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ON MOTION OF THE ROTOR 

m FLEXIBLE NONLTh"EAR BEA-1\INGS 

Agnie~zka Muszynska 

1. Introduction. MOtion equations of the system. 

The high speed rotors represer1t main and particularly impor-
. tant part of the machines of the rotor type, which have most 
various applications in technology. Wnen the maChines of this 
type operate at high speeds con~ioerable. centrifugal forces 
arise which can produce detrimental · an6 f:::-equentl~' even daw.ge
rous vibration of the whole m&.chine system. 3eeides t."tJe forced 
vibration discussed above, rotors c~~ be subjected the other_ 
ones, caused by internal friction, hydrodynamic fridion in 
bearings, aerod~amic friction of :medium, Q.Ild in case of ¥ cen-

trifuge caused by motion of liquid having free surface at the 
ta.."lk. Those vibrations are of the self-excited character and 
the frequenties of them are near to freGuency of the rotor 
free vibration. To prevent vibration effectively it is neces
sary to solve a lot of problems associated with the dynamics 
of rotors. Be.cause of complexity of these problems many simpli
fying assumptions are introduced. For instance, instead of the 
actual physical system, a certa~ mechanical ~del is analyzed. 
ResearCh, for which a great number of publications is devoted 
followed two main directions : 1- the rotating system is simu
lated in the form of an elastic weightless shaft with a disc 
attached to it /see for instance, publications by Dimentberg, 
Grobov, Bolotin, Kushul 11 - 5] I ; 2- the system is simulated 
in the form of a rigid shaft rotating in two flexible bearings 
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/see for instance, puolications '::Jy Kelson [6 - 8] /. 

In the presen-t; wor'l the subject of investigation is a rigid 

tmbalanced vertical rotor s~opor-:e :_~: ·=2.astically. The rotor 

carries a tank partly filled ~Y liquid. /?i .g. 1/. ':'l'le ;nass 1! re

presents the m.ass :J:" complet :~ r0-:.:rtir1:; 3yste;:n, without taking 

into account the liquid xass. I'h3 ::1ass Jf 'JnJa2.3r.~.ce is repre

sented by m ' where m« i~r. T,'{e assume that t..'"J.e distribution of 

masses in the rotating system is sy:nmetr1.c. so that b;o princi

pal moments of inertia I are ~aual eac::;. )t::;.~r. Action of the 

mass m is equi-valent to t."-le .9.ction -;f 3r.. external cent.r·ifu;a:. 

force. The rotor is suppa rted ::..:: t·.vc flex:. tle ~~s:"in~s. Z.J.e up-

per bearing enables lateral :lisplacew.ent3, whereas the lov;er 

bearing allows to perform the s }b.erical :Jation. I: is assUDed, 

that the resul tants of elastici t;)r forces F; , F~ act LT'l tl1e 

plane ? OZ /the .~ - 9.Xis is motiJr .. less, 'l.thereas the Z - axis 
as the sym:netr;y axis of t.'1e rotor is :-i. ,~dly oo 1.md to it/. 

1breover, these res~lta~ts are qssumed to be ncnlLT'lear. in ge
neral, functions of the spring deforma~ions 

= w F3 ( w) ~'r- ( ~ 1 
u -

where w , ? are deforillations 0f upper 3I1d lower spring, 

respecti velvv. The assW!lptions ~once!'!ling p "J 9!ld =~ r 'v'lill be 
::1 

given below. 

We asstlill.e further, that the system is s·J.)jected to the action 

of damping znoaent Ck ~ , ,jepeni::-.. g linearly on angular veloci-

t ("") .&> th 0,... • 1"'91 y u() OJ. e ...:.. - ax~s, L ~ • 
In the case, when the centrifuge tank is partly filled '::Jy 

liquid with mass M1 , moving liquid causes the force proportio

nal to the rotor deflection velocity in the moving cc~rdirra~es 
system. Besides of, the rotor deflections eause the different 

vndth of liquid layer in the tank walls and the different pres

sure on the opposite tank walls [1o] , F::.g. 2. 

Under the assumption that the angles x , y .Jf def1ection 

of the rotor Z - axis !'ram vertical position in two mutually 

perpendicular planes are s:nall, the following equatios of mo-
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tion of the rotating system have been derived 

/1/ 
x +(a +)::)i + x [F(~) + 7w~ + jwy + "f....wy =- Hw2sinwt, 

y +(a+ ~)y + y [FC~) + 1u.> 2j- jwx- :~wx = · H~.i coswt, 
.,.. 

,..J 

where /u. = ~z -... ratio of the axial and equatorial· moment of 

inertia; 

H = meR --y-- - constant coefficient of the exciting force 

due to the action Jf unaalanced ::ass ; 

W - angular vel-.:H:ity .Jf :ne rotor. This valocity is as-

sumed to be constant. It ;:neans :hat any feedback ':Jet;·~·een the 

system and the source o:f 2Ile!'g}'" does not exist. Only steady sta

tee are taken i.."'lto consi:ieration ; 
n . 
"oJ. 

a = I~ - constan~ d~ing coefficient ~f precession 

vibrati~n of ·:he rotor ; 
1 3 t~. ~ 2 · 
,.., ..,.. -~., 

•

-r-.. -- :..>1 • 1 1 ""' - the ::ffect of liquid ·,·;i th f:-ee sur-:' ace 
121\h ~~ :: 

coef:!'icien t ; 

~~ - i;he ·.v-' .. ·i"7:h ,,f liquid layer ; 

'f 1 - ·ja;rr~i.""1; ::aeffi.:~ant, deDer:dent fr:;:.:: liqu::..i 7i3cosity; 
'l .f , 2 .... , ... , 

