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Viscoplastic flow of rotationally symmetric shells 
with particular application to dynamic loadings 

Tomasz Wierzbicki /Warsaw/ 

1. Introduction 

The Huber-Mises yield condition for rotationally sym
metric shells was derived by Hodge (4 J • The c9rresponding 
equations, given in the parametric form, are very complicat
ed and therefore are not treatable mathematically. The alter
native Tresca yield condition, although linear in the space 
of stresses, when expressed in terms of moments and stress 
resultants becomes again a non-linear function and so is, 
t~e appropriate flow rule, [3] • Therefore, depending upon 
a particular str~cture, various approximations to the latter 
yield condition were proposed mainly by means of inscribing 
or circumscribing much simpler geometrical figures, over the 
exact yield surface [5] . An extreme case is a limited inter
action surface which maintains all interactions between for
ce and force and moment and moment but neglects all inter
actions between . force and moment (3] . Such procedures give 
rise to numerous objections especially when applied to the 
problems of dynamic loading of shells. It is well known that 
Tresca yield condition, although provides a fairly good ap
proximation·to the stress field it often leads to unrealist
ic velocity fields because the resulting strain rate tensor 
does not change in a continuous manner and its direction is 
piece-wise constant. _The Tresca yield condition has proved 
very useful in the problems of limit analysis wh.ere only the 
moment distribution and values of the static load-carrying 
capacity were sought for (11] • In all dynamic problems for 
plates and shells the load already exceeds several times 
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the limit value and one is usually concerned with the de
termination of tne velocity field. For that purpose the 
Tresca hexagone is no longer a good approxi:ilation. 

In the space of generalized stresses the Tresca yield 
condition is represented by a numberjhypersurfaces, each of 
them is expressed ane.l~'"tic.;.lly by a different formula. It is 
very unlike that the stress profile will fall within a single 
re :; ioe i.e. only one hypersurface. will be involved. Usually 
two or w.ore rst;imes should be taken into account to describe 
a given boundary value problem. In most of the dynamic prob ... 
lems t!1e position of boundaries separating various regimes 
vary with time and should be found as a part of the solution. 
Therefore the problem is reduced to the solution of several 
systems of partial differential equations in regions with 
unknovm and ·time variable boQ~daries. · This is a formidable 
~ataematical task. The situation is even more complicated 
in the case of viscoplastic material where in addition to 
t l1e existing regimes new regimes are created, as shov;n by 

:i?r3.;er {1 0 J • 
?inally, it should be borne in mind that the exact 

rresca y1eld condition in the space of moments and stress 
resultants is seldom used if any reasonable simple solution 
is to be obtained. Instead reference is made to the linear
ized yield surface •. ~) uch an linearized yield surface would 
be obtained as a result of the exact transformation of the 
yield co:ldi tion which is no longer the original Tresca hexa
gone. Consequently we are solving the problem for a mater
ial ~uch different from the one we wanted to deal. This 
deficiency, never fully explained in the literature, has 
not prevented the theory from being used in practical ap
plications. rhis was partly due to the fact that no com
petitive theory was developed neither for perfectly plast
ic nor for viscoplastic bodies3£/. r.=oreover, the opinion 

~1 The flow rule employed by Perrone [ 8] and Jones [ 6 J are 
particular case.s of tne constitutive equations for visco
plastic shells first derived by B.ykovcev et all((1 ]. 
J:hese concepts as we 11 as the Prager 's theory 1 OJ are 
all based on t he Tresca yield condition. 
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has been widely spread out that only the.yield condition was 
allov1ed to be approximated, however crudely whereas siLl.plify
ing assumptions of the different nature were not pe~issible. 

