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Preface 

This volume contains the text of 12 lectures given between March and May 
2002 at the Centre of Excellence for Advanced Materials and Structures in 

the Institute of Fundamental Technological Research, Polish Academy of Sci­
ences, Warsaw. It begins by summarizing the main ingredients of the theory 

of elasticity, including a description of the kinematics of deformation and 

the associated deformation and strain tensors, a summary' of the equations 

governing the motion of a continuum and a discussion of the various stress 

tensors used in the analysis. This discussion is followed by a description of 

constitutive laws for elastic materials, with reference to restrictions placed 

on the form of the constitutive law by the requirements of objectivity and 
material symrnetry. Internal constraints are also discussed. Particular at­
tention is focussed on the special case of isotropy since this is important 

in applications to many materials, including rubberlike materials, and on 

the incompressibility constraint. Some illustrative boundary-value problems 

involving homogeneous or non-homogeneous deformations are examined in 
detail. Some aspects of the application of the theory to the characterization 

of the elastic properties rubberlike solids are then reviewed. 

The constitutive theory next concentrates on applications to the mod­

elling of fibre-reinforced materials. The cases of one and two families of fibres 

are considered separately. Fibre reinforcement is particularly important in 

soft biological tissues (for example, arteries), where the fibres typically are 
in the form of collagen, and some discussion of this area of application is 

included. Again, some simple boundary-value problems are examined, but, 

additionally, the effect of residual stresses is also included since these have a 

critical influence on the response of tissues under both typical and abnormal 
physiological conditions. 

Finally, a detailed analysis is given of a representative boundary-value 

problem for compressible isotropic elastic materials in order to illustrate how 
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8 PREFACE 

forms of strain-energy function may be generated by making assumptions 

on the kinematics. In this case the problem of azimuthal shear of a thick­

walled circular cylindrical tube is examined under the assumption that the 
deformation is isochoric. 

There are many general texts that can be referred to for more details of 

the material in Chapters 1-3 and parts of the other chapters. We mention 

here, for example, the books by Chad wick [1], Ciarlet [2], Holzapfel [8] and 

Ogden [18]. Many other references can be found in these works and for the 
most part we do not therefore give detailed lists of references. We mention 

here, however, the recent volume by Fu and Ogden [4], which contains several 

review articles on different aspects of nonlinear elasticity and many references 

to the original literature. A number of specific references are given in the 

later chapters in order to provide pointers to the literature that might not 
otherwise be readily available. 

I would like to express my appreciation to Professors Wlodzimierz Doman­

ski, Witold Kosinski, Zenon Mr6z, Zbigniew Olesiak, Kazimierz Sobczyk, 
J. Joachim Telega, and Henryk Zorski for their kindness and hospitality dur­

ing my visit to Warsaw. To my host, Professor Henryk Petryk, I am especially 
grateful, for he contributed so much to making my two-month visit very en­

joyable and stimulating. 

Glasgow, January 2003 Ray Ogden 
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Chapter 1 

Kinematics 

1.1. Bodies, configurations and motions 

Definition. A body B is a set whose elements can be put into one-to­

one correspondence with points of a region Bin three-dimensional Euclidean 

point space. The elements of B are called particles (or material points) and 

B is called a configuration of B. 

As the body moves the configuration changes with time. Let t E I C ~ 

denote time, where I is an interval in ~. If, with each t E I, we associate a 

unique configuration Bt of B then the family of configurations {Bt : t E I} 
is called a motion of B. We assume that as B moves continuously then Bt 
changes continuously. 

It is convenient to identify a reference configuration, Br say, which is an 
arbitrarily chosen fixed configuration. Then, any particle P of B may be 

labelled by its position vector X in Br relative to some origin 0. Let x be 

the position vector of P in the configuration Bt at time t relative to an origin 

o (which need not coincide with 0), as depicted in Fig. 1.1. 

We say that B occupies the configuration Bt at time t - Bt is also referred 

to as the current configuration. Note that Br need not be a configuration 
actually occupied by B during the motion, but is often chosen to be the 

configuration occupied by Bat some prescribed time. 
Since Br and Bt are configurations of B there exists a bijection mapping 

X : Br ___.. Bt such that 

X = x(X) for all X E Br, X = x-l (x) for all X E Bt. (1.1) 

http://rcin.org.pl



10 1. KINEMATICS 

0 

FIGURE 1.1. Reference configuration Br and current configuration Bt with posi­
tion vectors X and x of a material point P. 

The mapping X is called the deformation of the body from Br to Bt. Since 
Bt depends on t we write 

(1.2) 

instead of ( 1.1), or 

X = x(X, t) for all X E Br, t E J. (1.3) 

For each particle P (with label X) this describes the motion of P with t 
as parameter, and hence the motion of B. It is usual to assume that x(X, t) is 
twice-continuously differentiable with respect to position and time, although 
there are situations where this requirement needs to be relaxed. For example, 
across a phase boundary where one or more of the first or second derivatives 
of X is discontinuous. 

Example: Rigid motion 

A motion is said to be rigid if the distance between any two particles of 

B does not change during the motion. 
The motion defined by 

x = x(X, t) = c(t) + Q(t)X, (1.4) 

where c(t) is a vector and Q(t) is a proper orthogonal second-order tensor, is 

a rigid motion. To show this we consider YE Br so that y = c(t) + Q(t)Y. 

http://rcin.org.pl



1.2. THE MATERIAL TIME DERIVATIVE 11 

Then 

lx- yl2 = (x- y) · (x- y) = [Q(X- Y)] · [Q(X- Y)] 

= [QTQ(X- Y)]. (X- Y) =(X- Y) ·(X- Y) 

= IX- Yl 2
' (1.5) 

where we have used QT Q = I. In fact, although we have not proved it 
here, every rigid motion can be expressed in the form (1.4). Note that c(t) 
represents a translation and Q(t) a rotation. 

In the development of the basic principles of continuum mechanics a body 
B is endowed with various physical properties which are represented by scalar, 

vector and tensor fields defined on either Br or Bt (for example, density, tem­
perature, shape of surface, velocity, strain). In the case of Br the position 
vector X and time t serve as independent variables, and the fields are then 
said to be defined in terms of the referential or material description. Alter­
natively, in the case of Bt, x and t are used and the description is said to 

be spatial. The terminologies Lagrangian and Eulerian descriptions are also 
used in respect of Br and Bt respectively. 

Rectangular Cartesian coordinate systems with basis vectors {Ei} and 
{ ei} are chosen for Br and Bt respectively, with material coordinates Xi and 
spatial coordinates Xi (i = 1, 2, 3). Thus, relative to the origins 0 and o 

respectively, we have 

(1.6) 

In (1.6) the summation convention over repeated indices applies. It will also 

apply henceforth except where stated otherwise. In general, Ei and ei may 
be chosen to have different orientations, but it is often convenient to let them 
coincide. 

1.2. The material time derivative 

The velocity v of a particle P is defined as 

v = x = !x(X,t), (1.7) 

i.e. the rate of change of position of P (or 8/8t at fixed X). The acceleration 

a of Pis 
• .• 82 (X ) 

a = v = x = 8t2 X ' t . (1.8) 
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12 1. KINEMATICS 

In each case a superposed dot indicates differentiation with respect to t at 

fixed X. 

Let 4> be a scalar field defined on Bt, i.e. cf>(x, t). Since x = x(X, t), we 
may write 

cf>(x, t) = cf>[x(X, t), t] = <I>(X, t), (1.9) 

which defines the notation <I>. Thus, any field defined on Bt (respectively Br) 
can, through (1.2) or its inverse, equally be defined on Br (respectively Bt)· 

The material derivative of 4> is the rate of change of 4> at fixed material 
point P, i.e. at fixed X. We write the material derivative as ~ or De/>/ Dt. 