~ ~ ~ .... ' - ~he liquid ~a3s centrifugal ~~rce ~went 
;.. 

coefti.cient j 

' + y'-

~ (~) = ± l L 
2 

F3 lw) + s
2 

Fa ( ~) - t! 5 1 J 
·.v = L~ $ = Sf , 

with .sssumption t.."I-J.at angles x , y are smal.l. The remaining 

notations are presentad in Fig. 1 ~1d Fig. 2. 
Vc. s·,me th ... ..... ./:1. t• "r.\ d 1:' of' the cl,...,ss C: . _ as <..w. , .1.. a~. ~.ne ... me 1ons 4' 3 an ... E are _ ~· _,"" 

3 g~arantees existence and uniqueness of solutions for the 

. .: ... .::'ferential equations i1/ at all the :Joints of the space 

{-oe< x,x,y,j<oo, O~t(ooj. 
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~le shall analyse the equations of :notio~ /i I for the following 

t3~e of the ~unction F(~) , representing a linear combination 

of ela5tici ty t ·orces and of gravity force. Namely, let the cons-

tants k * > 8 5
0
> 0 be such, that for values of ~ not 

smalle!' than g 
0 

the following inequalities are satisfied 

rs 
/2/ 

0 

2~ s F(s) ds > 0 J 
2 

.) 2 

Those assumptions mean that there exist certain rotor deflection, 

such that elastic :force in the bearings is greater than the gra

vity force of the rotor. 

2. Investigation of boundedness of solutions for the 

equations of motion /1/. 

The attempts to find the exact gener·al solution for the sys

tem of nonlinear differential t:~quations I 1/ in a form which 

~uld be convenient for the further physical discussion have 

failed. In order to answer the fundamental, from the technical 

point of view, questions we shall apply the method of qualita

tive analysis. 

One of tr1e :funda:nental problems is the botmdedness of motion, 

that is, the question whether the deflections of rotor from -:he 

vertical line will increase infinitely in time, or they will not. 
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We introduce the au:dliary function TT(x,x,y,y) with the 

following properties for every arbitrary constant Q there 

exi~ts in the 8pace (x,x,y,y) the cloned surface defined by 

the equation 

v(x,x,y,y) = Q 

and for t vro arbit·rary constants Q1 , Q2 such, that Q1 > Q2 , 

the surfa ce V = Q
2 

lies L1side the domain botmded by the sur

face V -~ = Q1 • We determine the function V for every arbi tra
ry solution x(t) , x(t) , y(t) , y(t) of the system /i/. If 

V [x(t),y(t),x(t),y(t)1 is a function decreasing in tL:ne t, 

then the solution x(t) ' x(t) ' y(t) , j(t) passes in the 

space (x , x , y , y) from the surface V = Q1 in the direc

tion Qf the suriace V = Q2 lying inside the previous one. It 

means that the solution x(t) , x(t) , y(t) ' y(t) of the sys

tem /1/ is bounded. 

/J/ 

The :function of the following form 

Vx2+y2 

V (x,~1 y,j-) = X2 + Y2 + 2 j s F(s) 

0 

ds + E ( x i: + 

possesses the properties mentioned above. E is a constant, 

which is chosen in such a way that the following inequalities 

should be satisfied 

x2 + e. x x + 
(a + t)£ 

x
2 > 0 for x2 + x2 > o , 

2 

• 2 E, • (a + ~)£ 
y2 7 0 for y2 + y2 > 0 • y + y y + 

2 

It take place if 
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/4./ C.<. 2(a +cr.) 

Tb.e function V def'ined by the formula /3/ is positive defi-
., . 

ni te for all x , . x , y , J , lying outside the sphere 

where 

= go 
2 

!" 

= + ..,.2 
""o 

[ C + V E_ 2 
+ I (a + X)C - 2 k \ ] 

The number k > 0 is defined as followr::. : for the domain 
~ 2 -

~ < ~ · there exist a number k > 0 such that F (~_ )> hW - k. 
~ ,;0 2 - ( 
If F ( ~) > 7 w for all S , then V is positive definite 

in the whole space ( x , x , y , y ), provided that /4/ holds 

true. We take an arbitrary solution x(t) , x(t) , y(t) , y(t) 
of the system /1/ and determine S ¥ along this so1ution : 

dv \ :.'j ·2\ i,.J[ 
d t = (E. - 2 a - 2 t... j l :i~""" ~ y ) + W l .. ~ 

. 2 ' - y coswt) - Hw t (x si.r1Wt - y cos~t) 

We shall determine a region inside which the fu.nction 

~111 be negative definite. 

Ttaking into account /2/ f'or f ~ g 
0 

and arbitrary 

and also for f < ) 0 and 
.-----
V. 2 .. 2 

X + y > z1 

where 

?:: y-

d V 
n 
. . 
X ' y ' 
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the function d V 
d t can be estimated as follows 

We choose such constant number 0 > 0 th.-t for all x , i: , .. 
y , y not equal eimul taneously to zero, the following inequa-

lities ~e satisfied ! 

