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PlASTIC STRAINING OF NOTCHED BARS WITH INTERMEDIATE 

THICKNESS AND SMALL SHOULDER RATIO 

W. Szczapil1aki and J. lliastkowski 

Polish Acade1113 of Sciences, Warsaw, Poland 

1. Introduction 

The problem of the stress distribution and mode ot deformation of 

notched bars undergoing tension is rather well elaborated for plane 

strain and plane stress conditions on~. For bars with intermediate 

thiakness, in which the truly three-dimensional state of stresses 

occurs, there arise such difficulties in the theoretical analysis 

that only the kinematical approach giving the upper bound on the 

load faetor is available. 

If the bar is sufficient~ thick the plane strain complete solu

tion is available, provided the shoulder ratio c/h is so large. that 

the boundary of the extended slip line field lies entire~ within 

the contour of the bar [1] • If, however, the shoulder ratio is to 

small tbe complete solution is still not known and only the upper 

and lower bounds on the load factor may be obtained. 

The problem on how thick a bar must be before a plane strain solu

tion is ~ppropriate for a V~nothed bar was experimental~ investiga-
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ted by W.S. Zhukovaky (2,.3] and W.N • .Findley and D.C. Drucker [4]. 

The same proble for various rounded notches was studied in authors 

previous paper [51. All experimental results demonstrate that the 

limit load computed tor ~rfectlY plastic material has real signifi

cance tor ductile metals.. The experiments bring out clearly that the 

plane straLl. in a notched apecwn requires the thickness b ot the 

bar to be several times larger than the width h in the narrowest 

cross-section. 1 t was found, however, that the required A = b/h ratio 

depends notably on the shape ot the noth. 

In the preaent paper upper bo'Wlds on tba load factors tor notched 

bare with inter.ediate thickness and aaall shoulder ratio are calcu

lated and coapared with experiMntal reaul ts. Two types ot notches . 

are investigated, D811eq vario~ rounded notches and rectangular not

ches. Five seta ot specimena of aluainiUil alloys were tested. It ~as 

tound that the yield point load generally coincides with ita theore

tical upper estimate. However, the influence ot the D.OtCh geometey 

and the ductili~ ot the material is clearlY visible. 

2. ~riaental technique 

A universal 1\,ydrauli'c testing machine with ordinary pulling grips . 

was used in all teats. In order to avoid the possible bending in the 

XJ-plane ot specillena with large c/h ratio their ti tting heads were 

machined in the manner shown in Fig. 1 • 

Detoraations were measured b,y meaoa ot a mechanical extensoaeter 

with 0.01' m division dial gauge and length ranging trom MJ IDil to 

60 mm depending on the shape ot the notch and dimensions ot the spe

cimen. In order to minimize the effects ot possible ~light deviations 

trom symmetr.y, causing bending in the :u-plane, two extensometers 
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were applied on opposite surfaces z = ! b of the specimen as shown 

in Fig. 1 • Elongations were calculated ea the mean value ot readings 

of both extenso::aeters. It was found that such measuring "technique 

assures good reproducibili \Y ot ~xperimantal results. The load-defor

mation curves thus obtained diap~ regular characteristics. 

Depending on the material ot the bar and the shape ot the . notch 

the load-elongation di&&rULS diapl~ed ditterent behaviour. Typical 

\lurves are shown in Fig. 2. ibe straight initial portion OA ot each 

curve correaponda to the tul.q elastic atate ot the bar. The alight 

curvature ot the di~ above A ia connected with the gro~ ot the 

plaatic zones, while the eluUc central part of the narrowest croas- . 

section aaaurea amal.l tota1 elongation. Unrestricted p~astic now, 
which should be identified with the yield point load, begiua at the 

plastic aones •et on the axis ot 81J11Mtl7. This moment ia clearq 

visible as the po~ B on the curve 1. Howevar, otten the mount in 

which the entire croas section reaches tulq plastic state is hardq 

visible /see curves 2 and )/. In such caaea conventional detinitioaa 

ot the yield point load were employed. It tha tulq plastic portion 

ot the diagram has alight curvature, the 110at convenient detini tion 

of the yield point load i$ to identif;y it with the point B 9t inter-

. section ot the extrapolated amooth portion ot the diqr• aa shown 

on th• curve 2. It 1 however, the curvature ie considerable, as in the 

caae ot the diagram ) , the yield point load . has been identUied with 

the point B at which the taDcent IIOdulua reaches the value 0.) tanct:, 

where cl.. ia the angle which ukea the initial straight portion ot the 

diagram with the elongation axia. 