In the present paper an alternative form of the linear 
constitutive equations, applicable for dynamic problems are 
proposed. These equations, based on somewhat different argu
ments, describes the behaviour of a viscoplastic · :::~aterial in 
the space .of generalized stresses and strain ra te·s. All the 
above mentioned shortcomings of the Tresca yield condition 
call for an appropriate theory with the emooth yield condit
ion. Therefore as a start.ing point in the present consider
ations the constitutive equati~ns for rate sensitive plastic 
materi~ls, based upon the Huber-Aases yield condition, are 
assumed. An application of the derived equations to the so
lution of boundary value problems for cylindrical shells at 
large deflections is presented. 

2. Linearized constitutive equations for viscoplastic 
materials 

Consider a particular case of the constitutive equat
ions for strain rate sensitive plastic materials, derived 
by Perzyna [ 9}_ 

/2.1/ for 

for 

. 
where 5 q and e~· are components of stress and strain 
rate deviators respectively, ~ denote the second invari
ant of the stress deviation and ~ and k are material 
c~nstants. Although equation /2.1/ is a far reaching ideal
ization of the behaviour of real bodies it accounts for a 
simultaneous plastic and viscous effects and therefore can 
approximate the strain rate sensiti...,-ity charc.~teristics of 
certain metals. It c:..lso constitutes a gener2.lization of tl1e 
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Saint-Venant Levy-Mises flow rule as the latter equation 
can be derived from /2.1/ in the limiting case by putting r ...., oO and fJ;. .-+ k ' [ 9] . 

. 
and . ~: k /2.2/ lq =- l S~· 

0 
Define now the state of stress Sq 

5 0 ' 
t,' - 5; . 

by the relation 

/2.3/ ( -.----..-~ - (~ o o·Vi., ) . t Sq!J~~ . z.SjSijJ · 
0 

with an additional requirement that the state 59 satisfi-es 
equation of. the static yield condition 

.L • 0 z 
z .5:; s ~· = k . 

The state of stress ~0q will be 
ison". Using /2.3/ equation /2.1/ 
equivalent form 

/2.5/ 

called a "state of compar
ean be rewritten in an 

where fo :Yjk ia a new materia~ constant. Eq./2_.5/ is a 
nonlinear relation in stresses since the. term ·~ i; ' ac;,. 
carding to the definition /2.3/ is a non-linear function 

of .Sq ) Si= .S~ {.Sij}. • . 
The components of the tensor S9· are restricted 

by the yield condition /2.4/ and usually by the stress bound
ary conditions. There is howeve:r sti~l much freedom in the 
choice · of the state of comparison. Therefore equations. /2.5/ 
can not be of any use unless the state of comparison is 
knovm. 

0 

In order to determine 5 &' reference will be made · to 
50 0 ( . the specific boundary value problem since g = ~~ Xi. J t) 

vary in general both in space and time. 
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3. Determination of the state of comparison 

ConSider a rigid viscoplastic body occupyin~ the three
dimensional region V with a regular surfc...ce ~ • Assume 
that the time-variable surface tractions 1i (t) ~re applied 
to the part ~ 1 of .5D while on the remaining part of S 
velocities LL; · are prescribed. Assume further t~at the 
variation of surface traction is proportional 

/3.1/ 

where Ji . ea~ be regarded as concentrated forces or di
stributed loads. At the beginning of the process the body 
is at rest. Let Ui , i, .. and O.u · be a complete sol ut-

. ' ~ ' ion of the formulated boundary value problem satisfying the 
system of equations 

/3.2/ 

/3.3/ 

ey = ~ ( ui.J + u.jJ~) 

6q,j = ~ iL;. ) 
supplemented by the constitutive equation /2.1/. At a ~iven 
point .x, t:. v the solution is a function of time or any mono
ton:ically . increasing parameter of the proCe$8 r . As such 
a.parameter we qan conveniently choose for example the per
manent_central d~flecticn of plate or shell. For the pre
scribed dynamic· process the stress trajectory in the 5~· 

