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1. Introduction 
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Dynamic stability of distributed systems has been an object of considerable attention over the 
past half of century. Numerous papers are available of isotropic and laminated beams, shafts, plates 
and shells under periodic and random forces. Most of papers have applied finite dimensional or 
modal approximations in analysis of vibration and stability. The Liapunov direct method is a quite 
different approach and can be successfully used to analyze continuous systems described by partial 
differential equations. A significant advantage is offered by the method in that the equations of 
motion do not have to be solved in order to examine the stability. An application of nonlocal 
continuum model to representative problems of nanotechnology was demonstrated in [1]. A model 
based on nonlocal continuum mechanics was applied to solve the buckling of multiwalled nested 
carbon nanotubes [2] . The detailed study on the flexural wave dispersion in single-walled nanotubes 
on the basis of beam models in a wide range of wave numbers was presented [3] . It was shown that 
the vibration analysis results based on nonlocal mechanics are in agreement withthe experimental 
reports in the field [4]. Based on the Donnel-Vlasov shell theory a double- elastic shell model was 
presented for the parametric vibrations of double-walled carbon nanotubes under time-dependent 
membrane forces of thermal origin [5]. The paper is concerned with the stochastic parametric 
vibrations of micro- and nano-rods based on Eringen's theory and Euler-Bernoulli beam theory 

2. Problem formulation 

The theory of nonlocal continuum mechanics assumes that the stresses at a given reference 
point are functions of the strain state of all points in the body. In this way the internal length scale 
enters into constitutive equations as a material parameter. Adopting Eringen's nonlocal elasticity 
[ 6] the nondimensionalized dynamic equation of a short nanotube has the form 

(1) w,u +2f3w,t +(fa+ f(t))w,xx +w,x= +clw,uxx +2f3w,txx +(fa+ f(t))w,=J=O 

where c -the nondimensional small scale parameter, w - the transverse beam displacement, fJ -
viscous damping coefficient, f a- constant axial force, f(t )- time-dependent component of axial 

force. The instability problem is solved for simply supported edges. The trivial solution of Eq. (1) is 
almost sure asymptotically unstable if the measure of disturbed solution tends to infinity with 
probability 1. 

3. Stability analysis and results 

In order to examine instability we construct the energy-like Liapunov functional of the form 

(2) V = ~ i [v2 + 2/Jvw+ 2fJ
2 w2 + c(v,: + 2/Jv,x w+ 2/]

2 w2 )+ w,~ - fa (w,: + tw.~ ) ]dx 

If the classical condition for static buckling is fulfilled the functional (2) is positive-definite and a 
measure of distance can be chosen as the square root of functional. If trajectories of the forces are 
physically realizable processes the classical calculus is applied to calculation and we have 
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(3) 
dV 
-=-2PV+2U 
dt 

where an auxiliary functional is known. In order to fmd 'a function A satisfying inequality 

(4) U ~ AV 

In order to find A we solve Euler auxiliary problem and obtain the first order differential 
inequality with respect to functional V . The sufficient condition of the almost sure instability is as 
follows 

(5) 

where ( ) - mathematical averaging. Based on the formulation obtained instability domains are 

calculated. 
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Figure 1. Changes of instability domains with dimensionless scale parameter £ . 
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