/6/ 

(_E. - 2a - 2 !) i:2 
+ w(f £ - 2~) x y - £ y~* < 

<- S(i2+~y2) 

( E - 2a - 2 ~) y2 
- W (f £ · - 2 ~) x y - C, x~ * < 

<( - b ( y2 + o( x2 ) 

where oL ie a certain constant. 
The inequalities /6/ are satisfied \vhen 

b ( ~ { o1.( 2 a + 21!. - £) + E k 11 
-

/7/ 

- ~ l ot..(2a - 2 6:. - 6) - E. kf + <{ ,,}Cj £- a) 
2

} • 

To assure positivi ty of ~ , the follo~:ring inequa lities must 

"Je satisfied : 

/8/ oL(2~ +2a-£) +(k*>o, 
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191 4E k"' ( 2 ~ + 2 " - £) - w 2 (j E - 2 ~ / > o • 

The inequality /8/ is satis~ied in virtue of /4/. From /9/ we 

obtain the following condition : 

/10/ t <.([< E 
1 2 

where 

E 
1 '2 

2 [ -= - 2w2 . . 2 k t4 ( ~ + a) + w 2 ~r 
}A + 4k* ' 

I 

+ 

~or which, the following inequality must be satisfied 

The condition /11/ is identical to the condition of asymptoti
cal stability of solutions of the linearized system /1/ /i.e., 

. 2 ~ 
for t..'1e case F ( ~) - 7 w .: k > 0 , H : 0 I . The solu-
tions of the li...T'learized system hsve the following form : 

4 

X : L 
i = , 

where 

a+(r 
0 =---1' 2, J, 4 .... c. 

4 

y = L 
i = 1 

1 r * r :1 2 
- 2 "' [ . '* 2 w = 8 L4 k - \B. + ~) .:.J + r w~ s k + 2la + 6:.) + 
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From the condition 

a + 0:., 
,.., 
/ 

+ i\/"'1 ,., ( 0 
- ~ f - \_J 

we obtain at once the inequality /11/. Thus, in t_he case of 

linearized system /1/, the solutions will be boun.ded and stable 

provided that the condition /11/ is satisfied. It results from 

the linear approximation that existence of the liquid wit-h free 

surface in the tank: :Jf rotor / ~r:. 'f 0/ may cause the instabili

ty of' vertical position of the device, i.e. 1.U1bolli1ded time in

crease of solutions of the motion equations. Since the assump
tions on nonlinear t"\mction F (~) admits the for:n F (~} = 
= cons t , the condition /11/ should be satis:fied to assure t.1.e 

bo~1dedness of solutions f~r the system of nonlinear equations 
/1/. 

I:f }:;. .) 1 - :r ~ /region of' subcritical speeds, high gy-
, I -.,, ' 

roscopic coupling/~-then the c.ondi tion /11/ is always satisfied. 
;1:-

If ; ( 1 - ~ , /overcri tical region/ then the ccndition 
J ·;;.J.:.. 

/11/ is satisfied only for a sufficiently strJng damping 

/12/ 

When /12/ is satisfied, the :fulfilling of' condition /4/ id 

guaranteed by /1 O;~ because E 2 ~ 2 (a + ~) , what is easy to 

show·. 

It results from the above considerations, that the constwnt 

S should be chosen according to the expre~ . .sion /7 I c-:nd the 
constant t according to /10/. Then the inequality /5/ c~1n be 

pre~ented ~ virtue of /6/ as 
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where 

z = V ~2 + y2 

We transform /1 J/ in the following way 

2o<:.b 

The f\mction ~ ~ will be negative definite for all x , x 

y , y outside the region 

/14/ 

Summing up in the region 

r 
~ > max lJo 

/15/ 

r z. > m.ax l zo 

~r::;-_ H ,2 \ 2 't::. dk ', 

8 ) < 
,.. . / ':l I 

Ht...:•~ Yf..'- + 4d i 

= 
V2 cJ..£ -' 

H v.,;.2 \if.. 2 .... 40: 
i 
\ 

z1 
t 

! ! \i ') ' ,0. 1 ' t .. <>~ '-· --

x 
v 

H2 w 4 ( E 2 + 4cL) 

2ot c£ 

-?. 

.. 
:: z. 

/where E should be chosen from the inte:!"Va} ( t, , C 2/, 
the coef'ficient S - accordir~g to t he ineouali t;y f7/, whereas 
the coe:rficient o(, should be chosen so grea :. ~.~ e possible, 

what results from /14/ I, t.l1e :funct.ion V(x,:~~~r ~i<~ is positive 

d .p.; ..... t - . + - . . . a v :1 . • - • ""h t , . e.1 .... ul. e ana ~ .. s aerJ.vat.r;e rl t , oeterm:uH.-: e: wl --~· aKJ.ng 

into account /1/ is negative definite . Eence it results, thQt 
the region /15/ conta.D.1.ts the rcg;ion of u~ time:i:c boundedness 

of' solutiong for the system of diff\::r·entisl equa tions /1 I .. In 
the coursE~ of time ul solutions starting iiJ.Si.d E~ ti10 region /15/ 
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at t = 0 do not outcome from this region, and those starting 

outside /15/ tend to this regi0n. 
In the particular case, when .H : 0 and F (f) > ~ W 2 

for all values of f , can prove, using the same arguments, 
the asymptotic convergence of all solutions of' equations /1/ 

and the asymptotic stability of the trivial solution x =·i = 
=y=y=O. 

J. Periodic solutions of differential equations of motion. 

The system of differanti&l equations of' motion /1/ posses
ses the periodic solution 

/16/ 
X = A. sin(t:ut + r) 

y 

describ~g the prece~sion vibration of the rotor, if' the fol

lowing ugebraic relations are :f\llfilled :. 

/17/ A2 I w 2 c· ~- 1') + F(A,-1 
2 

+ A2w 2 
!S

2 = rr 2w4 
L I 'J 

t = 
aw 

arc tan --;:-------
w2 (1 -r) - F(A) 

where A - constant amplitude of the periodic motion, t: 
V 

phase shift with respect to the phase o"f exciting force, ,.., r = ~ -?. 
Observe, that periodic eolution /16/ exis~ence /i.e. steady 

rotor precession/ does not depend from the value of the coei'-

. ficient ~ /i.e. the same e:ffect is obtained with empty or 
fullfilled tank/. 

