MC simulations. In particular, the 1d MF phase diagram for strong

repulsion (Fig. 2.8) predicts coexistence of two ordered phases with different de-

gree of order, what can reflect the coexistence of the more ordered lamellar phase

with the less ordered molten lamella. Moreover, the MF prediction of the reentrant

melting phenomenon for the constant chemical potential and upon increase of the

temperature also agrees with the 2d phase diagram obtained by MC simulations.
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4. Confinement induced anomalies.

Our study of confined self-assembling systems revealed that in thermodynamic con-

ditions corresponding to the self-assembly of inhomogeneous structures many anoma-

lies, absent in simple fluids occur. These are few among them:

(i) We have found nonmonotonic p(ρ) isotherms for both the impervious and the

permeable rigid confinement (Fig. 3.18 and Fig. 3.19). It means that in the case

of inhomogeneous structures the increase of density may lower the pressure. The

reason is that the increase of density may result in the increase of the average cluster

size, but decrease of the number of clusters. The clusters repel each other when the

distance between them is short, and this effective repulsion determines the pressure.

(ii) In the case of elastic and impervious walls the analysis of 〈L(N)〉 has shown that

in some ranges of N and T the system may shrink upon heating (Fig. 3.21).

(iii) We have shown that the average number of clusters in the canonical and the

grand canonical ensembles may differ even if the average number of particles is

the same. Moreover, the inequivalence of the canonical and the grand canonical

ensembles is not most pronounced at the maximum of fluctuation in the number of

particles as it does for simple fluids, and is rather related with fluctuations in the

cluster size and the number of clusters (Sec. 3.2.3). Hence, in the case of complex

systems, one should take an advantage from the ensemble equivalence with a special

care.

(iv) Finally, the solvation potential, which describes the effective interactions be-

tween the confining walls, exhibits oscillatory decay on a length scale which is a

few orders of magnitude larger than the particle diameter, and the period equal to

a double size of the cluster (Fig. 3.11). Thus, the solvation potential is nonzero at

much larger length scales than it is for simple fluids.

5.Equilibrium size of the self-assembling system confined by elastic walls. From

the oscillatory behavior of the solvation potential (Fig. 3.11) it follows that to some

extent our system can be treated like a soft elastic material. If the confining walls

are also elastic, then the system size is determined by a mechanical equilibrium be-

tween the solvation force of the fluid and the elastic force of the confinement. We

have found that if thermodynamic conditions favor self-assembly into structures that

are periodic in direction in which the system size is allowed to vary, then the equilib-

rium system size may not be unique (Sec. 3.1.4.2, Sec. 3.2.5 and Sec. 4.3). Namely,
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in such a case we have found a bistability in the system size distribution (Fig. 3.13

and Fig. 3.23). Interestingly, since the hight of the energy barrier is of order of kB T

in one-dimension, the changes of the wall-wall distance may by thermally induced.

The difference between the system sizes corresponding to the two maxima of the

probability of the system size depends on whether the walls are impervious or per-

meable. In the case of impervious walls the distance is equal to the half of the pattern

period, while in the case of permeable walls the distance is the pattern period. Note

that the period is determined by the ranges of the attractive and repulsive terms of

the effective potential, hence in the case of colloidal systems it can be of order of

even a micrometer. Taking it all into account, we conclude that, we have found a

way in which self-assembly of nanoscale objects can lead to spontaneous changes of

the system size on a micrometer scale.

6. Organizing effect of the slit. The presence of confinement in the two-dimensional

system may induce stabilization of structures which are much more complex than

those stable in the bulk (Chap. 4). However, the general impact of the confinement

is ordering. In particular, out of the phase coexistences the confinement removes the

infinite degeneracy of the lamellar phase that was present in the bulk ground state,

thus the ground state in the slit is unique. Since in the nano-industry structures

without defects are desirable, we have considered the way the defects induced by

the confinement appear in the system. We have found that at T = 0 the presence of

defects is strictly determined by the wall-wall distance and the wall-particle interac-

tions. In the case of wall separation suitable for periodic structures with no defects,

the effects of confinement are only local or do not appear at all. The local changes

are present only in the cluster phase and in the close neighborhood of the walls.

Their appearance upon a change of the chemical potential is associated with surface

phase transitions (Fig. 4.2). The case of the wall separation and the wall-particle

interactions which are unfavorable for the bulk structures, was analyzed only for the

chemical potential value corresponding to the lamellar phase. It turned out that in

such a case the defects appear globally along the whole slit (Fig. 4.3). However, we

have found that the defects appear in an organized manner with a given periodicity

in the direction parallel to the walls. Interestingly, the periodicity is present not only

at T = 0, but also at low T > 0 (Fig. 4.9).
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The universality of the conclusions. The patterns emerging in the colloidal and

amphiphilic self-assembly are very similar. Our study confirmed that the similarity

is strong not only at high, but also at low and zero temperature. Based on the simi-

larity between the two types of self-assembly, we can expect that our results on sys-

tems with isotropically interacting particles may also concern amphiphilic systems,

at least on a qualitative level. We also expect that magnetic systems with competing

interactions [116–119] may have very similar properties in confinement as well.
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Chapter 6

Appendices

6.1 Derivation of the approximation for the internal

energy.