By definition, we have 
. f) 

4> = at <I>(X, t), 

and by the chain rule for partial derivatives we then obtain 

f) a axi a f) 8x 
at <I>(X, t) = at cf>(x, t) + 8t OXi cf>(x, t) = ot cf>(x, t) + at . Vcf>(x, t), 

where V denotes the gradient operator with respect to x. Using (1.7) we thus 

have 

(1.10) 

material description spatial description 

Similarly, for a vector field 

u(x, t) = u[x(X, t), t] = U(X, t), (1.11) 

wherein U is defined, we obtain 

! U(X,t) = U =a;+ (v · V')u. (1.12) 

In particular, the acceleration a= v is given by 

a = V = ':;; + ( v · V')v. (1.13) 

1.3. Differentiation of Cartesian tensor fields 

Let 4>, u, T be scalar, vector and tensor functions of position x. The op­
eration of the gradient operator, grad or V, on these functions with respect 

to the basis { ei} is defined as follows: 

84> 
gr ad 4> = V 4> = £:} ei, ( 1.14) 

UXi 

http://rcin.org.pl



1.4. DEFORMATION AND VELOCITY GRADIENTS 13 

- au f) aup 
grad u =V'® u = ~ ® eq =-a (upep) ® eq = -

8 
ep ® eq, (1.15) 

uXq Xq Xq 

- a a 8Tpq 
grad T =V'® T =-a T ® ei =-a (Tpqep ® eq) ® ei =-a ep ® eq ® ei, 

Xi Xi Xi 
(1.16) 

and similarly for higher-order tensors. Note that the operation of grad in­

creases the order of the tensor by one. On the other hand, the operation 

of contraction reduces the order of a tensor by two. For example, grad u 
contracts to give V' · u, so that a second-order tensor reduces to a scalar. 

There are several possible contractions of V'® T. We define div T by 

which is the p-i contraction. Since ep · ei = Oip we obtain 

d. T 8Tpq 
lV =-a eq. 

Xp 

In the notation defined here we note that (1.12) can be written as 

it = ~~ + (\7 ® u)v. 

1.4. Deformation and velocity gradients 

( 1.17) 

(1.18) 

Let Grad, Div, Curl (respectively grad, div, curl) denote the gradient, di­

vergence and curl operators in the reference (respectively current) configura­

tion, i.e. with respect to X (respectively x). Then, we define the deformation 

gradient tensor F as 

F(X, t) = Grad X= Grad x(X, t). (1.19) 

With respect to the chosen basis vectors and with use of (1.15) we have 

or, in component form, 

(1.20) 

with Xi = Xi(X, t). 

http://rcin.org.pl



14 1. KINEMATICS 

We assume that det F =f. 0 (to be justified shortly) so that F has an 
inverse F-1, given by 

F-1 = gradX, (1.21) 

with components 

(F-1) .. = aXi 
t) £l • 

UXj 
(1.22) 

This may be checked by means of the calculation 

It follows from ( 1. 20) that 

i.e. 

dx = FdX, (1.23) 

which has inverse 

(1.24) 

Equation (1.23) describes how small line elements dX of material at X trans­
form under the deformation into dx (which consists of the same material as 

dX) at x. It shows that line elements transform linearly since F depends on X 
(and not on dX). Thus, at each X, F is a linear mapping (i.e. a second-order 
tensor). 

We justify taking F to be non-singular ( det F =/= 0) by noting that FdX =f. 
0 if dX =f. 0, i.e. a line element cannot be annihilated by the deformation 
process. 

Example 

Let cp, u, T respectively be scalar, vector, and second-order tensor fields 

associated with a moving body. We now establish the following very useful 
formulas: 

Grad 4> =FT grad </>, Grad u = (grad u)F, 

Div u = Jdiv (J- 1Fu), Div T = Jdiv (J- 1FT), 

where J is defined as 

J = detF. 

(1.25) 

(1.26) 

(1.27) 

http://rcin.org.pl



1.4. DEFORMATION AND VELOCITY GRADIENTS 15 

First, we calculate 

Next, 

For the right-hand side of the first equation in (1.26), we calculate 

. -1 a -1 8uq a -1 
JdiV (J Fu) = J~(J Fpquq) = Fpq-

8 
+ Juq~(J Fpq)· (1.28) 

uXp Xp uXp 

But, 

which requires the formula 

a ( aF) aXr (det F) = (det F) tr F-
1 
aXr . (1.29) 

Thus, 

Hence, (1.28) gives 

Jd . (J- 1Fu) = D 8uq = 8xp 8uq = auq = n· 
IV rpq 8xp aXq 8xp aXq IV u. 

http://rcin.org.pl



16 1. KINEMATICS 

Similarly, 

a -l 
J ~ ( J FpqTqrEr) 

UXp 

a -l ) &Tqr 
J~(J Fpq TqrEr+Fpq~Er 

UXp UXp 

=0 

OXp &Tqr E - &Tqr E - D" T 
8Xq axp r - 8Xq r - IV · 

1.5. Deformation of area and volume elements 

FIGURE 1.2. Infinitesimal line elements at X on the surface Sr in the reference 
configuration Br and their images at x on the deformed surface St in the current 
configuration Bt. 

Consider a surface Sr in Br which deforms into the surface St in Bt, as 
depicted in Fig. 1.2. Let X be a point on Sr and x the corresponding point 

on St. Let dX and dX' be line elements of material on Sr based at X with 

images dx and dx' on St under the deformation. Strictly, the line elements 
are tangential to the surface and only approximately lie in the surface. If F 
denotes the deformation gradient, then 

dx = FdX, dx' = FdX'. (1.30) 

Let dA and da be surface area elements on Sr and St respectively, and 
let N and n be unit normals at X and x respectively. For the parallelogram 

with sides dX, dX' we have 

NdA = dX X dX'. 

http://rcin.org.pl



1.5. DEFORMATION OF AREA AND VOLUME ELEMENTS 17 

Under the deformation this becomes a parallelogram with sides dx, dx' and 
area 

nda = dx x dx'. 

~From (1.30) we obtain 

FT nda = FT[(FdX) x (FdX')] = (det F) dX x dX' . 

Hence 

where J = det F. With the notation 

this becomes 
(1.31) 

This is an important result, known as Nanson's formula, and it describes 
how elements of surface area deform. It applies to area elements of arbitrary 
shape, not just the parallelogram considered here 

Next, consider the parallelepiped in Br formed by line elements dX, dX', 

dX" at X . Its volume dV is given by 

dV = dX · (dX' x dX") = det ( dX dX' dX" ) . 

The corresponding volume dv in Bt is 

dv = dx · ( dx' x dx") = det ( dx dx' dx" ) 

= det ( FdX FdX' FdX" ) = det(F) det ( dX dX' dX" ) , 

i.e. 

dv = JdV. (1.32) 

Recalling that F is nonsingular, it is appropriate, by convention, to define 
volume elements to be positive, so that 

J = detF > 0 . (1.33) 

..,. From (1.32) we see that J is a measure of the change in volume under 
the deformation. If the deformation is such that there is no change in volume 
then the deformation is said to be isochoric, and then 

J = detF = 1. (1.34) 

http://rcin.org.pl



18 1. KINEMATICS 

For some materials many deformations are such that (1.34) holds to a good 
approximation, and (1.34) is adopted as an idealization. An (ideal) mate­

rial for which (1.34) holds for all deformations is called an incompressible 

material. 

In order to analyze further the local nature of the deformation, i.e. ofF, 

we require some properties of second-order tensors. 

1.6. Some results from tensor algebra 

1.6.1. The square root theorem 

IfS is a positive definite, symmetric second-order tensor then there exists 

a unique, positive definite, symn1etric second-order tensor, U say, such that 

u 2 = s. 

Proof 

Since S is symmetric we may write it in the spectral form 

3 

S = L sie~ ® e~, 
i=l 

where Si are the (real) eigenvalues of Sand {eD are the (unit) eigenvectors. 

Since S is positive definite, we have Si > 0. Now define U by 

3 

U = L y'sie~ ® e~. 
i=l 

Then, U is positive definite and symmetric and U 2 = S, as required. Unique­

ness is obvious. 

1.6.2. The polar decomposition theorem 

Let F be a second-order Cartesian tensor such that det F > 0. Then there 

exist unique, positive definite, symmetric tensors, U and V, and a unique 

proper orthogonal tensor R such that 

F=RU=VR. ( 1.35) 

http://rcin.org.pl



1. 7. ANALYSIS OF DEFORMATION 19 

Proof 

The tensors FFT and FTF are symmetric and positive definite. Hence, 
by the square root theorem, there exist unique positive definite symmetric 
tensors U, V such that 

Now defineR= FU- 1. We need to prove that R is proper orthogonal. First, 
we calculate 

and hence we deduce that R is orthogonal. Second, we calculate 

det R = det(FU- 1
) = (det F)(det U)- 1 > 0, 

and it follows that R is proper orthogonal. 

Since U is unique, R is unique and hence F = RU. Similarly, F = VS, 
where S is proper orthogonal. Thus, 

F = RU = VS = RURTR. 