We shall point out, that Eq. /17/ can possesses several so

lutions Ai, i = 1, 2, J, ••• , depending on the form of func
tion F(A) .• 

We shall rewrite Eq. /17/ as follows : 
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/18/ F(A) 2 ( + V H2 
w4 2 2 = (_.U 1 -r) - -a w 

A2 

rund seek for solution of this equation using the graphical method. 

The functions of the left-hand side and the right-hand side of 

Eq. /18/ will be plotted in plane with the as~umption that the 

abscissa is proportional to A 2 /Fig. '31. As it is eeen in the 

figure, if the function F(A) is monotonic, there exist t.~ree, 
two or ·one solutions of Eq. /18/ /one solution always exists. 

because the left-hand side of Eq. /t7 I is ~a continuous function 

of A and for · A = 0 it is equal to zero; as A ~oo, the 

left-hand side tends to inf'inity, the right-hand side of /18/ 

is constant positive/. 

Fig. '3 

I:f the :f'lmction F(A) has another form, there exist more 
solutions of Eq. /18/, and even, there can exist continuum set 

of solutions within certain interval ·< A1 , A2) /Fig. 4 and 5/. 
We shall now consider the so called resonanse curve, that is 

the plot of the amplitude A of periodic solution of /16/ 
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rroJ 

Fig. 4- Fig. 5 

versus the fl'equency of exciting force /whi eh equals to the 

frequency of periodic solution W I. 
The function A ( 6J) is represented by Eq ./17 I. To si.mplify 

reasoning we shlall consider the !econd powers of these varia

bles, that is A2 (w 2) 

It follows f'rom Eq. /17/ that if' A = 0 t.~en W = 0 ; if 

W = 0 , then either A = 0 , er 

/19/ F(.A) = 0. 

If Eq. /19/ possesses n solutions and if F(O) ~ 0, then 

the resonance curve .A2 (w 2) crosses the A2 - axis at n + 
points. 

We shall calculate the derivative d(A
2

) It has the 

following f'orm : d(vi) • 

Hence it is obvious, that 
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d(A2) 

a(w2) 
= 0 for w2 = 0 ' A = 0 , 

d(A2
J = 00 :for w2 = 0 ' F(A) = 0 , A ~O, a~ 0 • 

d(t.;/) 

This means that in the origin of the coordinates ( w 2 , A 2) the 

resonance curve is ta.Dgent to the w 2 - axis, wher eas at the 

points of intersection with A2 - axis /if they exist/ it is 

taJ1gen t to this axis. d (A 2.:J _ 
0 We shal::. seek for the points at whic..l). -- - • Putting 

d{f .... i) 
the numerator of expression /20/ equal to zero, after some trans-
~ormations we obtain 

/21/ 

We trans'form Eq. /17/ into the follmving form 

/22/ w4[A
2 (r- 1)2 

- H2] + w2A2[a2 + 2 F(A)f(- 1)] + 

+ A2 [r(A)1 2 = 0 • 

Tne e~~ression /21/ is substituted into /22/. After transfor
mation we have : 

2 . . '.)~
2 

2 [ 4 H2[F(A)] 2 - 4 A2 F(A) a
2 (1 -r) + A2 a 4] 

A (1-( - H 
= o. 

a (A2) 
Hence it follows that ~)= 0 for A= 0 
sho·wn previously, and th~f'J ' 

e.s it \'rUs 

d(A2) = 0 for A2 ~ H2 
d~2J (1 - r)2 

if 
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18 

From. another point of view the left-hand side of Eq. /22/ is 

a quadr~tic form with respect to W 2 • If the values of coef

ficients in Eq. /22/ and the :form of function F(A) are known, 

then for every value of A the roots of this equation can be 

calculated. There can exist either t~o or one real root, or 

there is no real root at all. Proceeding in such a way and 
chan~g the quantity A we can plot the exact resonQnce curVe 

in the plane (w2 , A2 ) • 

Th~, we shall determine some gene~al qualitative line:!, 

which are characteristic "for the resonance ctlrves defined a~ 
••roots" of Eq. /22/. 

We determine the discriminant of the expres$ion on the left

h~d side of .Eq. 1221: 

Eqwting each other the expressions /23/ and /24/ we obtain, 
2 . 

that ill:) = 0 if b = 0 • Therefore, the quadratic equa-
d(<J2) 

tion with respect t~ w 2 , has only one root, namely the ex-
pression /2 1/. If o < 0 , the real roots of Eq. /2'2/ do not 

exist. 
We transform Eq. /23/ /the lef't-hand side of this equation 

is a quadratic for.n with respect to F(A) /. We find the ex
pression 

/25/ 

~ere the notation is introduced 

We shall seek for the solution of Eq. /25/ us~g a graphical 
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method. Thes_e solutions are the points of intersections of the 

curves described separately by expressions on tr.vo different si

des o:f /25/. The curve ~ i A 2 is one of the branches of the 

h~erbola rund it possesses the following asymptotes horizon-
tal one 

:3( a1 = 

and inclined one : 

!{, a2 = 

"2 __ H2 
A.t tb:e point A 2 

(1 - J..C) 
\ I 

there is 

2(1 · _/;..) 

d)(i (A2) 

d(A2) 
= CO • 

For i : 1 \'fe obtain +..he lower branch of hyperbola, for 1 = 
~'le upper branch /Fig. 6 - provided, that 1 - / > 0 I. 

In. view of /2'3/ and /24/ we hav·e /F:i.g. 6/ : 

S = 0 for points lying· 'n the curve JL i A 
2 

5 < 0 for oo in t! lying inside the region bounded by curve 
·£;· .. A2 

1. ,; > 0 for ooints 1 ~L"lg outside the region bounded by curve 
. - 2 J 

)(. i A 
.,,z 
7}1f'rAJ • 

bo 

_;Z i 

- Cr---- ----:-tJ . 
. I 

I 
H'l I 

Zlf-;J)r I 
l / 
I _/ .. 