We derive an approximate expression for the internal energy U when the local den-

sity (or volume fraction) varies on a mesoscopic length scale, i.e. for small gradients

of ρ(r). When ρ(r+∆r) is approximated by a truncated Taylor series, Eq.(1.6) takes

the approximate form

U=
1
2

∫

dr

∫

d∆r V (∆r)g(∆r)ρ(r)
�

ρ(r) +∆ri
∂ ρ

∂ ri
+

1
2
∆ri

∂ 2ρ

∂ ri∂ r j
∆r j + ...

�

(6.1)

where r = (r1, r2, r3) and summation convention for repeated indexes is used. The

above can be written in the form

U=

∫

dr
�

V0v2ρ(r)2 −
V2v2

2
ρ(r)

3
∑

i=1

∂ 2ρ

∂ r2
i

+ ...
�

(6.2)

where V0v2 =
∫

drV (r)g(r)/2 and −V2v2 =
∫

drr2
i V (r)g(r)/2. In derivation of the

above we took into account that an integral over R3 of an odd function, V (r)g(r)ri

199
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and V (r)g(r)ri r j with i 6= j, vanishes. When the second term in (6.2) is integrated

by parts and the boundary term is neglected, we obtain for U Eq.(1.9). Next we

take into account that the integration over the angles in spherical variables for any

function f (r) of r = |r| gives

∫

dr f (r) = 4π

∫ ∞

0

drr2 f (r) (6.3)

and

∫

dr f (r)r2
i =

4π
3

∫ ∞

0

drr4 f (r), (6.4)

and for V0 and V2 defined above we obtain Eq.(1.8).

When V2 < 0, the functional in Eq.(1.9) is unstable, and the Taylor expansion in

(6.1) must be truncated at the fourth order term. The term associated with the

third-order derivative vanishes, because the integrand is an odd function. In order

to evaluate the fourth-order term, we perform the integration over the angles in

spherical variables of the integrands of the form V (r)g(r)r2
i r2

j and integrate by parts

twice the expressions

∫

drρ(r)
∂ 4ρ

∂ r2
i ∂ r2

j

(6.5)

with i = j as well as i 6= j. We neglect the boundary terms, and after some algebra

we finally obtain Eqs.(1.9) and (1.8).

6.2 TCP in the 1d model for colloidal self-assembly

In what follows we will derive the expression for the tricritical point in the MF phase

diagram of the 1d model for colloidal self-assembly in the bulk (Sec.2.1.1.3).

We assume that when the continuous transition to the homogeneous phase with

density ρ̄0(µ∗, T ∗) is approached, the density in the periodic phase has the form

ρ̄(x) = ρ̄0 +∆ρ(x) with

∆ρ(x) = δρ +φ cos(kb x). (6.6)
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The continuous transition coincides with the λ-line, and at the λ-line δρ = φ = 0.

The difference between the grand potential in the periodic and the homogeneous

phases, ∆Ω=∆ωL, is a function of δρ and φ and ∆ω can be Taylor expanded for

δρ→ 0 and φ→ 0. When 2π/kb is not integer, in calculating ∆ω (see (2.11)) we

choose n→∞ such that L ≈ 2nπ/kb and make the approximation

1
L

L
∑

x=1

cos(kb x)m ≈
1

2π

∫ 2π

0

cos zmdz. (6.7)

The second derivative of∆ωwith respect toφ vanishes at the continuous transition,

while the second derivative with respect to δρ is positive. From the extremum

condition ∂∆ω/∂ δρ = 0 we obtain

δρ = −
A3(ρ0)

4(β∗Ṽ (0) + A2(ρ0))
φ2 +O(φ4) (6.8)

and

β∆ω= a2φ
2 + a4φ

4 +O(φ6) (6.9)

where

a2 =
β∗Ṽ (kb) + A2(ρ0)

4
(6.10)

a4 =
1

32

�

A4(ρ0)
2
−

A3(ρ0)2

β∗Ṽ (0) + A2(ρ0)

�

(6.11)

and An(ρ) = dnβ fh(ρ)/dρn with fh given in Eq.(2.12). The transition is continuous

for a4 > 0, and becomes first order at the tricritical point (TCP) given by a2 = a4 = 0.