By uniqueness it follows that S = R and hence (1.35) holds. Note that 
V= RURT. 

Corollary. If U has eigenvalues Ai and eigenvectors u(i), i E {1, 2, 3}, 
then Ai > 0 and Ai are also the eigenvalues of V with eigenvectors Ru(i). 

Proof 

It follows from symmetry and from positive definiteness of U that Ai > 0. 
Also, we have 

V(Ru(i)) = VRu(i) = RUu(i) = R(Aiu(i)) = .Xi(Ru(i)), 

which shows that Ru(i) are the eigenvectors of V . 

1. 7. Analysis of deformation 

1. 7 .1. Stretch, extension, shear and strain 

Let M and m be unit vectors along dX and dx respectively, so that 

dX = MldXI, dx = mldxl and (1.23) gives mldxl = FMidXI. Thus 

ldxl 2 =(FM)· (FM)IdXI 2 = (FTFM) · MldXI 2 (1.36) 
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20 1. KINEMATICS 

and hence 

ldxl = IFMI = [M· (FTFM)FI 2 = A(M) ldXI - ' (1.37) 

which defines A(M), called the stretch in the direction M at X. Note that 
0 < A(M) < oo for all unit vectors M. 

Now consider a pair of line elements dX1, dX2 based at X, so that 

Let 8 be the angle between them before deformation and () the corresponding 
angle after deformation. Then, 

M1 · (FTFM2) 
cos()= A(Ml)A(M2) . 

The decrease in angle 8- () (which may be positive or negative) is called the 

shear of the direction M1, M2 in the plane of M1, M2. 
Next, from (1.36), we have 

(1.38) 

The material is said to be unstrained at X if no line element changes length, 
i.e. 

dX · (FTF - l)dX = 0 for all dX, 

or, equivalently, 

A(M) = 1 for all unit vectors M. 

It follows that FTF- I= 0, the zero tensor. This allows the possibility that 
F is just a rotation R, since, for orthogonal R, we have RTR = I. 

Strain is measured locally by changes in the lengths of line elements, i.e. 
by the value of (1.38). Thus, the tensor FTF- I is a measure of strain. The 
so-called Green strain tensor E is defined by 

(1.39) 

Using the polar decomposition (1.35) for the deformation gradient F, we may 
also form the following tensor measures of deformation: 

B = FFT = V 2 . (1.40) 
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1.7. ANALYSIS OF DEFORMATION 21 

We refer to C and B as the right and left Cauchy- Green deformation tensors 

respectively. Note that E may be written as 

1 1 2 
E = 2 ( C - I) = 2 (U - I). (1.41) 

Since U is positive definite and symmetric there exist (unit) eigenvectors 
u(i) such that 

3 

U = L .Xiu(i) ® u(i), (1.42) 
i=l 

where .Xi > 0 are the principal stretches of the deformation and u(i) are 

the principal directions. Note that, in accordance with the definition (1.37), 
Ai = .X ( u ( i)) - hence the terminology principal stretch. 

The tensors U and V are called the right and left stretch tensors respec­
tively. The deformation F rotates the principal axes of U into those of V 
as well as stretching along those directions. The principal axes of U and 
V are sometimes referred to as the Lagrangian and Eulerian principal axes 

respectively. 
Other strain tensors based on U may be defined. For example, we define 

E(m) as follows: 

E(m) = ~(Urn - I) m # 0, 

E(o) = ln U, 

(1.43) 

(1.44) 

where m is a real number, not necessarily an integer. These are Lagrangian 
tensors, all coaxial with U, and have eigenvalues (.Xi - 1)/m for m # 0 
and ln .Xi for m= 0. Corresponding Eulerian tensors, here denoted e(m) and 

based on V, are defined by 

e(m) = ~ (Vm - I) m # 0, 

e(o) = ln V, 

(1.45) 

(1.46) 

and we note that, on recalling the connection V= RURT, e(m) = RE(m)RT 

for each m. Thus, E(m) and e(m) have the same eigenvalues. 

Finally in this section it is useful to note that the displacement u of a 
particle is defined as 

u=x-X, 

so that 

x=X+u 
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22 1. KINEMATICS 

and 

F = Grad x = I + Grad u, (1.47) 

where Grad u is the displacement gradient (recall that Grad X = I, the iden­
tity tensor.) 

1.7.2. Homogeneous deformations 

If F is independent of X then the deformation is said to be homogeneous 

(the same at each point of the body). The most general form of homogeneous 
deformation is given by x = FX + c, with F independent of X and c a 
constant vector. The following examples are all special cases of this. 

Simple elongation Consider the uniform axial extension of a solid right 

circular cylinder (with lateral contraction). For this deformation F = U =V 
and there is no change in the orientation of the principal axes of U during the 
deformation. Let the principal axis u(l) lie along the cylinder axis and corre­

spond to principal stretch Al. Then, since there is symmetry perpendicular 
to the axis, A2 = A3 and hence the deformation gradient may be written 

Pure dilatation This is defined by AI = A2 = A3, F = All and might 
be associated with, for example, the deformation of a cube into a cube of a 
different size or a sphere into another sphere. 

Pure shear This is an isochoric deformation defined by 

with the principal axes independent of A. It is an example of a plane strain 

deformation and is such that A1 = A, A2 = A - 1, A3 = 1. 

Simple shear Simple shear is defined by the equations 

(1.48) 

where r (constant) is called the amount of shear, tan - 1 r is the shear of the 
directions e1, e2, and the same basis vectors are used for both reference and 
current coordinates, see Fig. 1.3. 
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1. 7. ANALYSIS OF DEFORMATION 

FIGURE 1.3. Simple shear in the (X1, X2) plane showing the orientation angles 
(} and </> of the Lagrangian and Eulerian principal axes. 

23 

The deformation gradient F has matrix of components, denoted F, given 
by 

F = ( :~i.) = [ ~ ~ ~ l 
J 0 0 1 

To find the Lagrangian principal axes we consider, in matrix form, 

[ 

1 1 0 l 
U 2 = FT F = 1 1 + 12 0 . 

0 0 1 
( 1.49) 

The characteristic equation for U 2 , from which the eigenvalues A2 are deter­
mined, is 

det(U2 
- A 21) = 0, 

i.e. 
1- -\2 1 0 

1 1 - A 2 + 1 2 0 = 0, 
0 0 1 

or, when expanded out, 

Let the values of A be denoted by Al, A2 and A3 = 1. Then 

Now set A1 =A 2: 1, -\2 = -\-1 so that 
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24 1. KINEMATICS 

and hence 

')'=A-r1
, A=~'Y+Jl+~/'2 , 

in which we have taken r 2: 0 to correspond to A 2: 1. 
Let 

Then, when referred to the Cartesian axes, the representation 

yields the matrix U2 , given by 

[ 

cos
2 

(} sin (} cos (} 0 l 
A2 sin(} cos(} sin2 (} 0 

0 0 1 [ 

sin2 (} 

+A-2 -sin~cosO 

Comparison with (1.49) shows that 

A2 cos2 (}+A - 2 sin2 (} = 1, 

A2 sin2 (}+A-2 cos2
(} = 1 +r2

, 

(A 2 
- A-2

) sin (} cos (} = r, 

from which we may deduce that 

2 
tan 2(} = --

r (~ < (} < ~). 
4- 2 

- sin (} cos (} 

cos2 (} 

0 

(1.50) 

The corresponding angle for the principal axes of FFT = V 2 is calculated 
in a similar way. Let v(l) = cos cl> e 1 +sin cl> e2, v(2) = -sin cl> e 1 +cos cl> e 2. 

The result is 

(1.51) 

1.8. Analysis of motion 

Recalling that the velocity is denoted v, we define the velocity gradient 

tensor, denoted L, as 

L=gradv, (1.52) 
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L .. - avi 
t)-

axj 

wit.h respect to the basis { ei}· 
Using the second identity in (1.25), we obtain 

Grad v = (grad v)F = LF. 

Since v = X. we also have 

a . 
Gradx = at Gradx = F, 

25 

(1.53) 

recalling that the superposed dot represents the material time derivative. 

Hence, we have the important connection 

F=LF. (1.54) 

Using the result 

a 1· at (det F)= (det F) tr (F- F) 

together with (1.54) we deduce that 

a 
at (det F) = (det F) tr (L) 

or, equivalently, 

j = Jtr(L) = Jdivv, (1.55) 

remembering that J = det F' tr (L) = Lii = avd axi = div V. 