) • 'lheoretical upper bounds on the yield point load 

Let IJf denotes the unknown true value ot the yield point load. An 
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upper bound Pu on i" ~ be found by equating the work done by P to 

the intarD&l dissipated energy for any kinematically admissible defor

-tion mode, conaidered u plastic only [61. 

The 7ield point load factor of the notChed bar will be defined as 

the ratio f = Jlf/P0 , where P0 = Skbh is the yield point load of the 

amooth bar with constant cros·a-eection area 4bh. The upper bound on 

t is equal to • 

/J.l/ 

Fig. ) shows four different kinematical~ admissible mechanisms 

of plastic collapse of a bar with circular notch. It is evident that 

these collapse modes can be also applied to the upper bound estimate 

ot the yield point load of bars with another shapes of notches. All 

formulas for upper bound on fu given in this and following sectiona 

have been calculated by assuming the Tresca yield criterion. 
0 

Mechanism l represents the slip-line solution [71 tor plane strain. 

In plane strain conditions I ;\ = b/h ~ oo/ it conei tutes the complete 

solution, provided the shoulder ratio X = c/h is so large that the 

boundar,y of tqe extended slip-line field lies entire~ within the 

contour of the bar. It can be, however, easily verified that all kine

matic conditions do not change if the shoulder ratio df = c/h is sma

ller than req~ired by the theory and if the " = b/h ratio is finite. 

Thus the slip-line solution ~ be treated as kinematical~ admissi

ble deformation mode for bars with inte~ediate c/h and b/h ratios, 

giving for such bars an upper bound estimate on the unknown true value 

of the yield point load. 

Mechanism II [81 contains a simple shear plane shaded in Fig. ). 

The upper part of the bar above this plane moves as a rigid body in 

the direction parallel to the shear plane, while the lower part ~ 

be assumed to be immovable. The lowest value of the upper bound on 
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the yield point load ia obtained it the shear plane makes an .angle 
0 . 

ot 45 with the axis ot the bar. The upper bound on the load factor 

ia independent on the A = b/h ratio and is equal to. 

-II 1 + ')( ru :& --~--, /'J.2/ 

where X = c/h. Fomul.a /'J .. 2/ is valid tor all shapes ot notch. 

It will be shown later that /'J.2/ gives the beat upper bound tor 

sutficient]3 large 1\ and aull ~. 

Kechaniam.III [ 9] conaists in a simple 45° dia~ontinuoua rigid 

blocks motion u shown in Fig. 'J. For maJori v ot notch shapes, among 

them tor circular and V-abaped notches this mechanism gives the fol

lowing upper bound on t 

r!II = 1 + ~~. /'J.'J/ 

It, however, the narrowest part of the notch ia tol'llld tJ.y two straight 

linea parallel to the axia of the bar, u for e:uaple in the case of 

a rectangular uotc:h /Fig • . 1 I, and it 2e denotes the length of thia 

atraight bottom part of the notch, the formula 'for the upper bound 

takes the fom. 

/).4/ 

wl1ere f3 = e/h ia a paraeter dependi.Dg on the lenath 2e. 

Kechaniaa IV represents staple sheariQg along a discontinuity plane 

JU.king an 81Jile o'f 45° with the axis of the bar. The shear plana ia 

shaded in Fig. 'J. This mechaniu gives the beat lower bound on the 

load 'factor tor small ~ = b/h. Since the shear area depends on the 

ahape of the notbh the upper bound on the load factor t'f: has to be 
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computed for each particular notch. 

Let us consider now an important case of notched bars approaching 

to the plane strain corAi tions i\ » 1 but havizl8 small shoulder ratio 

Je = c/h. For such bars not only an upper bound on . f given by mecha

nism II ~ be obtained but also a lower bound from an appropriate 

statically admicsible streea field can be found. Lower bounds for a 

round£d notch and a rect~'lar notch ~ be obtained from the fields 

shown in Fig. 4,, Let us co1:.sider a bar with rounded notch of a radius 

a and small shc~lder width c /fig. 4a/. We can always find such 

radius a• of a circular notch for which the extended slip-line field 

calculated i:n the manner shown by Bishop [ 1 ] will lie entire:cy within 

the contour of the bar considered of radius a and shoulder width c, 

as shown in the figure. Thus assumir~ the material outside the slip

line field to be stress-free we obtain the lower bound t 1 on the load 

factor to be equal to the actual load factor of a bar with a notch of 

a radius a•. The same technique may be applied for different shapes 

of notches. Fig. 4b shows a bar with 1•ectangular notch of length 2e 

with inscribed slip-line field corresponding to another length 2e•. 