space form a .curve · ACB , where the par&~eter ~ is continu
ously increasing along the path ACB • At the besinning of 
the process ~ = 0 the velocities and s:rair. ·are zero 
throughout the body, thus according to the . ass~ed model of 
the material, the state of stress for a given particle of 
the body )(i is lying on the static yield surface, point 
A • As time proceeds the . par~icle ·Xi is accelerated, the 
strain rate increases and the stress point is forming certain 
trajectory. The strain rate vector is alv.rays perpendicular 
to the subsequent yield surface. Finally, the motion of the 
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body ceases, the particle is brought to rest at~= ~ 
the corresponding stress point B. must lay on the sta?ic 
yield surface. At a given instant ~= ~ the state of stress 
Sq {'r, J ~s represented by a point C whereas the state of 
stress .S~ (r,) by a point D on the., static yield surface. 
According to·the definition of an ·isotropic growth of the 
yield surface with the strain rate the unit normal vectors 
to the yield surface at the points C and D ar·e equal. 
Thus the strain rate tensors considered as vectors in the 
nine-dimensional space are colinear 

/3.4/ 
• • • 
t- = ~t·· 

. ~ ':J 

The velocity field LLi is the complete solution of the for- · 
mulated boundary value problem for a viscoplastic material 
at the same time being the kinematically admissible veloci
ty field for the corresponding boundary value problem but 
for perfectly plastic material. . 

The kinematic admissibility of U.i, follows from the 
i'aet that this field satisfies all kinematically boundary 
conditions, is continuous and a continuous strain rate field 

• • • 
can be obtained from Eq./3.2/. Next with each £,~ · or £,~· 
vre can uniqually associate a stress field s·~ through the 
flow rule /2.2/. This stress field satisfies the static 
yield condition /2.4/. Finallythe requirement of the posi
tiveness of rate of plastic work is fulfilled 

/3.5/ · ,! ();. tq tN ~ 0 .· 

Since Lti is a kinematically admissible velocity field for 
the perfectly plastic problem the corres:ponding stress field' 

0 . ~· Eiq has not necessarily to be in equilibrium i.e., Q9 
does not satisfy the appropriate equation of motion. . . . 0 • 

To find an approximate value for 6q and 5; con-
sider a stress field 6'i which i:J in the state equili
brium 
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/3.6/ 

Solving now the same boundary value problem using Eqs./2.4/, 
. . . . .... 

/3.2/, /2.2/ and /3.6/ we find a new solution u., > e,':J .. .. " . .,. .) 
~ ~· J 5 ij . The. velocity u.; c' differs of course from the 

velocity field "i of the complete solution . ... 
The stress field S u is said to be a good approxi-

o · -;, 
mation to Su if the velocity field for a quasi static 

7 ·• flow of perfectly plastic material LLi does not deviate 
much from the velocity field of a dynamic problem for the 
viscoplastic material U i . In other ·:.rords adding the 
inertia and viscous terms into the equations describing the 
perfectly plastic flow of a structure should not alter much 
the kinematics of the problem which is primarily dependent 
upon the boundary condition, yield condition and associate 
flow rule. 

Introducing the assUmed approximation Eq./2.5/ is 
replaced by 

/3.9/ 

Now /3.9/ is a linear constitutive equation provided that 

the solution .S~· (.X&. JT) is known. 
The new approximated constitutive equation /3.9/ is 

still based on the smooth yield condition, consequently 
the resulting velocity field is continuous. 

'iYhether or not the assumed hypothesis is a good appro
ximation should be investigated in each particular boundary 
value problem separately. However the replacement of the 
true velocity field•by a velocity field LL~ resulting 
from the same smooth yield condition seems to be a much 
better approximation than introduction of a discontinuous 
velocity profile based on the piece-wise linear yield con
dition. The derived constitutive equation requires con
sideration of a single regime thus simplifying the mathe-
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matics involved. 
Note that in the above presentation of the theory 

nothing is said about the proportionality of the loading at 
a given point JC. i ·, the hypothesis which was incorporated 
in the author's .early papers concerning bending solutions 
for viscoplastic plates [7,13 ). The case of proportional 
loading would be obtained as a particular case of the ge
neral equations if we ass~e that for a given ~.: J ~9 {t}i5 
const which means that .5 ij · is independent upon the pa-
rameter of the proc;ss. In the space of stresses the cor
responding point s~ . (.x,) is retaining the same position 
and the stress traject~ry is reduced to the straight line. 