Thus, div v measures the rate at which volume changes during the motion. 

For an isochoric motion J = 1, j = 0 and hence 

divv = 0. (1.56) 

It should also be noted that from (1.54) and the fact that FF- 1 = I it 

follows that 

(1.57) 
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26 1. KINEMATICS 

1.8.1. Stretching and spin 

The deformation gradient F describes how material line elements change 

their length and orientation during deformation; the velocity gradient L de­

scribes the rate of these changes. Note that while F relates Bt to Br, L is 
independent of Br. 

Let us write 

where 

L=D+W, 

1 
D= 2(L+LT), 
~ 

symmetric 

W = ~(L- LT) 2 . 
~ 

skewsymmetric 

(1.58) 

(1.59) 

In order to interpret D and W we consider the line elernent dX ---+ dx = 

FdX. Then, we calculate 

dx · dx- dX · dX (FdX) · (FdX) - dX · dX 

= dX · (FTFdX) - dX · dX 

dX · (FTF- I)dX. 

~ From ( 1. 54) it follows that 

! (dx · dx- dX. · dX.) = dX · ! (FTF- I)dX = dX · (FTF + FTF)dX 

dX · (FTLF + FTLTF)dX 

(FdX) · (L + LT)FdX = 2dx · (Ddx). 

This shows that D measures the rate at which line elements are changing 

their lengths. It is called the (Eulerian) strain-rate tensor or rate of stretching 

tensor. The motion is rigid if and only if D = 0. 
Since 

8 . 
at dx = FdX = LFdX = Ldx = (D + W)dx 

and we have an interpretation of D, as discussed above, it remains to interpret 

W. We do this by setting D = 0, so that 

8 
atdx = Wdx =w x dx, 

where w is the axial vector of W. This shows that the motion is locally a rigid 

rotation and W is a measure of the rate of rotation (or spin) of line elements 
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1.9. INTEGRATION OF TENSORS 27 

and!. it is called the body spin. The combination of D and W shows that the 
mottion consists of stretching and rotation (analogous to the interpretation 

of U and R). Note, however, that if D -=f. 0 then it contributes a rotation to 
line elements and the interpretation of W requires modification. 

1. 9. Integration of tensors 

We first summarize some results from vector calculus that will be needed 
subsequently. The divergence theorem is written 

{ divvdV = { v · ndA, 
Jn JaR ( 1.60) 

where R is a domain in IR3 and 8R is its boundary (a closed surface), and v 
is a vector field. An alternative (and equivalent) form of the theorem is 

{ \1 cj>dV = { cf>ndA, 
Jn JaR (1.61) 

where cl> is a scalar field, or, in index notation, 

{ 
8
8

c/> dV = { cf>nidA. 
Jn Xi JaR (1.62) 

In particular, (1.62) applies to the components (which are scalar fields) 
Tpqr ... of any Cartesian tensor. Thus, 

{ ~ pqr .. . dV = { Tpqr ... n;dA. 
Jn Xi JaR (1.63) 

In tensor notation (1.59) is equivalent to 

{ \1 ® TdV = { T ® ndA. 
Jn JaR (1.64) 

If, in particular, T is a second-order Cartesian tensor then contraction of 
(1.63), with i = p, gives 

18Tpq l -
8 

dV = TpqnpdA 
R Xp aR (1.65) 

or, in tensor notation, 

{ div TdV = { TT ndA. 
ln JaR (1.66) 

This is an important formula and will occur frequently in the remaining 
chapters of this volume. 
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28 1. KINEMATICS 

1.10. Transport formulas 

Let Ct, St and Rt denote curves, surfaces and regions in Bt, the current 
configuration of the body. Then, the following identities hold: 

: { </>dx = { (~dx + <f>Ldx), (1.67) 
t let let 

: { </>nda = { {[~ + <f>tr (L)]n- </>LT n}da, (1.68) 
t 1st 1st 

: { </>dv = { [~ + </>tr (L)]dv, (1.69) 
t JRt lnt 

: { u·dx= { (u+LTu)·dx, (1.70) 
t let let 

: f u · nda = f [u + utr (L)- Lu] · nda, (1.71) 
t j St j St 

: f udv = f [u + tr (L)u]dv. (1.72) 
t }Rt lnt 

Proof 

Use the formulas dx = FdX, nda = JF-TNdA, dv = JdV to convert the 

integrals over Ct, St, Rt in Bt to integrals over Cr, Sr, Rr in Br, together with 
expressions for F and j. We illustrate the process by proving ( 1. 71). 

!!:_ f u · nda 
dt 1st ! fsr u · ( JF-TN)dA 

(note the integral is now over Sr) 

! £ (JF-1u) · NdA 
- S, 

(using the definition of transpose) 

= { ! (JF-1u) ·NdA 
} Sr "--v--' 

at fixed X 

= f [JF- 1u + iF-1u + Ja(F- 1 )/&tu] · NdA. 
Jsr 
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1.10. TRANSPORT FORMULAS 29 

..,.. From (1.55) we have j = Jtr (L), and from (1.57) we have 8(F-1 )/8t = 
-F-1L. Thus, 

.!!._ r u. nda 
dt 1st 

{ [JF-1u + Jtr (L)F- 1u- JF- 1Lu] · NdA 
1sr 

= { { JF-1 [u + tr (L)u- Lu]} · NdA 
1sr 

= { [u + tr (L)u- Lu] · (JF-TN)dA 
1sr 
{ [u + tr (L)u- Lu] · nda 

1st 
(converting back to an integral over St). 

The other formulas are established by following the same approach. 
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Chapter 2 

Balance laws and equations of 

motion 

The n1echanics of continuous media are described by equations which express 

the balance of mass, linear n10n1entum, angular momentum and energy in a 

moving body. These balance equations apply to all bodies, solid or fluid, 
and each gives rise to field equations (differential equations for scalar, vector 

and tensor fields) for sufficiently smooth motions (or jump conditions across 

surfaces of discontinuity). The fundamental concepts are mass, force and 
energy. 

2.1. Mass 

Let Bt be an arbitrary configuration of a body B, and let At be a set 
of points in Bt occupied by the particles in an arbitrary subset A of B. If, 
with A, there is associated a non-negative real number m(A) having physical 
dimensions independent of time and distance, such that 

(i) m(A1 u A2) = m(A1) + m(A2) 
for all pairs A1, A2 of disjoint subsets of B, and 

(ii) m(A) --+ 0 as the volume of A tends to zero, 

then B is said to be a body with mass function m. The mass of At is denoted 

m( At). 
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32 2. BALANCE LAWS AND EQUATIONS OF MOTION 

Properties (i) and (ii) imply that there exists a scalar field p, defined on 

Bt, such that 

m(At) = f pdv 
}At 

(2.1) 

(this is a result from measure theory, and a proof is not given here). We refer 

top as the mass density of the material composing B. It is a scalar field, and 

here it will be assumed to be continuously differentiable (although in general 

this need not be the case). 

2.2. Mass conservation 

Let Rt be an arbitrary material region in the current configuration Bt. 
As Rt moves ·it always consists of the same material, so its mass does not 

change, i.e. 

d
d f pdv = 0. 
t }Rt 

(2.2) 

This is one form of the conservation of mass equation. From the transport 

formula (1.69) we obtain 

{ (p + pdiv v)dv = 0, 
}Rt 

and, since Rt is arbitrary, it follows that 

p + pdivv = 0 (2.3) 

at each point of the body (this deduction requires that the integrand is 

continuous). This is the local form of the mass conservation equation and it 

is also known as the continuity equation. 

Recall, from (1.51), that j = Jdiv v. Substitution for div v from (2.3) 

then gives pj + pJ = 0, i.e. 8(pJ)j8t = 0. Thus, pJ is constant for any 

material particle. In the reference configuration J = 1, so that pJ = Pr, 
where Pr is the mass density in the reference configuration. Thus, 

J -1 
P = Pr, (2.4) 

which is yet another form of the mass conservation equation. 