4. Upper bounds :t•or bars with a circular notch. 

Let us consider now a bar with a circular notch of a radius a 

/Fig. 5/. The shape of the notch is characterized by the parameter 

fl = a/h. Thus the yield point load will be determined by three inde

pendent parameters 

0 ~ /lJ. = a/hi ~ oo, 0 ~/A= b/h/ 1&: e>a, 1 ~ /)!= c/h/~ 00 • 

Depending on the values of these parameters the best upper bound on 

the yield point load factor fu will be furnished b,y one of the mecha

nisms shown in Fig. ) • For a given value of the parameter p · the 

best kinematically admissible collapse mode will depend upon values 
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of both remaining parameters 4f and A • Fig. 5 shows in the J.l , A 

plane regions corresponding to various collapse mechanisms for the 

particular value f.I = 0.6. Similar diagrams J1JBY be easily obtained 

for aey arbitrary value of 1--' • Thus all formulas given below will be 

written for an arbitrary. 

The region I co~aponds to the slip-line mechanisms I, and in this 

range of :>t and A the lowest upper bound on the load :f'actor Jll8Y be 

calculated from Hill 's [ 7) formulas 

+ ~/ ln/1 + Jl for 1-.f. ~ 0.26J, 

/4.1/ 
'JT 1Y2 tff 

+ '1 - p. /e - 1 - "'Z/ for f..t. < 0~26J. 

The upper bound on f in the region II, for which the mechanism II 

ie appropriate, will be d&termined by /J .2/. 

In the r~gion III, where the mechanism III gives the lowest of the 

upper bound, the formula /J.J/ for tu holds. 

Much more complicated form take the formulas for fu in the region 

IV corresponding to the collapse mechanism IV. This region is divided 

into three subregions IVa, IVb and IVc. In each of these subregions 

the expression for fu takes a different form, ~cause the shaded area 

in Fig. J cannot be described qy one general expression valid in all 

three possible geometric configurations. 

Thus in the field IVa we have 

/4.2/ 

The field IVb corresponds to the following upper bound 

IVb 1 ['1fP. 2 
2 1 'V< ) tu = de- rx -~- - ,..,. arc cos ;r 2 fl + 1 - J()(~- 1 
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- 11 + fl-'Jt!VI2p. + 1 - JII!Jf- 11"J. /4.J/ 

In the tie ld IV c we obtain 

1 ,, 2 2. JJ.2 -v }J 2 ll 2 • 
t"f:c = 1 + p. - 2 y fJ - A -2 arc cos -----J;.---- . /4e4/ 

The equations of th~ line~ >::; aparating all six regions in Fig .. 5 

are as f'o l:l.Jws 

line eq~·:: ion in t he ':{ , A coordinates I p. is a parameter/ 
, · · :-;. 

de = 2 / 1 
AB 

+ j1 I ln/1 + ~I - 1 tor p ~ o.26J 

dt = 2 /1 Tt 'Jf/2 'Jf 
+ ~ - J-1 /e - 1 - o/ - 1 !or IJ. ..::::. 0.26J 

A = /i [11 + Jl I W1 + pi -1] for p ~ 0.26) 

B'i: 

A=M~ -fJ /e'Jii2 - 1 -/ft J for IJ- < 0.26J 

BD ~ = 1 +f.:\ 

00 
_ A+ Yf. A 2 

- }J [ 1 + J.1 11 - 'f!J 
df - ~-1-' 

jf ] 
DE :X= 

.A - 2 ~ [ 1 + fl 11 - J' 
'A-21-' 

EF ')t=t+p 

FH A.=IJ 

{¥ . . A = ~ ~ 1 - f 2 arc cos p y12 f + 1 - df I I 'Jf - 1 I -

EK 

- 11 + fJ. -JfiYI2fJ + 1 - -:HIIdf.- 11') 

! 
FK Je =, + p.- Yp.2- i\.2 
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5. Upper bounds ror bare with a rectangul.ar notch 

'lbe ~sia tor bars ·with a rectangular notch /Fig. 6/ ia mch 

aillpler than in the previous case. The shape ot the notch ia characte

rized ~ the parameter J3 :z e/b. The 7ield point load depellds upon 

three i.DdepeDdent parameters 

0 .: lp = e/h/ ~ 1, 0 E./ A = b/h/E OQ' 1 ~ /af = clb/~ oo. 