Fig. 6 
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Next we analyze Eq. /22/. The free term of' this expression 

is positive everyNhere. If the coefficients of W 4 are posi

tive, b~t the coefficients of vo 2 are negative as well as 
'"" 2 2) 6 > 0 , then Eq. /22/ possesses two solutions- w (A of 

the form : 

/26! 

,..., 

2 
wl 2 

' 

= A2 [2 F(A)( 1 - /"'") - ,,.2] ~ VI 
2 [A2(1 -;i - H

2J 

wne~e 5 is e~ressed by /24/. 
If' the coefficient of W 4 · is positive and the coefficient 

of liJ 2 is non-negative, then solutions W 2 (A. 2) of' Eq. /22./ 

do not exist /because it should be W 2 > 0 I. If the coef
ficient of c.v 4 is negative, then there exists one solution 
(;.) 2(;.2) : 

w 2 = A2[2F(A)(l-J:) -a2] -fS 
2 lA 2 ( 1 -.f) 2 - H2} 

The last case takes place, if' A 2 ( 1 - r) 2 - H2 < 0 
if 

/27/ 

that i~, 

This is il~ustrated in Fig. 7. H2 

In the region in whi eh A 2 ~ (. . ·· 2 a number of' so-
t - r' 

~utions depends, as it was shovm above, on the sig1. of' the 

coefficient of w 2 in /22/. For 

/28/ 

"' 
&nd for S' ) 0 there e~st t~ solutions of /26/ if' 

2 H2 

A > Ct -r)2 
, or orre solution 

w2 = 
(1 - r) F (A) - a

2 
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i:f For 

a
2 

+ 2 P(A) (r - 1) ~ 0 

the real solutions of Eq. /22/ do not exist. The inequality 
/28/ can be presented in the following form 

1291 F(A) > 

and in the plane it presents the region 

in ·which the . solutions of Eq. /22/ :an axis-c / '?'!.g. 8/. 

2 

~~ T(A) 

Fig. 7 Fig. 3 

No~ ~~ ~hRll collect together in one plane the regions of 
existence of solutions for Eq. /22/ re~ulting from the inequa

lities /711 and /29/ as well as :from the relation /24/ /Fig. 9/. 
Solving graphically Eq. /25/, Changing apropriately the 

argument A into A 2 we are able t~ draw in Fig. g also the 

plot representing the function 2 ~ F(A) • From the analy
a 

sis carried out above it follows, that for the example of the 
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function plotted in. · 'fig~ g· · the resonance curve exists in the 

interval.~ ( o , H
2 

2 ) , (A~ , A.~) and in the first 
(l - }-) . . 2 2) 

intervQJ. there exists one solutJ..on W (A , whereas in the 

seC'ond interval tt.'O solutions U) 
2(A2) 

Fig. 9 

:tn o~der ·t:> p:resent the resonance curves t:n the plane 
( ~ 2. , A. 2) ro:r variou~ forms of the function F( A) we shaJ.l 

deal, at first, ~th the so called "ekeleton curve". 

'Ne assume, thst there exist two solutions w 2(A2) descri

bec ~the expression /26/. We shall consider the "skeleton 
curve" tpa t is the curve in the plane ( w 2 , A 2) with respect 

to whi eh the branches of the resonance curve corresponding to 

the solutions /26/ are loc&ted at the identical distances at 
the segments which are paralell to the W 2 - axis. For this 

purpose we put together the expressions /26/ /one with the 
sigr- plus of! a ' the second one 'With the sign minus/. Thus, 
we decompose the obt2ined €A1Pression tnto two parts. So the 
equation of the nskeleton curve" is : 
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A2 [ 2 F(A) (1 
(02 /JO/ = 

2 r A2 (1 -
L 

or aiter some transformation 

/31/ 

- .v...) "' - a I 

I .J 
A q2 .i \~ 

A.-J -
~ 

2 F(A)(i -fA-)- a 2 
I 

VIe differentiate all terms ofEq. /J1/ with respect t·.) A.2 

/32/ 

I -t:t d F (A) < 0 ;·, . tak: .. "' . t -+' f+ ~ -e-r- tnls e pLace, !or ~s ance, _or so ~ 

spring characteristics/, then the rignt-hand side o:f Eq. /)21 

is negative provided that 1 - ;u.. > C • Sonsequently, the la::'t

hand side should be negative, too. We :;c:J.!ider the iJl'te~;al 

A.
2 ., H2 ·; ·· :-!.:: 
./ ( '5 / since for A'- -~ there exists 

1 -
1
l..4. J ._ ; 1 - ,u.Y~ 

only one solution a."'ld tl:e notior: J: ... "akel~tor: ::urve" is :neanL"1g-

less/. In this case, t.~e expression in ~rackets L~ /)2/ is po-

si tive. To ensure the po~i tive sign of t..1te left-hand 3ide ;:,f 
~ . ...... -, .... \......... ,. . 
--. . -?· <. ~ Hence it follows t.L"lat i.f 

ddF~.(A)< 0_, then •.".h~_~;A_~ 1,:)--.le~ .. . · ~J, .. 
/32/ it should be 

A ~ _ • '"" o ·- _ _ ·:!u..r're '' is tl:. ~ decreasing f!J...'"l c-

tion of' A~ • 

If' d~.FiA) > 0 inard ~:s-prings/, then :for the great :rs.l.:.J.es 

of A2 in the expression /'30/ t~l.e quantity in t..'"le numerator em 

be neglected as compared vli th 2 F (.t) (1 - .u.) , as well as i.:"'l 
I ·'> .~ 

the denorn.L"'lator the quantity H2 in eompariso::1 with A"" ( 1 - .u.) c::. 