An alternative way to derive (2.4) is to note that 

{ pdv = { pJdV = { PrdV, 
}Rt }Rr }Rr 

where Rr is the counterpart of Rt in the reference configuration. 
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2.3. FORCE, TORQUE AND MOMENTUM 33 

2.3. Force, torque and momentum 

2.3.1. Body and surface forces 

The concepts of force and torque describe the action on a moving material 
body B of its surroundings and the mutual actions of the parts of B on each 

other. With Rt C Bt we associate two vectors, F(Rt) and G(Rt; o), called 
the force and the torque with respect to o on the material in Rt. Two types of 
force and torque must be accounted for in general. These are body forces and 
body torques, which act on the particles of a body (arising from gravity or 

magnetic fields, for example), and contact forces and contact torques resulting 
from the action of one part of the body on another across a separating surface 
(for example, pressure or friction). 

The body force and torque, measured per unit mass, are denoted b and c 
respectively. Their contributions to F(Rt) and G(Rt; o) are 

f. pbdv, J. [x x (pb) + pc]dv 
Rt Rt 

respectively, where x is the position vector of the point at which b acts. 
A mathematical description of contact forces (but not torques) relies on 

Cauchy 's stress principle, which is regarded as an axiom. This states that 

the action of the material occupying that part of Bt exterior to 

a closed surface S on the material occupying the interior part 

is represented by a vector field, denoted t(n), defined on S and 

with physical dimensions of force per unit area. This is depicted 
in Fig. 2.1. 

We refer to t(n) as the stress vector. It is assumed to depend continuously on 
n, the unit outward normal to S. 

If this stress principle gives a complete account of contact action then 
the material is said to be non-polar and does not admit contact torques. All 
classical theories of solids and fluids are of this type. 

The contributions to F(Rt) and G(Rt; o) of the contact forces acting on 
the boundary 8Rt of Rt are 

{ t(n)da, 
lant 

respectively. We now have 

F(Rt) = J. pbdv + { t(n)da, 
Rt laRt 

(2.5) 
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34 2. BALANCE LAWS AND EQUATIONS OF MOTION 

FIGURE 2.1. Stress vector t(n) at a point of the surface S where the unit normal 
is n. 

G(Rt; o) = r p(x X b + c)dv + r X X t(n)da (2.6) 
jRt laRt 

for the total force and total torque (sometimes referred to as couple) about 
o acting on Rt. 

2.3.2. Momentum and angular momentum 

Let Rt C Bt. The linear momentum of the material occupying Rt is 
defined as 

M(Rt) = { pvdv. 
lnt 

(2.7) 

With respect to an origin o, the angular momentum of Rt is defined as 

H(Rt; o) = r X X (pv)dv . 
lnt 

2.4. Euler's laws of motion 

Euler's laws of motion are 

dM =F 
dt ' 

dH =G 
dt ' 

(2.8) 

(2.9) 

and these hold independently of the choice of origin (although G and H do 
depend on such a choice). 

They parallel Newton's laws for particles and rigid bodies. Note, how­
ever, that in classical mechanics (2.9)2 is a consequence of (2.9)1, whereas in 
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continuum mechanics this is not the case and the two equations in (2.9) are 
independent. 

Here we do not consider body torques, so we set c = 0, and equations 
(2.9) are then written in full as 

: r pvdv = r pbdv + r t(n)da, (2.10) 
t 1 Rt 1 Rt 18 Rt 

!!:_ r px X vdv = r px X bdv + r X X t(n)da. 
dt 1 Rt 1 Rt 1 8Rt 

(2.11) 

These are the equations of, respectively, linear and angular momentum bal­

ance. 

Using the transport formula (1.72) with u = pv and (2.3) we obtain 

: r pvdv= r [pv+,bv+p(divv)v]dv= r pvdv. 
t 1Rt }Rt 1Rt 

Hence (2.10) and (2.11) can be written 

r p(a- b)dv = r t(n)da, 
1Rt 1aRt 

(2.12) 

r px X (a- b)dv = r X X t{n)da, 
1Rt 1aRt 

(2.13) 

where a = v is the acceleration. 

2.5. The theory of stress 

2.5.1. Cauchy's theorem 

Let ( t ( n), b) be a system of surface (contact) and body forces for B during 
a motion. A necessary and sufficient condition for the momentum balance 
equations (2.12) and (2.13) to be satisfied is that there exists a second-order 
tensor u, called the Cauchy stress tensor, such that 

(i) for each unit vector n, 

where u is independent of n, 
(ii) 

T 
t(n) = u n, 

(iii) u satisfies the equation of motion 

divu + pb = pa. 

(2.14) 

(2.15) 

(2.16) 
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Proof 

Sufficiency: this can easily be checked by substituting (2.14)-(2.16) into 
(2.12) and (2.13). The calculations involved are similar to those required to 
prove necessity, so will not be given here. Necessity: assume that (2.12) and 
(2 .13) are satisfied. The proof involves a number of steps. For this purpose, 

we now write t(n) as t(n, x) to indicate its dependence on both n and the 
position x on a surface. 

Lemma 2.1. Given any x E Bt, any orthonormal basis { ei} and any 
vector p with p · ei > 0, i E {1, 2, 3}, the stress vector can be written 

3 

t(p, x) = - L(p · ei)t( -ei, x). 
i=l 

p 

FIGURE 2.2. Tetrahedral volume bounded by the coordinate planes and the sur­
face s6 with unit normal p. The point X is taken as the origin. 

Proof 

Suppose that x E Bt, 8 > 0 and consider the tetrahedron shown in 
Fig. 2.2. The faces of the tetrahedron are denoted SI, s2, s3 and s{J, with 
unit (outward) normals -eb -e2, -e3, p respectively, 8 being the distance 
of the sloping face from x. Since a and b are continuous in Bt they are 
bounded on some neighbourhood of x in Bt containing the tetrahedron for 
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sufficiently small o. Similarly, p is bounded, so that 

I !an, t(n)dal = ll, p(a- b)dvl < k vol (R,), 

where k is a constant independent of o and vol (Rt) denotes the volume of 

the tetrahedron. 

Let A( o) denotes the area of the face Sf>. Then there exist positive con­

stants c1, c2 such that 

Hence 

A~ r5) lan, t(n)da ---> 0 as r5 ---> 0. 

Let Ai denote the area of Si. Since, by the divergence theorem, we have 

it follows that 

But 

and 

{ ei · ndS = 0 i E { 1, 2, 3}, 
lant 

A~r5) h, t(n)da ---> t(p, x) as r5 ---> 0, 

A~ r5) h, t( -e;)da ---> (e; · p )t( -e;, x) as r5 ___, 0. 

Hence the stated result. 

It follows that 

and hence 
3 

t(p,x) = L(ei · p)t(ei,x) 
i=l 

for any vector p. 

(2.17) 
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Main result. Consider the tensor u defined by 

3 

uT (x) = L t(ei, x) ® ei. 
i=l 

Then, by (2.17), 

3 

uT n = L(ei · n)t(ei, x) = t(n, x). 
i=l 

Hence (i) is established. 
On substitution of t(n) = uT n into (2.12), we obtain 

{ p(a- b)dv = { UT nda = { div udv 
}~ k~ }~ 

by the divergence theorem (1.66). Thus, 

r [div (T- p(a- b)]dv = 0. 
jRt 

(2.18) 

Since Rt is arbitrary, (iii) follows (provided the above integrand is continu­
ous). It remains to prove ( ii). 

Next, substitute (2.14) and (2.16) into (2.13) to give 

r X X (div u)dv = r X X (uT n)da. 
}Rt laRt 

Noting that u x v =a x b, for any vectors u, v, a, b, is equivalent to 

u ® v - v ® u = a® b - b ®a, 

we write (2.19) as 

{ [x ® div CT- (div u) ® x)dv = { (x ®UT n-UT n ® x)da, 
}Rt laRt 

which, by application of the divergence theorem, becomes 

{ [(grad x)u --UT (grad x)T)dv. 
}Rt 

Since grad x =I, the identity tensor, we deduce that 

{ (u- uT)dv = 0. 
}Rt 

Since Rt is arbitrary, (ii) follows. 

(2.19) 
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2.5.2. Normal and shear stresses 

Suppose an element of area da on a surface S with unit normal n is 
subjected to a contact force t(n)da. The normal component of the stress 
vector, denoted O", is defined as 

O" = n · t(n) = n · (un). (2.20) 

This is called the normal stress on the surface S. It is tensile ( compressive) 
when positive (negative), and we have written t(n) = t(n) = t. 

The stress vector tangential to S is denoted T, with magnitude T, and 
given by 

T = t(n) - O"n, T = lt(n) - O"nl, 

from which it follows that 

T
2 = t(n) · t(n) - [t(n) · nf. 