Fig. 6 ahowa in the at, ,l plane tlie regions in which particular 

meChanisms of plastic collapse tro.Fig. J give the lowest estt..ma 

on the yield point load factor. Eaoh re&ion is marked by a nuaber 

corresponding to the number of the reapecti Ye Mchaniem. Fig. 6 is 

drawn tor a particular value of the paruaeter J3 : 0.24. For other 

values ot Jl the general picture of the diagraa does not change, the 

only dirterence being in the change of positions of the pointe B eDd D. 

The trajector, of the point 8 is marked by dashed line. s.an circles 

show the positions of B tor various values of ~ • Point D 110ves along 

the i\ -axis, its ordinate being 1\ = J3 • 
In the field I the beat upper bound is connected with the slip-line 

mechanism. In the contrar.Y tO the previously discussed case of a cir

cular notch, the value of the upper bound cannot b6 now expressed in 

closed tors, since the plane strain aol:ution can b3 obtained only 

nuaerically. Diagram in Fig. 7 represents the yield point load factor 

yP~ obtained from the plane strain solution tor different values of 

the parueter p • 1'hus the value ot the upper bound in the region I 

is constant for a fixed 

/5.1/ . 

and may be obtained from Fig. 7. 

The upper bound on t in the field II, corresponding to the collapse 

mode II, is determined qy /J.2/. 

http://rcin.org.pl



- 10 -

In the field In, where the •chani• Ill ia appropriate, the beat 

upper boUDd can be calculated troa ''·4/. 

In the field IV, in which ?. < f3 , or in other words e ::> b, the 

•chaDi• IV gives obriousq if: = 1 • 

!be linea separatiD& regions in .Fi&. 6 baYe the tollowi.Dg equations 

in the ar. ~ coordinates 

limt AB 

lizw BD 

liM DB 

)t • 2 'lip/ - 1 ' 

-v2 I 'A- pt2 - 4A[C'flp)- 1] = o, 
:M z 1 +121~-@f 

'2 A , 
;l.=f3. 

6. IKperiMntal reaul ta tor baN with circular DOtch 

'fwo seta ot speciMDa with circular notch were tested. In each set 

the p-paraMter deacribiD& the abape ot the notch bad a constant 

Yaloe. Tbe ~ter i' = bib waa also conatant in each aet. The onq 

par.eter Y817i.Ds in a particular aet ot apecilaena wu the shoulder 

ratio X• c/h • 

.Utboup the ~ore .. tical upper boUDd auqais preaented abon 

retera o~ to the yield point load, in the present experiaents not 

onq the yield point loads but alao the ul tiaate loada were recorded, 

because they can furnish valuable intomations ot great practical 

iaportance. 

Fig. 8 sbowa aoae ot the initial portions ot the nowinal stress 

versus elonaationa in 40 • diasr- tor the tiret series ot apeci

aeaa with a circular notch. 1'he abape-paraaeter was equal f = 0.6 

and the tbickneaa•par .. ter na ~ = 2. 'l'be •terial was the P.l-1 

alUII:lniua all.OJ /accordin& to polish stao4ar~/, containing 1.0 + 

1.6 Sot .a~J&&nese • .lrron indicate the annse yield point atresaes 
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~ the winin'• section ot the ~. 

The relation between the observed yield point averase stress .m 
the ratio at is shown in Fig. 9 together with the theoretical curvea. 

The upper bound curve was obtained according to the solution presen~ 

ted in Fig. 5. It is readi~ seen that tor l = 2 the best upper bound 

on t tor bars with 3t E 2. 1 )9 is given by the collapse mechaniaa II 

and tomula /'J.2/. For X .::>2.1)9 the slip-line mechaniam I ia appro-

.Priate. For chosen value Jl = 0.6 the to~a /4.1/ leads to tu = 1.570 

in this range. Since both mechanisll8 I aDd II are valid also in the 

plane strain co~i tions it seems to be interestiDg to cOilpare expari

mental results with the lower bound on t obtained tor the plane strain 

conditions in the manner shown in Fig. 4a. For J( = 2.62 the lower 

and upper bounds tor plane strain coincide. 