4. Flow rule for axisymmetric shells 

The state of stress in the thin-walled structures is 
essentially plane, ~~ and 6'"1 being the principal . 
stresses, the corresponding strain I'ates are E.,,· and E.,~, . 

Assuming the Love-Kirchhoff hypothesis the strain ra
tes can be expressed in terms o!. extension rates ~' , l 1 . 

and curvature rates K 1 and I( z. of the middle surface 
of the shell as 

/4.1/ . L,= ~. +Z.K, 
The position of the shell neutral surface corresponds 'Co 

such a value of ~ for which the component of the cor
responding strain rate vector vanishes 

. . . 
I 4. 2/ t" :.: - ~ > , = - 21:: . 

'\ K I ( l<z. 
Consider a fibre distanced at Z ::) from the shell middle 
surface and prescribe a loading _ program in which ~ and 
? are monotonically increasing functions of the process 

parameter r . A typical trajectory of the strain rate 
vector form on the plane( i, 1 J i~) a closed smooth cUrve 
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passing through the origin. Possible strain rate trajec
tories are shown on Fig.2. 

With each strain rate history we can associate the cor
. responding stress trajectory through the constitutive equat
ions /2.1/. In the case of plane stress Eq./2.1/ yields two 
independent relations 

/4.3/ 
e,, = ~(V: -') z ()I- Sz. 

) 

~ 
~z = ~(if-1) 2 ~L- (), 

4 where 

1 1 J = 6": - ~ ~2 ... G"2 ) l I 1 
/4.4/ 

represents a Huber-1Iises ellipse in the plane ( 6'"1 .) ~2 ) ~ 
Integration of /4.3/, as mentioned in the Introduction, 
leads to very complicated formulas. By contrast the derived 
equations /3.9/ are easily integrable and their linear form 
is preserved after integration. 

The generalized stresses corresponding to the extens
ion rates ~"' and curvature rates K -l are the membrane 
forces N~~. and bending moments M" , ~ = 1 ,2. These 
quantities are related to the stress components E)• by 

j ~ j" N-.= ~Jz > Mae. = · 6'" .. zdz. 
-~ -~ 

/4.5/ 

The compon~nts of the stress tensor expressed in terms of 
strain rate vector computed from the linearized equations 
/3.9/ have the form 

= 
/4.6/ 

--
f. ( 2 i I + i.t ) ) 
~ (2. i,2 +- i,) 

Substituting /4.6/ and /4.1/ into /4.5/ and integrating 
over the shell thickness we get 
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I' 2 ~~ . . . . 
M,-M, = _~r;(ZK,+K1 ), 
M M* - 2 s.J (· I . ~ . . 

L- 2 - :r re . 2 )(2. ~ )( ,J) 
N • - N .. ,· = A!Lr· . . ( Z )\ • + ~ ~) . I t . . • . , 

/4.7/ 

N 2. - N 2 = 2:~ ( 2 l2. + 1 , ) , * 
~he~e the s~ates of comparJ.son Ml, (X. ;t) and N-' .(xat ,7:) 
oy nypothesJ.s should. · satisfy equations of equilibriuni of · 
the .corresponding ~uasi-s'tatic PI"Oblem. 

The stru~t.ure ·of the new equations · sl.tggests ·that. the 
system /4.7/ is uncoupled i.e. there is no interaction 
between moments and membrane· forces. In .fact, the inter
action is incorporated in the present theory through the 

. . . . - ~ . . · . . 

pre.sence of the terms M it and Na ·· . The position of 
the vector (M! )' N:) on the static yield surfac~, deriv .... 
ed from the exact Huber-Mises yield condition, is uniquelly . 

de~er~ine~ by the generalized strain· rate vec.tor {~c ) K.a.J· · 
Th1.s l.I!lplJ.es that the value of each components of the .·. · · 

(H!,N!Jvector depends upon all components of the ( )..tl..l K.c.) 
vector. 