We obtain for the density and temperature at the TCP the following expressions

ρ̄
tcp
0 =

1
2

�

1±

√

√

√ Ṽ (kb)− Ṽ (0)
Ṽ (kb) + 3Ṽ (0)

�

, (6.12)

T ∗tcp =
−Ṽ (kb)Ṽ (0)

Ṽ (kb) + 3Ṽ (0)
. (6.13)
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Real positive solutions for ρ̄ tcp
0 exist for 1/9< J∗ < 1, ie. when the lines of instability

intersect and form a loop.

6.3 Grand potential for weakly ordered periodic phases

in MF approximation for the 2d model for col-

loidal self-assembly

The normalized functions gp satisfy the equations

1
Vu

∑

x∈Vu

gp(x) = 0 (6.14)

and
1
Vu

∑

x∈Vu

g2
p(x) = 1. (6.15)

In the above equations the summation is over the unit cell of the ordered structure

with the area Vu. The length of the unit cell in our case is 2π/kb. The functions gp

for the lamellar and hexagonal phases have the forms

gl(x) =
p

2 cos(kbx · ei) (6.16)

and

gh(x) =

√

√2
3

3
∑

i=1

cos(kbx · ei) (6.17)

where kb is given in Eq.(2.90). In the case of noninteger 2π/kb, in order to calculate

Eqs.(6.14) and (6.15), we make the approximation

1
Vu

∑

x∈Vu

f (kbx)'
∫ 2π

0

dz1

(2π)

∫ 2π

0

dz2

(2π)
f (z), (6.18)

where zi = kb x i.

From the condition ∂∆Ω/∂ δρp = 0 we obtain for Φp� 1

δρp
∼= −

A3Φ
2
p

2(β∗Ṽ ∗(0) + A2)
, (6.19)
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where An =
dnβ fh(ρ)

dρn with fh defined in Eq.(2.12), and β∗Ṽ ∗(0)ρ0 + A1 − β∗µ∗ = 0.

After some algebra we obtain the approximate expression

β∗∆Ω∗p = Φ
2
p

β∗Ṽ ∗(kb) + A2

2
+Φ3

p

A3κ
p
3

3!
+Φ4

p

�A4κ
p
4

4!
−

A2
3

8(β∗Ṽ ∗(0) + A2)

�

+O(Φ5
p),

(6.20)

where the geometric factors are defined as κp
n =

1
Vu

∑

Vu
gp(x)n and take the following

values κl
3 = 0, κl

4 =
3
2 , κh

3 =
q

2
3 , κh

4 =
5
2 [42]. From ∂∆Ω/∂ δΦp = 0 we obtain the

amplitude Φp, and after inserting it to (6.20), the value of β∆Ω∗p for given T ∗ and

ρ0.

6.4 Asymptotic expressions for the one-dimensional

model with rigid boundary conditions

6.4.1 Average density

We introduce the notation:

ar + i br ≡
∑

Ŝ(1)

eβ
∗ρ̂(1)h∗1 Pr(Ŝ(1))P

−1
r (Ŝ(n)), (6.21)

cr + idr ≡
′
∑

Ŝ(M)

eβ
∗ρ̂(L)h∗L eβH∗j (Ŝ(M))Pr(Ŝ(n))P

−1
r (Ŝ(M)) (6.22)

where r = 1, . . . , 8 and i =
p
−1. The dependence of ar , br , cr and dr on Ŝ(n) is

not indicated for clarity of notation. The parameters cr and dr depend also on j =

mod (L, 3). Then Eq. (3.7) takes form

〈ρ̂(3n+ l)〉=
λM−1

1

Ξ

∑

Ŝ(n)

ρ̂(3n+ l)

�

8
∑

r=1

�

λr

λ1

�n

(ar + i br)

��

8
∑

r=1

�

λr

λ1

�M−n−1

(cr + idr)

�

,

(6.23)

where λ1 ∈ R is the eigenvalue with the largest absolute value Our aim is to obtain

an asymptotic expression for 〈ρ̂(x)〉 for M →∞ and n ∼ M/2. We sort the eigen-

values in the descending order of their absolute values and neglect in Eq.(3.7) all

the eigenvalues except from the first 3 of them. We limit ourselves to the two cases:

1) λ2 = λ̄3 = |λ2|eiλ and 2) λ2,λ3 ∈ R with |λ3/λ2|n� 1 for n� 1.
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If λ2 = λ̄3 then after some algebra we obtain

〈ρ̂(3n+l)〉'
λM−1

1

Ξ

∑

Ŝ(n)

ρ̂(3n+ l)
�

a1c1+2c1

� |λ2|
λ1

�n

(a2 cos(nλ)−b2 sin(nλ)) (6.24)