The experimental curve in Fig. 9 shows that the actual yield point 

loads are alightlJ greater than the theoretical upper bounds calcu

lated tor Tresca yield criterion. The ultimate nominal stress Paaz~F0 : 

where F 
0 

is the area ot the narro~ea t croes-aection ot the bar • dis

plays el.so considerable increase with increasing value ot the X = c/h 

ratio. It is interesting to note that tor .3t ;:> 2.62 the ultimate stress 

has almost constant value. The ratio ot ultimate stresses for bars 

with ~ = 6 and dl = 1 /unnotched bar/ is equal to 1.)7 • while the 

analogous theoretical value for yield point loads is t = 1.51 •. 

In the second series ot specimens with circular notch all dimensions 

were the same as in the first eet except the thickness 2~ = 10 m. 

Thus the thickness-width ratio was equal to A = b/h = 1. The aater

ial was the PA-2 /2.0 + 2.8 ~ 8g, 0.2 + 0.4 $ lln/ aluainium alloy. 

Fig. 1 0 shows the initial portions of the nominal stress versus 

elonsation in 40 IIDl diagrams. The yield point loads were obtained in 

the manner shown in Fig. ) - curve ). The relation between thus obta

ined yield point nominal stress PP1/F
0 

and the shoulder ratio :Jt = c/h 

• All dimensions in figures are given in milimeters. 
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is shown in Fig. 11. According to Fig. 5 the theoretical upper bounds 

on t tor bars with ;\ = 1 and ;)t ~ 1 • 707 will be defined by the 

collapse mechanism II and formula /'J. 2/ as in the previous case. For 

~ > 1. 707, however, the ·collapse mechanism Ill and formula /J. J/ are 

appropriate, trom which the value fu = 1 • J54 was calculated. The 

theoretical upper bounds are shovn in Fig. 11 by dashed lines. As in 

the previous caae the actual yield poiilt stresses are slightly gre

ater than their theoretical upper estimates. The ultimate nominal 

stNss P~ 
0 

curve displays similar behaviour as the yield point 

stress PP1/F
0 

curve. For at~2 the ultimate stress has almost constant · 

value, which is approximately 1 • 18 t:illes larger than the ultimate 

stress f'or an wmotched bar /:Jf = 1/. 

7. Experimental results f'or bars with rectangular notch 

Three sets ot rectagularly notched specimens were tested. The 

f3 = e/h - parameter ·describing the shape of' the notch was the same 

tor all specimens belonging to one set. Each set of' specimens was, 

however, characterized by another value ot p . The parameter A = b/h 

was also constant in each set. The only parameter varying in a parti

cular set of' specimens was the shoulder ratio 'Jl = c/h. 

In the first set all specimens were Characterized by the parameters 

;l = 2.00 and J3 = 0.12. The material was PJ.-1 aluminium alloy. 

Fig. 12 show~ initial portions of some nominal stress - elongation 

on the base 40 DD diagrams. . The method by means of' which the conven

tional yield point stresses were obtained is shown on each curve. The 

best upper boWld f'or atE 2.25 can be obtained from the mechanism 11. 

For at> 2.25 the upper bound connected with the medlanism Ill- /see 

Fig. 6/ is constant and has the value -f'u = 1.64. Theoretical upper 

bounds on yield point stresses calculated tor various at are repre-
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sented by dashed line in Fig. 1). The experimental yield point stres

ses P 
1
11 are slightly greater than their theoretical upper estimates. p 0 

The ultimate average stresses Pmax(F
0 

also display considerable incre-

ase with increasing df for small values of ~ and reach practical~ 

constant value for ~ ~ 3, the ratio of this maximum value to the 

ultimate stress for an unnotched bar I dt = 1/ being 1 .42. 

The material used in the two last sets of specimens was the dura

luminium PA-6, having much worse ductility than materials used in the 

tests. 