The approximative equation of the "9keleton curve" has the 

form : 

., F (AI 
("j ~ ~ --
..,_. : - _M. 

Henca it follows that for ~eat ~alues ~f A2 ~ F(A) 
,ifdT>-
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the nskeleton curve" is the increasing function of A2 • 
We shall point out, that one of the solutions o:f /26/ poses-

see ~~e vertical asymptote 

= 
2 H2 

the numerator o'f the greater 
1-J..l.. 

Indeedt if' A ~ ( ... )2 

root of /26/ is reduced to the constant quantity 

the denominator confines itself to zero, and there~ore, for .., 
one branch· of the curve W c;,. -- Oc::j • 

On the ground .of the analysis presented above, . we are able 
for various types of the f~ction F(A) /for instance, for 
th~se presented in Fig. 10/ to determine sppropriately the 
resonance cu..-ves /Fig. 11/ • 

Fig. I 0 
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Alr--. - -/'7). 1 ' 

; / ·j 
Hl j / \__ 

{i=j4i f/- - --
o~' ~-----------·'"-'z 

AI 
Hl 

(1-_u,ii 
0 ...__:;:_ ____ . __ 

w2 

I 
I 
I 
! 

H 1 I 
·1-~''i ,-

A' 

A~ 
,4l 

If 

A/, 

25 

(}) 

® I --- _(v -- -o 
- --- - / 

A/o ---l) 
..tl 

i 

H' 
(f:jJJI --- --

0 

Fig. j i 

(.,JZ 
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f.:.-1e a1.1aJ..ysls can De performed analogously in tne case 
- M< :. . We present here only the f'inal results, that is, 

I 

the plots of the resonance curves for some f'orms of the fUnc-

tion FlAI /Fig. ! 2 and 1)/. 

Azt 

i 0 

? : • 
~H ffAli or, 

i 

I 
AJ~-------

' 1 ~ 

)~ur 

.At tne end, in the case 

= 

Fig. 12 

Fig. 1 J 

= 0 the following expression 

I ! " 
~. 2 e. 2 + A \1 A.'~ a 4 + 4 H 2 [ F (A)] 2 

H2 
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is t~e unique solution GJ 2(A2) o~ Eq. /22/. 
If F(A) is a monotonic fttpction, uo2 is 

increasing function of A 2 and w? ~ oo 

/Fig. 14/. 

i. 
I 

I I 

OL_, 
w 

Fig. 1 &. 

a monotonically 
as A2~ c::::::><::> 

lhe analysis given a.boye exhaust fully the problem o~ har

~nical resonance atates for the solution of the system /1/. 
It should be emphasized, that the solution~ /16/ are the exact 
solutions of the system /1/ and therefore, we obtain the reso
r:~.rlce curves without any approximations. It is of course, very 
·.J.~efu.l for practical applications to lmow the qualitative pj,c
ture of resonance curve Which is achieved with aid of simple 
.::xaminati:)n of location of the curve 2 H2 a - 2 F(A) on tb.e 

diagram of regions of existence of separate for;ns ·:J:f solutions 
-tor Eq. /22/. If, for instance, the function F(A) /dlarac

teristics of elasticity/ is given in the form of a plot /the 
case frequently encountered in practice/, it is suf'ficient ' to 
compare the plot of this function vri th the graph of' existence 
of the separate forms of solutions /Fig. 9/ and it is possible 
to determtne directly both the qualitative picture of the re
sonance curve a.q vell as the value of greatest a.mpl,i tude a!'"'.d 
frequency :for which it occurs,· /the formula /21 I after subs :~i
tution A= Amaxl. Further, it i! po~sible to choose the sprL~g 
characteristics, _that is, the function F(A) ir ... such a way, 
that in the conditions o~ operation with the velocity LJ , 
the amplitude of forced vibration does not pass above ~~e given 
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quantity. From plots in Fig.. 10 and 1 2 i:. is seen how the cla:n

ping coefficients affect the resonance process. Lovrering "~~ ·· 

causes as if the compression of the scale of plot of' the fw""lction 

F(A) , therefore the cur~e 2 E2 a-2 F(A) becomes less 

abrupt. Its point of intersection 'l.'d th the Ctlr'/e w~ (A 2) r&

moves itself leftwards. Ti1is mea~s, that tr!e greatest amplitude 

of ~orced vibration dec~eases. The changing of ths coe~ficient 

H gives invers eff'ects. 
( ' ,'\2 + c -~ 2 Let us draw attention to the case F SJ = Y J 

Eq. /i/ possesses then one, ~no or three periodic solutions o~ 

the type /16/ \\1 th different amplitudes corresnonding tc the 

given value of~ /the cases 1, 2, 4, 5. 7, e, 9 &ne TO ih 
fig. 11/. This result is similar to those c_oncl us ions conc-::r

ning the second order differential equation of :ne ~~~:ing's 

type 

/JJ/ = E sin 

which descxibes the motion of a mechanic&: er electric&: syste~ 
v"'-itb one degree o:f :freedom. It is sho·wn, f'or the abovE. ~en"tio

ned equation, th~t the resonance cun"'e~ ma~.-. ho:ve tbe li~e s.t..s.:.•c 

as those in Fig. 11. However, it shoul5. be emp!"' .. asied, t":'.c.t t t c 
results for 'Eq. /)J/ were obtaLYled by many eutors in the- ~ppro

xima.tive way, lfhereas in the present work, the results obtainec 

for the system. /1/ are exact. 