+2a1

� |λ2|
λ1

�M−n−1

(c2 cos((M−n−1)λ)− d2 sin((M−n−1)λ))
�

In deriving (6.24) we took into account that
�

|λ2|
λ1

�n
·
�

|λ2|
λ1

�(M−n−1)
�
�

|λ2|
λ1

�M−n−1
for

M � 1 and n ∼ M/2. Eq.(6.24) can be written in the form (3.15) with ξ defined

in Eq.(3.16), λ defined below Eq.(3.16), and with the following expressions for the

remaining parameters:

ρ̄ ≡
λM−1

1

Ξ

∑

Ŝ(n)

ρ̂(3n+ l)a1c1, (6.25)

A1(l) =

(

w2 if λ2,λ3 ∈ R and |λ3/λ2|n� 1
w2

cosθ1(l)
if λ2 = λ̄3

AL(l) =

(

w4 if λ2,λ3 ∈ R and |λ3/λ2|n� 1
w4 exp (3/ξ)

cosθL(l)
if λ2 = λ̄3

θ1(l)≡ arctan
w3

w2
, θL(l)≡ arctan

w5

w4
−λ

where

w2 ≡
2λM−1

1

Ξ

∑

Ŝ(n)

ρ̂(3n+ l)a2c1, w3 ≡
2λM−1

1

Ξ

∑

Ŝ(n)

ρ̂(3n+ l)b2c1, (6.26)

w4 ≡
2λM−1

1

Ξ

∑

Ŝ(n)

ρ̂(3n+ l)a1c2, w5 ≡
2λM−1

1

Ξ

∑

Ŝ(n)

ρ̂(3n+ l)a1d2, (6.27)

The above asymptotic expressions are not valid when λ2 and λ3 are both real, and

|λ3/λ2|n = O(1). For the range of parameters studied in this article, however, λ2

and λ3 are complex conjugate numbers.
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6.4.2 The effective interaction between the confining walls

In the asymptotic region of M → ∞ the exact expression for Ψ(L) (Eq. (3.14))

takes the asymptotic form given in Eq.(3.17) with φ( j) = φ2( j)−λ and with

A( j) =

(

C a
2 ( j)e

3/ξ if λ2,λ3 ∈ R and |λ3/λ2|M � 1

2C a
2 ( j)e

3/ξ if λ2 = λ̄3

,

where C a
r ( j)e

iφr ( j) = − Cr ( j)
C1( j)

, and Cr( j) are given by Eq. (3.11).

6.5 Microstates obtained by the virtual expansion of

the system

In what follows we show that the virtual expansion scheme described in 3.2.2 is not

biased, i.e. it generates all possible microstates of the system of the given size with

the same probability.

We consider N indistinguishable particles and L lattice sites. Each site can be empty

or occupied by one particle, thus there are
� L

N

�

distinguishable microstates. We will

show that the virtual expansion procedure of building configurations of the system

with L + 1 sites by inserting an empty site at a random position in a system with L

sites is not biased by the insertion procedure. Let us consider two sets of particle

configurations. The elements of the first set are the microstates of a system of size

L with N occupied sites with a distinguished position in which a new site can be

inserted. Since the new site can be inserted in L + 1 places, the first set contains

(L+1)
� L

N

�

different elements. In the second set each of the elements corresponds to

one of the microstates of a system of L+1 sites with N occupied sites, and with one

of its L + 1− N empty sites marked as removable. The number of elements of the

second set is (L+1−N)
�L+1

N

�

. Because (L+1)
� L

N

�

= (L+1−N)
�L+1

N

�

, the two sets are

equinumerous. We define a one-to-one correspondence between the elements of the

two sets by identifying the location of the insertion point in an element of the first

set with the location of the removable site in the element of the second set, and by

requiring that the same sites are occupied. Note that each microstate of the system

with L + 1 sites can be obtained in L + 1− N ways from the elements of the second
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set by removing the mark “removable”. Because of the one-to-one correspondence

between the elements of the two sets, each microstate of the system with L+1 sites

is obtained L + 1− N times by the above procedure.

It follows that the proposed procedures of building configurations of the system with

L+1 sites by inserting an empty site at a random position on the configurations of a

system with L sites are not biased by the insertion procedure. The same lack of bias

applies in the reverse procedure.

For an illustration let us consider L = 2 and N = 1. There are 2 microstates,

[1,0] and [0,1]. After insertion of an empty site in 3 possible places, we obtain

from the first microstate [0,1,0], [1,0,0], [1,0,0], and from the second microstate

[0,0,1],[0,0,1], [0,1,0]. One can easily see that after this procedure we obtained

each microstate in the system of size L+1= 3 containing N = 1 particle L+1−N = 2

times.
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