We refer to T as the shear stress. 

(2.21) 

If T = 0 and O" is independent of n then the stress is said to be hydrostatic 

or isotropic. In this case there is a scalar field p, called the pressure, such that 

t(n) = -pn, 0" =-pi. (2.22) 

At a point x in the current configuration Bt let u have components O"ij 

with respect to basis vectors {ei}· Then O"ij is the jth component of force 
per unit area in Bt acting on a surface whose normal is in the i-direction. 
In particular, for a surface normal to e1, 0"11 is normal and 0"12 and 0"13 

are tangential, i.e. they are shearing components. Similarly for the other 
components. In the case of (2.22), 0"12 = 0, 0"13 = 0, 0"11 = -p, so the only 
component of force acting is a normal pressure. 

2.6. Energy 

The kinetic energy K(Rt) of the material occupying Rt is defined as 

K(Rt) = { ~pv · vdv, 
}Rt 

(2.23) 

and the rate of working, or power, P(Rt) of the forces acting on Rt is defined 
as 

P(Rt) = { pb · vdv + { t · vda. 
}Rt laRt 

(2.24) 
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By using t = un in (2.24), we obtain 

P(Rt) = { pb · vdv + { (un) · vda 
j Rt j8Rt 

Thus, 

where 

r pb · vdv + r ( O'V) · nda 
}Rt j8Rt 

(since u is symmetric) 

r [pb ·V+ div (uv)]dv 
}Rt 

(by the divergence theorem) 

{ (pb · v + (divu) · v + tr (uL)]dv 
}Rt 

(since (aijVj),i = aij,iVj + aijVj,i = aij,iVj + aijLji) 

= { [(pb+divu)·v+tr(uD)]dv 
}Rt 

(since aijLji = aij(Dij + Wij) = aijDij) 

= r [pv. V+ tr (uD)]dv 
}Rt 

(using the equation of motion) 

{ ~p8(v · v)/&t dv + { tr (uD)dv 
}Rt 2 }Rt 

= { ~Pr8(v · v)/8t dV + { tr (uD)dv 
j R,. j Rt 

(since pdv = PrdV) 

= dd { ~Pr(v · v)dV + { tr (uD)dv 
t j R,. j Rt 

= dd K(Rt) + { tr (uD)dv. 
t }Rt 

I' 

S(Rt) = j tr (uD)dv. 
Rt 

(2.25) 

(2.26) 

(2.27) 

Equation (2.26) is an energy balance equation. The work done by the body 

and surface forces is converted into kinetic energy and S(Rt)· The latter may 
consist of stored (or potential) energy or be a measure of the amount of work 

dissipated in the form of heat or be a mixture of the two. 
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The following relations are worth noting. For a body held in equilibrium 
in configuration B, it may be shown, using the equations of equilibrium, that 

{ udv = { un Q9 xda + r pb Q9 xdv. 
lB laB lB 

Again, if a body is in equilibrium in configuration B then, for any differen­
tiable vector field u, 

r tr (ugrad u)dv = { pb. udv + { t. uda. 
lB lB laB 

2. 7. Stress tensors 

Using Nanson's formula (1.31) the traction on an area element nda in the 
current configuration can be written 

tda = unda = JuF-TNdA =: STNdA, 

wherein the nominal stress tensor S is defined as 

(2.28) 

This is also referred to as the engineering stress, while sT is the so-called 
first Piola-Kirchhoff stress tensor, and it measures the force per ·unit reference 

area while u measures the force per unit deformed area. Note that, in general, 
S is not symmetric but satisfies the connection 

(2.29) 

arising from symmetry of u. 

The equation of motion 

div u + pb = pa = pv 

can be recast in terms of S. One way to do this is to use the integral form of 
the balance equation, i.e. 

{ pbdv + r unda = r pvdv, 
lRt laRt lRt 

and convert the integrals to integrals over the reference configuration using 
mass conservation in the form pdv = PrdV and Nanson's formula (1.31). This 
leads to 

{ PrbdV + { STNdA = { PrvdV, 
1~ h~ 1~ 
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and hence, by the divergence theorem, 

Div S + Prb = Pr'-'· (2.30) 

Alternatively, the identity div (J- 1 F) = 0, obtained from (1.26)2 by set­
ting T = I, can be used to give 

div u = J-1 Div S, 

and then use of J = Pr/ pleads to (2.30). 
Now recall the expression 

S(Rt) = { tr (uD)dv 
}Rt 

occurring in the energy balance equations (2.25)-(2.27). Over the reference 
configuration the integral becomes 

!Rr J tr ( u D )dV. (2.31) 

The integrand in (2.31) is the rate of working of the stresses per unit reference 
volume (i.e. the stress power density). Using the symmetry of u together with 
(1.50) and (2.28) we have 

Jtr(uD) = Jtr(uL) = tr(FSL) = tr(SLF) = tr(SF). 

This shows that the stress power is also given by tr (SF). Because of this 
connection S and F are said to constitute a pair of conjugate stress and 
deformation tensors. 

Furthermore, by recalling the definition (1.39) and writing 

we obtain 

E(2) = i(FTF- I), 

E(2) = ~ (FTF + FTF) := FTDF. 
2 

This is used to write the stress power as 

using the symmetry of SF-T, which comes from the definition (2.28). We 
have also introduced the notation T(2), defined through 

(2.33) 
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which denotes the second Piola-Kirchho.ff stress tensor. The stress and strain 
pair ( T(2), E(2)) is a pair of conjugate stress and strain tensors. 

Since, from (1.40), FTF = U 2 we also have 

and hence, using the symmetry of T(2) and of U, 

This motivates the definition of the Biot stress tensor T(l), conjugate to the 
strain tensor E{l) = U - I, as 

(2.34) 

which, by using the polar decomposition (1.35), may also be written as 

(2.35) 

We now have the connections 

More generally, the (symmetric) stress tensor T(m) conjugate to the strain 
tensor E(m) = (Urn- I)/m discussed in Section 1.7.1 may be defined via the 
identity 

and it should be noted that this definition is independent of any material 
constitutive law. 
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Chapter 3 

Constitutive equations 

3.1. Introduction 

So far, we have the following equations governing the motion of a contin­
uous body: 

equation of mass conservation 

p + pdivv = 0; (3.1) 

equation of motion 

divu + pb = pv; (3.2) 

equation of angular momentum balance 

(3.3) 

These provide 7 scalar equations for 13 scalar fields- p, v (3 components), 
u (9 components) with the body force b regarded as known. Equivalently, 
given (3.3), equations (3.1) and (3.2) provide 4 equations for 10 scalar fields 
- p, v (3 components), u (6 components). 

The missing 6 equations are provided in the form of constitutive equations, 

which give expressions for the 6 components of u in terms of kinematical 
quantities, as we now describe. 

It is assumed that at time t the stress is uniquely determined by the mo­
tion x, i.e. u is a function (more generally functional) of x, v, F, L, ... , and 
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46 3. CONSTITUTIVE EQUATIONS 

possibly also higher gradients of the defonnation. We then have 10 equations 
for 10 unknowns, and, by substituting the constitutive equations into (3.1) 
and (3.2) we arrive at 4 equations for p and v, and (3.3) will be satisfied 
automatically. We now illustrate the general principles involved in the devel­
opment of constitutive equations by focussing on the case of homogeneous 
elastic materials, for which u depends only on F. (For an inhomogeneous 
material there is, additionally, explicit dependence on X.) 

3.2. Elastic materials 

The constitutive equation for an elastic material is written in the form 

u = g(F), (3.4) 

where g is a symmetric tensor-valued function, defined on the space of de­
formation gradients F. Equation (3.4) states that the stress in Bt at a point 
X depends only on the deformation gradient at X and not on the history of 
deformation, and, in particular, it is independent of the path of deformation 
taken to reach the point F. 

When the stress is removed the deformation returns to its original value 
(that in Br), so that 

g(I) = 0, (3.5) 

i.e. the undeformed configuration is free of stress. In some situations it will 
be necessary to relax this condition, but it is adopted here for the time being. 
We refer to g as the ( Cauchy stress) response function of the material relative 

to Br. It should be emphasized that, in general, the form of g depends on 
the choice of reference configuration. 