Fig. 14 shows initial portions of the nominal stress - elongation 

diagrams for some specimens characterized by J3 =r o.oa and A = 2.50 

and various values of ~. The experimental PP11F
0 

curve lies below 

the theoretical upper estimates on the tield point load shown by the 

dashed line in Fig. 15. Since three specimens were Dl$Chined from 

another stock of the material, the experimental results for them are 

marked by triangles. For Jf =>2.65 the upper bound on the yield point 

load factor given by the collapse mechanism III is equal to tu= 1.85, 

whille the experimental value calculated for ;)t = 9. 6 is much smaller 

and equals only 1.54. The ultimate nominal stresses Pmax'F
0 

for large 

Jt are only 20 J larger than ultimate stresses for the smooth bar 

I~ = 1/. 

In the last series of specimens the parameters J3 = 0.24 and 

i\ = 5.00 ban been choosen. The yield point stresses obtained from 

the nominal stress - elongation diagrams /Fig. 16/ are also this case 

smalldr than their theoretical upper estimates shown in Fig. 17 by 

the dashed line. For ~ = 9.6 the actual yield point stresses are 

1 • 65 times larger than analogous stresses for X = 1 , while the 

corresponding theoretical ratio obtained using the upper bound techni

que is equal to 1.8). The ratio of ultimate nominal stresse~ Pmax(F
0 

for bars with at = 9.6 and J( = 1.0 has the value 1.)8. 
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a. Concludi.Da raarka 

Experimental resul ta deaonatrate that the -sreaent between the 

theoretical upper estimates of the yield point loads and their values 

is quite aatiatacto17 tor aluminium alloys displ8Ji.Dg good ductility. 

For leas ductile materials PA-6 /duraluminium as received/ the actual 

yield point load is remarkabll smaller than the theoretical estiaate. 

The difference between theoretical and experimental reaul ts tor PA-6 

alloy depends on the shape of the notch, being approximateq 10 S tor 

p = 0.24 and 17 I tor fl = o.oa. 
It is interesting to note that the ultimate DOIIinal stresses 

Pmaz"F
0 

increase with inereasiD& X, until at a certain at reach 

their maxiaum value. For still larger :Jf the ultimate stresses do 

not change. The ratio ot this maxiaum value ot the ultimate stress ea 

and the ultimate stresses tor a smooth bar I X= 1/ is tor all tested 

materials and shapes ot the notch much smaller than the analogous 

ratio tor yield point nominal stresses. The less ductile is the mate

rial and the sharpest is the notch the greater is the difference 

between both ratios. 

References 

1. J.F.W. Bishop, On the complete solution to problems of deformation 

of a plastic-rigid material, J. llech. ~·· Solids, vol. 2, · 

1953, PP• 4J - 5J. 

2. W .s. Zhukovs)q, Deformations and stresses in plane notched bars, 

/in Russian/, Problems of Strength in .llachine Design - ser. 2, 

Academf of Sciences USSR, Moscow 1959. 

J. w.s. Zbukovsky, ,Strength of plane notched bars with arbitrar.v 

thickness, /in Russian/, Strength Anal.isis - ser, 9, Mashgiz, 

http://rcin.org.pl



- 15 -

lbacow 1963, PP• 231 - 252. 

4. •·•· Piadley, D.C. Drucker, An experi.Mntal at~ ot plane plastic 

atrainiuc ot aotched bare, J. Appl ... eh., vol. :32, 1965, pp. 49)

-503. 

5. w. Sscsepiliaki, J. lliaatkonki, Experiaental anaqaie _ot plastic 

7ieldina ot notched bare, /in Polish/, RozpraWJ IDqnierakie 

YOl. 13, 1965, PP• 637 - 652. 

6. D.C. Drucker, B.J. GreenberB and w. Prager, lxteDded lillit design 

theoraa tor continoua aedia, Q. Appl. Math. Yol. _ 9, 1952, 

PP• 215 - 389. 

7. R. Bill, The plutic 7ielding ot notched bars under tension, 

Quart. J ... ab. Appl. llath. Yol. 2, 1949, P• 40. 

8. 1. Praser, P.O. !lodge, Tbeo17 ot Pertectl,y Plaatic Solide, J. Wiley 

Inc., 1951, PP• 215- 216. 