The advantage of the propose.d method of linearizat- · 
ion becomes more apparent when the. constitutive equations . 
j 3·. 9/ are co~bined ~i th equation of motion -of a particular 

· stri.i.C ture. It can be shown that using the .· equation of sta t~ 

ic equilibr_iupl all unkn,own terms N;(x.,. ,t-) .and M!(~) T) 
ca!.1 · ba replaced by a single· term.)) (.x-. .

1 
"f)· This term :repre

sents the valu~ of the external load required to maintain 
a quasi-static flow of rigid-.perf~ctly piastic structure 
\Vi th liuber-~iises yield condition. 

It i~ ciear that -the initial value of ~{T) /small 
deflections/ is equal to the load.~carrying capacity of the 
relevant structure 1>(o) = - ~., · . For example for a uniform-:
ly loaded simply supported and clamped plates .this value 
is equal respectively 6.51 Hojrf and .12.5 tti•JR~ . For 
a cylindrical shell loaded by a ring of forces the limit 
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load is 1. 949 M.J ~R v,rhere R is the radius of the re
leYe:lt structure. 

For larger deflections the development of membrane 
forces and changes in geometry produce an increase in the 
value of the load carrying capacity and ~ 1s uniquelly 
rel~ted to the central deflection 0 of the plate or shell 

~ = 1>(G)· 

5. Illustrative examples 

Consider an infinitely long cylindrical shell of l."a.: .... _ • ..;, 

'R subjected to a ring of forces 2Q. . Such a probl~:n is 
3.nlong the simplest in the theory of thin plastic shells for 
which the value of the collapse load was calculated using 
the exact Euber-Mises yield condition ( 11] • re illustrate 
the raain features of the present theory only the quasi-static 
flow ~ill be considered but no difficulties arise in general
izing the solution to the case of dynamic loading. 

l.n the abscence of axial forces the generalized stres
ses are the axial moment M JC and the hoop force N 'I , the 
cor:r·esponding generalized strain rates being K Jt and )'f . 
Equations of equilibrium of a cylindrical shell loaded by 
a ring of forces do not involve the inhomogeneous term 

/5.1/ ~~ = T. 
dX 

?or further convenience we. introduce the following dil!lension
less quantities 

m= Mx 
/5.2/ 

Mo 

V -
- _!_ d '-'1 _., X . fA 13 Z R No R 

R df J ..._ = 1f vp J ,- = h = Mo . 
Since both generalized stress fields (l'h' I)) and ( rn-* J h J) 
s~tisfy Zq./5.1/ so does also their difference 
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J'- * .. /5.3/ 2 (m - m ) + l n- n ) = 0: 
dx. 

The constitutive equations /4.7/ are reduced to 

* .J.. ' • m -m = r .. '3 ~JC ) 

/5.4/ 11 - n* = f* (l i" t i • ) > 

T -T• = f• (2.~x +:\et)= 0, 
where dimensionless rates of strains are expressed in terms 
of the velocity · V as 

/5.5/ 

Equations /5.3/ - /5.5/ can be solved for velocity 

rl~v ~ 
/5.6/ + ill V :: 0 J 

d xlf 
l = ~ %2. . 

The latter relation is of the same form as the equation for 
deflection in the classical theory of elastic shells. The 
above mentioned analogy is easily understood in view of the 
linearity of the constitutive equations /4.7/ and was first 
noticec in [12]. The general s~lution of /5.6/ has the 
form 

-~x lt 
/5.7/ V(x) = e (A ~in~x.,. Bco~l.wJ + e ( (~inl.x +J>c.slt). 