3.3. Objectivity 

Suppose that a rigid-body motion 

x* = Q(t)x + c(t) (3.6) 

is superimposed on the motion x = x(X, t). Then, the resulting deformation 
gradient, F* say, is given by 

F* = QF. (3.7) 
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In index notation, this may be proved as follows. Note first that, since 

we obtain 

and hence 
* ox; ox; ox k Q 

Fij = 8X · = OXk oX· = ikFkj· 
J J 

For an elastic material with response function g, the stress tensor, u* say, 
associated with the deformation gradient F* is 

u* = g(F*). 

We now determine how u* is related to u. Under the rotation Q the unit 
normal n to oRt becomes n* = Qn and the traction vector t becomes t* = 

Qt. Since t = un, t* = u*n* we obtain 

Qun = u* Qn. 

This holds for arbitrary nand hence Qu = u*Q, i.e. 

(3.8) 

The response function g must therefore satisfy the invariance requirement 

g(F*) := g(QF) = Qg(F)QT (3.9) 

for each F and all rotations Q . This expresses the fact that the constitutive 
law (3.4) is objective. In essence, this means that material properties are 
independent of superimposed rigid-body motions. It can also be interpreted 
in terms of observers. In that case, rather than representing a superimposed 
rigid motion equation, (3.6) is treated as an observer transformation. We refer 
to Ogden [18] for discussion of this latter approach. For the elastic materials 
discussed here the consequences of the two interpretations are identical, but 
in general this may not be the case for other materials. The difference is 
quite subtle and has generated some controversy in the literature. For a 
recent account of the topic we refer to Murdoch [14]. 

http://rcin.org.pl



48 3. CONSTITUTIVE EQUATIONS 

Definition. Let 4>, u, T be scalar, vector and (second-order) tensor fields 
defined on Bt, i.e. they are Eulerian in character. Let cl>*, u*, T* be the cor­

responding fields defined on B;, where B; is obtained from Bt by the rigid 
motion x* = Qx+c. The fields are said to be objective if, for all such motions, 

c/>* = c/>, u* = Qu, T* = QTQT. (3.10) 

Example 

If 4> is an objective scalar field then grad 4> is an objective vector field. We 
note that, in components, 

(grad c/>)i = (grad* c/>*)i = (grad* cP)i (since cl>* = 4>) 
84> 84> 8xk 

= = 
8xt 8xk 8xt. 

Next, since x* = Qx+c, it follows that x = QT x*- QT c, or, in components, 

Hence 

which leads to 

i.e. (grad 4> )* = Q(grad 4> ). Thus, grad 4> is an objective vector. 

Example 

Let 

Then 

x* = x*(X, t) = Q(t)x(X, t) + c(t). 

8x* . 
v* = 7it = Qv + Qx + c. 

Since v* =f. Qv it follows that the velocity is not an objective vector. Similarly, 
for the acceleration, 

£:~2 * u X . .. 
a* = 

8
t 2 = Qa + 2Qv + Qx +c. 
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3.4. Material symmetry 

Let u be the stress in configuration Bt, and let F, F' be the deformation 

gradients in Bt relative to the reference configurations Br, B~ respectively, as 
depicted in Fig. 3.1. We denote by g and g' the response functions relative 

to Br and B~, respectively, so that 

u = g(F) = g' (F'). (3.11) 

FIGURE 3.1. Paths of deformation with deformation gradients F and F' from 
reference configurations Br and 8~, which are connected by deformation gradient 
P. 

Let P = Grad X' be the deformation gradient of B~ relative to Br, where 
X' is the position vector of a point in B~. Then 

F = F'P. (3.12) 

To prove (3.12), we use index notation. We have 

oxi oxi ox~ , 
Fij =oX · =oX' oX · = Fikpkj· 

J k J 

Substitution of (3.12) into (3.11) then gives 

g(F'P) = g'(F'). 

In general, the response of the material relative to B~ differs from that 

relative to Br, i.e. g' -=f. g. However, for certain P we may have g' = g , in 
which case 

g(F'P) = g(F') (3.13) 
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for all deformation gradients F' and for all such P. Equation (3.11) then 

gives 

u = g(F) = g(F'), 

and, in order to calculate u, it is not necessary to distinguish between Br 
and B~. 

The set of tensors P for which (3.13) holds defines the symmetry of the 

material relative to Br - the larger the set the more symmetry there is. An 

example is provided by the structure of a cubic crystal, which has certain 

rotational symmetry. 

Let Q denote the set of (invertible) second-order tensors, denoted H, such 

that, in line with (3.13), 

g(FH) = g(F) (3.14) 

for all deformation gradients F. 
Then Q is a multiplicative group, called the symmetry group of the mate­

rial relative to Br. 
To show this we note that if H1, H2 E Q then, by application of (3.14) 

for different F and H, 

and hence H1H2 E g (closure); if HE Q then 

g(FH-1) = g(FH- 1 H) = g(F) 

and hence H- 1 E g (inverse); and I E Q since g(FI) = g(F) (identity). Thus, 

the requirements of closure, inverse and identity for a group are satisfied. 

3.4.1. Important example: isotropy 

If Q is the proper orthogonal group then the material is said to be isotropic 

relative to Br, and 

g(FQ) = g(F) (3.15) 

for all proper orthogonal Q (for every deformation gradient F). Physically, 

this means that the response of a small specimen of material cut from Br is 
independent of its orientation in Br . 
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3.4.2. Noli's rule 

In general, the symmetry group changes with a change in reference con­

figuration. Let P be the deformation gradient Br -t B~. If g is the symmetry 
group of the material relative to Br and Q' that relative to B~ then 

g' = pgp-1. (3 .16) 

To show this let g and g' be the response functions relative to Br and B~ 
respectively. Then 

g' (F') = g(F'P) = g(F'PH) (since H E Q) 

= g(F'PHP-1P) = g'(F'PHP-1), 

and hence PHP-1 E Q', i.e. H E g if and only if PHP-1 E Q' . Equation 

(3.16) is known as Noll's rule. 
If P is a rotation and g corresponds to isotropy, then Q' = g. We now 

focus on isotropic materials, for which purpose we require some further results 
from tensor algebra. 

3.5. Isotropic functions of a second-order tensor 

Definition. The scalar function <f>(T) of a symmetric second-order ten­
sor T is said to be an isotropic function of T if 

(3.17) 

for all orthogonal tensors Q. We remark that the notion of an isotropic 
function is different from that of an isotropic tensor. 

An isotropic scalar-valued function ofT is also called a scalar invariant 

ofT. We may check that the principal invariants h, /2,/3 of T are scalar 
invariants in accordance with (3.17), as follows. For example, with h = tr (T) 
we see that, since Q is orthogonal, 

while, for /3 = det(T), 

det(QTQT) = (det Q)(det T)(det QT) = det T, 

and similarly for /2. 
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Theorem 3.1. <t>(T) is a scalar invariant if and only if it is expressible 

as a function of h, 12, 13. 

Sketch proof 

It is sufficient to consider T written in spectral form 

3 

T = L tie~ 0 e~, 
i=l 

where ti are the eigenvalues of T. Since rp( QTQT) = <t>(T) for arbitrary 

orthogonal Q we conclude that <P depends on T only through its eigenvalues, 

and we may write 

with 

But t 1, t2, t3 are the (real) roots of the cubic 

and are therefore functions of the coefficients h, 12, 13. Hence rp depends only 

on h, 12,13 or, equivalently, it depends symmetrically on t~, t2, t3. We refer 

to [18] for a more detailed proof of this and the following theorems. 

Let G(T) be a symmetric second-order tensor function of T. 

Definition. G(T) is said to be an isotropic tensor function ofT if 

(3.18) 

for all orthogonal Q. 
A specific example of a function satisfying (3.18) is as follows. Let <t>o, 4>1 , 

... , <P N be scalar invariants of T. Then 

is an isotropic function of T. 

Theorem 3.2. If G(T) is isotropic then its eigenvalues are scalar in­

variants of T. 
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Sketch proof 

Let a(T) be a principal value of G(T), so that 

det[G(T) - a(T)I] = 0. 

Similarly, a( QTQT) is the corresponding principal value of G( QTQT), so 
that 

Using (3.18) we may re-write this as 

det[QG(T)QT- a(QTQT)I] = 0, 

and hence, noting that this may also be written 

(det Q) det[G(T)- a(QTQT)I](det QT) = 0, 

we deduce that 

det[G(T)- a(QTQT)I] = 0. 

Thus, a(QTQT) is a principal value of G(T) for all orthogonal Q and hence 

for all orthogonal Q, i.e. the principal values are scalar invariants ofT. 