9. D.C. Dructer, 011 obtainiuc plane strain or plane etreae conditions 

iD pluticiv, Proc. 2a4 u.s. lat. Cozap-. Appl. Mech.- 1954, 

pp. 485 - 488. 

http://rcin.org.pl



/ 

P/FQ 
kG/mm 2 

~ 

' 

l 

\..) 
('.J 

~ 

.• y 

· .o~ 
- _2e .. 

1/ 

f0·~" l 
I/ 

_ Gauge length . - .... 

Flg1 

Fig. 2 

¥ / 

X - -- .. 

'7 

tan a1 = 03 ta.na 

!JL[mm] 

http://rcin.org.pl



p 

Mechanism! Mechanism II 

Mechanism m MechanismN 

Flg. 3 

http://rcin.org.pl



i 
I 
I 
lu 
I 
i 
i 
i 

http://rcin.org.pl



A=b/h N A M 

2.2 

0 
201---

c 
15 

@ 

G 
H 

L 
1.2 1.4 1.6 !0 2.2 2.4 26 28 s.o 

11-c/h 

Fig. 5 

~-~~-------------A~--------------------~M~ 

5.0-

® 
F=-f(:x+1) 

1.0 

1.0 

f3•0)r/./ 
./ 

~=0 ({3=e/h) 
_p 

./ 
/ 

./ 

f3-U2 //\Trajectory oF the point B 
J? c 8 / 

@ F=1+ If ('A-/3}
2 

4 i\ 

3.5 

Fig. 6 

E 

50 
-z-c/h 

http://rcin.org.pl



o Calculated points 

0 Q6 1.2 1.4 1.6 {3=e/h 

Fig. 7 

. P/fO 
kG/mm 2 A=b/h=200 p=a/h=U60 x-c/h(vario.ble) 

.20~------------~-~--
Materia./: alurmmum 

alloy PA1 
(AI Mn 1} 

8 ~--~~--~~-~~--~--£~/oo--~~n~on-&n~k~_, 

111 mm 

Fig. 8 

http://rcin.org.pl



I· 
I 

. . I J.=b/h-2.00 Material: aluminium alloy 
. PA1 (At Mn1) o[xpertmenta/ pomt~ f.1•a/h=a60 

4L-----~----4---4-------+-------r--~---l 

1 2 

A-b/h=1.()() 

2.62 3 4 

Fig. 9 

{3=a/h=U60 

Matenal: aluminium 
alloy PA2 
(A1Mg3) 

Fig. 10 

5 6 

K-'C/h 

t.......,_J 

o aos 

http://rcin.org.pl



G 
kG/mm2 

1 

z· 
· Lower bound For plane strain bar 

o Experimental points 

4 

'A=-b/h-1.(}(} 
p-a/h-a60 

5 

Fiq 11 
7 

,.1at:aluminium alloy 
PA2 

(AI_Mg3) 

8 g 10 

'lt-c/h 

P/FO 
I<B/mm2 ?.-b/ha=f.O JJ-e/h-a12 -x-c/h (variable) 

20 

16 

Fig. 12 

E/ong!ltion scale 
.11 {mm) 
1..--J 
0 005 

http://rcin.org.pl



~~------------~------------~---------------

o Experimental points . 

Mat :aluminium 
alloy PA1 

A=b/h=2.00 
fj==e/h=za12 

(}~--~----~--~----~--~----~--~----~--~ 
1 ? 3 4 6 8 g 10 

P/Fo 
kGfmm 2 

42 

6 

il.-b/h-2.5 

afs::C/h 

Fig 13 

13-e/h-008 "K-c/h (vanable) 

alloy PA6 er 
_ (AICu3Mg1) ~ 

Material: aluminium ~~ 

Fig. 14 

14--=---....,.-

Elongation scale 
Ill (mm) 

http://rcin.org.pl



(j 

kG/mm 2 

50 

A o [xpeninental points 
).~b/h-2.50 

10 f3 =e/h,..{).08 

1 

kG/mm2 ).::zb/h-5.00 

42 

30 

MaT.: aluminium 
alloy PA6 

5 6 

fig. 15 

1 8 g 'rJ 
11-c/h 

~~~--~-----4----~r-----~---------~--~~ 
Elongation sea le 

·ill (mm) 
~ 

0 Q05 

Fig. 16 

http://rcin.org.pl



40 Upper bound ~ 
=======-==-==''----

10 

Material: aluminium at/ay PA6 

1 4 10 

Fig 17 

http://rcin.org.pl