We postulate that the extent of the viscoplastic ~egion is 
finite,~=~, being the boundary between the plastic and 
rigid zones. At J( = 0 the shearing force lr should assume 
the. prescribed value ~ and the slope of velocity is zero. 
At Jt =J:, , the velocity and its first derivative should 
vanish. Thus, the boundary conditions· have the form 

t£!. - 0 I 5 • a I d.:G j - ; 
l( = 0 

T{o)=Q J V(X1)=0J ~~ =0. 
t:r, 
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According to the assumed approximation the position of the 
boundary ~~ for the viscoplastic and perfectly plastic 
solutions is the same. 

The shearing force 
of the velocity 

t - 4JJJ - «x can be expressed in terms 

* ' rL't~ 
/5.9/ t- t = ¥ -rJ. 1.3 

Using the se·cond boundary condition /5.8/ the . latter equat-
ion yields 

. . * 8 d 3
'1 . 

/5.10/ if,= tt, + ......... - ( 
. . · . 3 f• rJ.xJ x· = o . * . 

where~ = 1,949 is the value of static load-carrying capa-
city obtained in [ 11 J on the basis of the exact yield con
dition. At the same time the corresponding value of X1 was 
not computed. The necessary data are given for the sandwich 

. . . . . 
shell vvith Huber-hlises yield condition q, = 1,905, X1 = 3,467. 

After evaluation of the constants of integrations A, B , 
C, D from /5.8/ and /5.10/ the solution is found to be 

V(Ii)/ ->.ty, . · ) l)( . 
/v(o = e l o.ros 51ft .h 1 D. tu us A X - e ( O.ooOSlf S/- lx ... 

/5.11/ ~ 
3 (*( '1:-'f,,.) - o.ooos~eoslx), 

V(o) = g A5 V(x) 1 
The plot of the velocity profile /V(O) is ~resented in 
Fig.), full line. The broken line corresponds to the exact 
velocity. profile calculated in [ 11] using ~he Huber-1iises 
yield condition for sandwich shell. The general agreement of 
both solution indicates to the usefulness of the proposed 
method of linearization in computing velocity fields for 
rigid-viscoplastic shells with Huber-tiises yield condition. 

An important feature· of the solution /5.11/ is that 
the velocity pr~file of the she 11 "lt.J /'1 C o) is not affect
ed by the value of the limit load ~ ~ • This remark is of 

http://rcin.org.pl



- 14 -

interest in view of the lack of published data on the static 
load-carrying capacity of structures with H~ber-Mises yield 
condition. Usually the approximate value of tf, * should be 
accepted but this simplification introduces no error in the 
computed velocity profile. ~ f 

vtlou"t In the limiting case when (-, co1 ~ ., 'J, the central 
ai~li~¥ien "(OJ is an undetermined quantity as in the so
lution for perfectly plastic shell. The derived solution is 
valid only for small deflections. 

In real facts in order to maintain the quasi-static 
flow of the shell the load must continuously increase since 
the geometry changes and development of membrane forces 
causes a strengthening of the structure. It was sho\vn .that 
this effect is significant in the early stages of the deform
ation proc~ss and becomes decisive on the shell response for 
deflections of the order of the wall thickness h 

1 
( 2] • 

The modified equations of equilibrium ~·;hich takes into 
account the changes"in geometry have the form 

1 2 

/5.121 I'd'" - ~ T '0 "' + n - p (x, t J = OJ '0 x2 ,- ~ xL 

'aT ·o 
'ax - J 

h Y N~ d p PR1. t · 1 d · · w ere :. ~ an = u are respec ~ve y l.Illens~on-
No '~o 

less membrane force and internal pressure. If the dynamic 
loading is considered Eqs./5.12/ should be supplemented by 
the proper inertia terms. 