If the damping in the system /1 I is small and if the f'unction 

F (~) is increasing as well as if' the principal axial moment of 

~ertia I is either less than or equal to the equatorial rrw-z 
ment I If' ~ 1/, then the amplitude A of force6 vibr~tion 
can increase infinitely as W increases /cases 2, 3, 6~ 9, 
10 and 11 in Fig. 1t/. Hence it follows, that :if the amplitude 

of the e:xci ting foxce is pr,portional to the ~econd p:)wer of 

frequency W , f'or high speeds the sta.bilizir1g factor~ namely, 

the coef'ficien t of gyros copi:c coupling has th; insimif'icant 

influence. If a stronger dam.ping exists in the s;ystem, t..'"len 

the amplitude increases only to a certain value as W incre

ases. 
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The existence of several states of resonance was first obser
ved by M. Z. Y..olowski for the case of single equation of~ the se

cond order : 

/34/ 

In the publica t.ion [ 11] the resonance curves were obtained for 

the a pproximative solution of Eq. /34/ : 

x = A sin (wt + t) + B 

for a nurn.ber of types of the fUnction F(x:) • The character of 

resonance curves obtained by r-Dlowski on ground of the first 

aoproxi:nation are not different to those obtained for the system 

/1/ with the aid of exact method. 

4. Investigation o:f stability of periodic solutions /16/. 

~view of existence o:f several periodic solutions it was 
necessa~J to examine their stability. In order to investigate 
t he Liapt.mov' s stability of periodic solutions J:f the type /16/ 
for the system /1/ •Nhich possesses different amplitudes, we 
shall write the system of equations under discussion in varia
tions. Next, we shall ~~alyze the stability of its solutions 

[12] • Applying the trans:form.ation 

sin (wt 
\ 

X = u + A + f) . 

y = V .A cos (Wt + t ) 

we obtaia the linearized system of equations in variations [rJ, 
14] 

~+(a+~)~+ [F(A)- ~W 2]u+ A sin(wt +,r} 

· ddFlA)[u sin(wt + r) - v cos(Wt +r)] + ;w; + 

/J5/ +-;..wv = 0 
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/3'i/ 
... \ • f. • ) 
v + (i + {l..iv .._ v L'Fi.,ft - '"7 w2 J - A CO! (wt _-+ Q). ·. 

"· 

T'~s ·ts the e;ystem af homcjgeneou.s line~ equE:tios Vc'i t!f. perio

iiclil:i..y variable coeff'icients. For this system we have found 

tht: solution : 

mt 
[ c1 ' ,""< sin Lwt 11 

u :: e cos lWt +f) - v2 -+ 0~ 
/)6/ ... em-: c, sin (_wt r) ,.. :"w q 

V l + ... .... ., CCS ·l!· t .... t~-, ... c.. 

wnere the constant.e r:. C 1 _, Dz should be 6.eterrtineC.. Sub-

!ti tuting /36/ into 1351, &.fter some t:rans:forJ:Uation we obtain 
t..~e following char&cteri.stic equation 'tO determine lll • 

(" + ~)2 A'!<'f'j)l r . 
~) [ 2 F(~). + +A ~~ + m~(& + + G b. j . ( 

/)7/ d F(A )J 2. 
::> I. 

l'i } 2 ¥.w 2(r- 1)} ... A dr' + aw-u - + - + I.,. 
~ 

"" 
.-

'd 2 A ddFiAJ 
r 

..;. w" ,2 + i :F (1. ': + ( ... / lf- + LF(A) .+ 
I . 
L.. 

.., w 2 (f- - dJ :: 0 

Eq .. /171 .has f'o-:.:r roots ""'" • If "they are dif:ferent, we 
c bt&i.r.L i'cur· mdeuend.ent solutions of. th€ system /35/ L.~ the 

fo:r:-w of /36/. Tn.eir lL"rJ.es.r combination is the general solution. 
However, we are· interested onl:y ir... the sign of the· real. part 
of' -the rocts :;u deter!DL"'"!ee exponential deCreasing o-:f solu

t:iona /'J6/ iir.C. iii consecuerice ~ the. asymptotic stability of' 
the scl~t~ons /lb/ :·o~ the sys"ten, /1/~ 
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'lie ~h8ll apply the Hundtz'e criterium [t2] • After develo

ping the corresponding determinants we find the following con

ditio~ 

/J8/ a + & > 0 

i39! 

/41/ 

:a + ! ) r F (A) - t1 W 2 + (a + ~) 2 + :\ d F (A)J 
' L l. · 2 dA 

+ 

, ~ 

- ·~-.}:_-+ 

(a + 3:) 2 ! 2 ( d d FiA)) 2 

·> 0 ' 
(~ + 1)..)2 + w2rf- 2)2 

:~~A ·; .+ W 2 0u..- l)] 2 +. 9.2W2 + A d dF lA) [F(A) + 

.l 
ql > 0 

...... . 

'.vhic.1. · guarantees~ -.;hat the real parts of . IIl are negative. The 
condi tiQns /38/ , /)9/ a."'ld /4-C / are fulfilled if the positive 

jissipation exist irr ·the system /a> O/, and if, for instance, 
·the function F(A) is non-decreasing, as tNell as it h~ non-

. negative derivati·.re for given A·, and if the. condition /11/ is 

fulfilled. The inequality /41/ shows directly for whiCh ampli

tudes A :he solutions /16/ are stable or· unstable. To verify 
this we ~vrite Eq. /17/ in the following form : 

.l , . . \ 2\ '+' \A ) . 