By hypothesis the components of the generalized stress 
vector of the auxiliary problem are in equilibrium with the 

value of linii t load ~ * ( X , T) 

'7J1 * * '02,.., * * 
/5.13/ ~ - (JY -1x:t + n - p (X/l:} =OJ 

'aT" ;rx-=0. 
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Since the velocity and deflection profiles are in both so
lutions identical, substracting /5.13/ from /5.12/ we obtain 

1()1 * J 
/5.14/ f5;l (tn- fn ) -p (T· r) ~ + ( n - n*)- ( r-~11):=0. 
Now applying directly the flow rule /4.7/ the bending mo~ 
ments and membrane forces can be eliminated from /5.14/. 
liaking use of the appropriate geometrical relation the sys
tem of governing equations can be reduced to tw~ simultane
ous partial differential equations for two components of the . . * 
displacement vector ( U.) hi) provided that the term ~. (K 1 T) 
is known for each particular bound~y value problem. 
Using equations /4.7/ and /5.14/ and the appropriate load
deflection relation the variety of boundary value problems 
~or cylindrical shells at large deflection can be formulat
ed and solved. 

7. Conclusion 

~n the analysis of the dynamic loading of rigid visco
plastic · plates and shells we are primarily interested in the 
determination of the velocity'field and permanent deflection· 
of the structure. Except of very simple situations the solut
ion of thus formulated non-linear problem can be obtained 
through the numerical integration of governing equations. 
Various simplifications are commonly introduced in order to 
enable a analytical treatment of the problem. Usually the 
true velocity field of the dynamic problem is approximated 
by a velocity field resulting from the Tresca yield condit
ion. it is bellavad that for some cases the velocity field 
corresponding to the static solution of the same problem 
for perfectly plastic material obeying the Huber-~ises yield 
con::!ition would give a better approximation to the exact 
rate of deflection profile. Assuming this as a hypotheses 
a new theory has been developed in which the relation between 
components of generalized stress and strain rste vectors are 
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linear. Consequently a linear form of the governing equat
ions is obtained, formally analogous to t~e relevent equat
ions in the classical theory of thin elastic shells where 
instead of the deflection stands the deflection rate. There
fore all elastic solution of both static and dynamic prob
lems can be recons.idered and adapted for the viscoplastic 
flow of plates and shells. The presented exemplary solut
ion of the .cylidrical shell under a ring of forces exhibit
ed an excellent agreement with the exact solution of the 
same problem. The proposed method was shown to be also ap
plicable in the analysis of moderately large deflection of 
shells. 
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Fi9..1 5trc$.S trttjt.ctory for tilt prracrihed. dljnamic, 
pro'e.~ · 

z=r 

h9. 2 Po~ihl.e. 6ir4in rale tra.juttJrie~ at I.UI 

arbi.tra.'!l piJint of fht, uniform 5/ltlL 
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V(x) 
··v{oJ 

-· ~--r-x·.J=· 
, 

A =V %z 

)( .... 

0.4L 5o.ndNi., ~~ Pruut f4aor; U.11ifor111 His~ x,=-'.4'7 
(o.ftu So.w~u,l< . ~ ~ ~ Jl = -.o 

0 

~Hod'le) ~~~ 
~--- AJC 

1 3 

AX, =2.29 

Fig.3 Comparison of velocLti.J field~ of the pre5tnt theory ctnd 
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Viscoplastic flow of rotationally symmetric shells 
with particular application to dynamic loadings 

Tomasz Wierzbicki /Warsaw/ 

Abstract 

Starting from .the constitutive equations for rate 
sensitive plastic material obeying the Huber-Mises yield 
condition linear relations between components of ~~neral
ized stress and strain rate vectors for rotationally sym
metric shells are derived, applicable for dynamic problems. 
The linearization of the originally non-linear equations is 
achieved by defining a ~ew stress tensor called "the state 
of comparison". The components of the new tensor satisfy 
stress boundary condition and static yield condition but 
not necessarily equations of equilibrium. A method is pre
sented for the approximate determination of "the state o-f 
comparison" for a given boundary value- problem. The new 
theory is illustrated by an example in which the deformat
ion of a cylindrical shell under a ring of forces is con
s~dered. Extension of the present approach to the case of 
moderately large deflections is discussed. 
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