The functior: 'i>(~2) has the following properties : cp(o) = 0, 
-.$ (A 2) __,... oc , as A 2 ~ oo • Since F (g) is a continuous 

function, ~ (A2) is also a continuous function of the argument 
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,2 . .,.. . , h . t al ~ • nence 1t fo_lowa, ~at there eXL! such a v ue 

fo:r whic-n cp { i 2) : H2w4 • If the function ~(A. 2) 

monotonic, ~~e greater qu~tity of points for 'whicn 
= H2 w4 can exist /Fig. 15/. 

o: 

:F'ig .. 15 

Ws;; sn.al::. d.if':ferenti&te the :f'-l!"!Ctior 

= 

. ~ ,' ~ \ r - ") 
• A c :\.r. i ! F(A) + w.:.. Cp..· _ 

CT L 

., I 
1) t 

' J 

A2 = A2 
is non-
~ (A2).: 

Co:np&!':i::e -::1e e:tpression /IL 1/ and /42/ we see, that the sclu

tior~s w1 tr. iin.p:i tu.des Ai , i = 1 , 2, 3, ••• , :fer which 

/ths:t is if' t!1e f'un ctior• at the poi~t A = A. is 
l 

non-inc!'easL.~g/ are unstable. For _ instance, in Fig. 15 the -solutionE \•vitn amplitudes .J.2 , ~i- 1 Q:I'e unstable. 

I:f ~ere exist three periodic solutions of the type /16/ 

wit.~ di.ff'erent arrml.i tudes /this, &S it was sQ.id above, can 

take place/, "L~er.L the solution with mean, e to quantity, am-
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pli tude is unstable, whereas the ~Ml solutions !1 tuated extrg

mely can be 9table. This result or exac-c reaaoni=1g confirms ·~-::.e 

results obtai11ed by ot."ler authors using approximati7e !Ilethods 

[11 , 1'5 J . 
5. Conclusions. 

I£. the present work the motion of the mechani·cal sys'tem 

sho\v.n in Fig. 1 has been LLvestigated on the ground of analy
sis of differen-tial ·equations /i /. ~e J()undadness of defle

ctions of the . ~tor axis fro~ ~.e verti~&l ?OSition ~as been 
pointed out. It is proved, t~at if ~~e solutions of homogene~ 

ous lin:earized differential equations system /~ / /i.e.~ rit .. gn 

F (~) : k* > 0 , R :: 0 / are as:ymptctic~~ly stable, ~~an "±e 
solutions· or the nonlinear system are bo~dec .nd are ~oming 

to t1.e certain de:fini te domain of the ul ti!Uate ~undedness. 
In the paper [1 0] it is showed, that in the linear cas-a~ t-.1-e 

effect of' liquid ~t t.lJ.e ta.~ 11ay ca~se ~'le unlimi tee solutions 
in the oyercriti:al domain, i.e. unli::i ted de:.·:a~t:.o<. Jf t .... '"le 

centrifuge "from the vertical position. Jne .::ar.:. :;bse~r~ ±:.s i...'"i 

practice. The centrif'u.,ges wi t.h ~an.ks ::'il:ad with a s:nal.l. ~uan

tity of' liquid can be S'..l~jected ~1.e dangerous ·.ribra--cion, •t.rith. 

amplitude muc...~ greater than in t..'"le case empty or · ±'.llfillec 

. tan'k. In the paper it is shower:, that in the case of .::onl~~ear 

elastic ~aracteristics of bearings su~~ effec~ also ~an oe 
.obtain. 

It Yras demonstrated the existence at least of ~ne :>erfodic. 

solution of the type /16/ with the frequency ·:>f t:1e exci tin:; 
force. The existence of the solution /16/ joes not jepend ~m 

v~ue o£ the coefficient ~ i.e. from existence l~quid w1~~ 
free surface in t..lJ.e tank. The relation betv;een frequency and 

~plitude o£ the forced vibration has been obtained. It follows 
from these relations ~1at for various frequencies o~ the exci

ting :force, that ~ is, for various an@..llsr velocities o:f the ro
tor itself, the mnplitude of forced vibration changes ~noto
nicalJ.y only in certain ranges of values of W /for fixed 
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vaiues o~ other parameters of the system/. In the defined 

~enge of values there exist two, three or more states of the 
steady v~.bri'tion. The .. jump phenomenon" is also possible, 
vi:l.ict. is k:no'Nn for Eq. /331 of the Duffing's type. The st2bi

li t:-<r_ of t"le periodic vibration has been investigated. It is 

precisely determined Which periodic solutions are stable and 

wh.ich ere unstable. It should be noted that the phenomenon of 

en~tence of a number of stable steady states is only due to 

tne action of the nonlinear elastic force of t.l1e bearings. ln 
tne case of full lL~earisation of motion equations, the rela

tion amplitude .- frequency has different Character, na:nely. 

the moduli of amplitudes change /for the given frequency/ ae 
we:.:... as the phenomenon oi' er..istence of several a:mpli tude for 

Jne frequency does not appear. Designing the rct.:ating sycte.rr. 

·=' f' such 2 kind., t.t'le cons true tor may and shoulc cnoose the 
n.ar:lL""lear elastic ::haracteristic ii! such a wa.,y, th&t for a 

gi7eu oongular velocity of operation the ampiitude of detrinen

:.~..l. precessi.c:: vibration c: tr.:.E: rote:- shoule. be se s!:lal:, as 

)JO<:! cri_ bl e. 

Fina.:Lly, it should be noteC.., t'tlat Eq. /1/ !!lay be -;1sed to 

des cri be no"t or>.l.J· "t.'"le sy·st:ell shovm ir_ Fig. 1 , :,u.t alsc num.e:

::--~us vther syste:n8. /mare strict:2.y, tb.ese are the ea'...lai:ior..s 
::i sm.all vibration/, for instar..:.ce, thE. :notion c-:' ~ mass less 

flexible shaft rotating in rigid jearL~gs together with the 

d.::..s c attached eccentrically [2 , 15 j , t.~e :uo:ioL of some 

g;.-roscopic devices, gyroscopic stabilizers a.nd otf.!.ers. 
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