Theorem 3.3. Every eigenvector ofT is an eigenvector of the isotropic 

junction G(T). 

Proof 

Let tb t2, t3 be eigenvalues of T corresponding to ( orthonormal) eigen­
vectors m1, m2, m3 . Then 

Suppose that 

Let Q be a rotation about m 1 through 1r, so that 
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Then, it follows that 

and 

G(T)m1 = G(QTQT)m1 = QG(T)QT m1 (by isotropy) 

= QG(T)m1 = Q(am1 +{3m2+ ')'m3), 

i.e. 

and hence, since m1, m2, m3 are linearly independent, {3 = 1 = 0. Thus, m 1 
is an eigenvector of G(T). Similarly for m2 and m3. 

Theorem 3.4. A symmetric second-order tensor-valued function G(T) 
of the second-order symmetric tensor T is isotropic if and only if it has the 
representation 

(3.19) 

where </Jo, </>1, </>2 are functions of h, /2, /3, i.e. they are scalar invariants ofT. 

Sketch proof 

If (3.19) holds then G(T) is clearly isotropic. On the other hand, if G(T) 
satisfies (3.18) then we need to show that (3.19) follows. 

We know from Theorem 3.3 that G(T) is coaxial with T, and from The­
orem 3.2 that the principal values of G(T) are invariants ofT. Let ti and 9i 

be the principal values ofT and G(T) and suppose that t1, t2, t3 are distinct. 
Consider the three equations 

iE{1,2,3}, (3.20) 

for the three unknowns <Po, <fJb </>2. The solutions <Po, </>1 , </>2 are functions of 
ti, 9i (i = 1, 2, 3) which, from Theorems 3.1 and 3.2, are themselves functions 
only of h, /2, /3. Thus, </Jo, </>1, </>2 are uniquely defined by (3.20) as invariants 
ofT. Since G(T) and T are coaxial equation (3.20) is just (3.19) referred to 
principal axes. Hence, by multiplying equation (3.20) by mi ® mi and sum­
ming over i, we obtain (3.19). If t1, t2, t3 are not distinct this proof requires 
modification, but we omit the details. 
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3.6. Isotropic elasticity 

..,. From the definition (3.15) of isotropy we have 

u = g(F) = g(FQ) (3.21) 

for all proper orthogonal Q and each deformation gradient F. 
The choice Q = RT and use of the polar decomposition F = VR in 

(3.21) gives 

u = g(V). 

Now, 
Qg(V)QT = Qg(F)QT = g(QF) 

and, with F replaced by QF and Q by pT in (3.21), 

g(QF) = g(QFPT) 

for all proper orthogonal P and Q. Hence 

Qg(V)QT = g(QFPT). 

By choosing P = QR and writing F = VR we then obtain 

Qg(V)QT = g(QVQT) 

(3.22) 

(3.23) 

for all proper orthogonal Q. In fact, since Q occurs twice on each side of 

(3.23), allowing Q to be improper orthogonal does not affect (3.23), which 
then states that g(V) is an isotropic function of V in accordance with the 

definition (3.18). Thus, the response function g has all the properties associ­

ated with the isotropic tensor function G discussed in Section 3.5. 
In particular, for an isotropic elastic material, u = g(V) is coaxial with 

V, i.e. with the Eulerian principal axes, and, from Theorem 3.4, we therefore 
have 

(3.24) 

where </Jo, </J1, </J2 are invariants of V, i.e. functions of 

Alternatively, we may write 

3 

u = L aiv(i) ® v(i), 

i=l 

where 

iE{1,2,3}. 
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3. 7. Hyperelastic materials 

Recall, from Section 2.6, that the energy balance equation can be written 

in the form 

{ pb·vdv+ { t·vda=: { ~pv·vdv+ { tr(uL)dv. 
1 Rt 1 8Rt t 1 Rt 2 1 Rt 

(3 .25) 

If there is no dissipation then the work done by the body and surface forces is 

converted into kinetic energy and stored elastic energy. In this connection an 

interpretation for the second term on the right-hand side of (3.25) is needed. 

Write 
{ tr (uL)dv = { Jtr (uL)dV. 

1Rt 1nr 
Then, the integrand Jtr (uL) is interpreted as the rate of increase of elastic 

energy per unit volume in Br. 
This prompts the introduction of the elastic stored energy W(F) per unit 

volume in Br such that 

a 
8t W(F) = Jtr (uL). (3.26) 

Note that W(F) is also referred to as the strain energy or potential energy 

(per unit volume in Br). Then, we have 

L, tr (<TL)dv = ]
14
! W(F)dV = :t ]

14 
W(F)dV, 

and 

]
14 

W(F)dV 

is the total elastic strain energy in the region fir. The right-hand side of 

(3.25) can now be written as 

:t (kinetic energy + strain energy). 

Since W depends only on F, we have 

~W(F) = aw oFij = tr (aw F) 
at aFij at oF ' 

where aw I oF is the second-order tensor with components defined by the 

convention 
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Since F = LF, we obtain 

aw (aw ) ( aw ) ot = tr oF LF = tr F aF L 

and comparison of this with (3.26) shows that 

ow 
Ju = F oF' 

which provides a formula for u in terms of W(F). 

Since u = g(F), we deduce that 

_ 1 ow 
g(F) = (det F) F aF, 

57 

(3.27) 

(3.28) 

and, by recalling the connection (2.28) between the Cauchy stress u and the 

nominal stress S, we obtain the simple formula 

ow aw 
S = oF ' Sji = oFiJ (3.29) 

for the nominal stress. 

We now write 

S = JF-1u = (det F)F-1g(F) = h(F), (3.30) 

which defines h, the response function associated with S (relative to Br). 

It is easy to show that objectivity implies that 

h(QF) = h(F)QT 

for all proper orthogonal Q, and that, in addition, material isotropy implies 

that 
h(FQT) = Qh(F) 

for all orthogonal Q. From the polar decomposition theorem it may then be 

deduced that for an isotropic material 

and that h(U) is symmetric. We emphasize, however, that if the material is 

not isotropic then h(U) is not in general symmetric (although it may be for 

some particular deformations). 

We remark that W(F) represents the work done (per unit volume at X) 

by the stress in deforming the material from Br to Bt (i.e. from I to F) and 

is independent of the path taken in deformation space. 

An elastic material which possesses a strain-energy function W is said to 

be a hyperelastic or Green elastic material. 
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Objectivity of W. Since W is a scalar function objectivity requires that 
it is unaffected by a superirnposed rigid-body rotation after deformation, i.e. 

W(QF) = W(F) (3.31) 

for all rotations Q for each deformation gradient F. This may also be ex­

pressed by referring to W as being indifferent to observer transformations. 

Isotropy of W. For a hyperelastic material which is isotropic relative 

to Br, W(F) is unaffected by rotations in Br (prior to deformation). Thus, 

(3.32) 

for all rotations P. 

Setting P = R, F = VR in (3.32) gives 

W(F) = W(V). 

Hence, using (3.31) and (3.32), 

W(QFPT) = W(FPT) = W(F) = W(V), 

and setting P = QR then yields 

(3.33) 

for all orthogonal Q. Equation (3.33) states that W is an isotropic scalar 

function of V in accordance with the definition (3.17). 
Thus, we may regard W as a function of the principal invariants h, 12, 13 

of V or, equivalently, as a symmetric function of the principal stretches 

-\1,-\2,-\3. In particular, we have 

for all -\1,-\2, A3 E (0, oo). 
Mathematically, there is no restriction so far other than (3.34) on the 

form that the function W may take, but the predictions of material behaviour 

based on the form of W must make mathematical sense and must also be 

compatible with what is observed for real materials. 
It is usual to take W to be measured from the reference configuration Br, 

so that 

W(1, 1, 1) = 0. (3.35) 
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Furthermore, if the reference configuration is stress free then we also have 
the restriction h(I) = 0 or, in terms of the derivatives of W with respect to 
the stretches, 

aw 
a>..i (1, 1, 1) = o, i E {1, 2, 3}. (3.36) 

There are also basic restrictions required for W to reduce to the classical 
(quadratic) form of strain energy when the strains are small. These restric­
tions are discussed in Chapter 10. 

In Chapters 4 and 5 we examine stress-deformation relations for isotropic 
elastic materials and the application of these to the characterization of the 
elastic properties of rubberlike solids. 
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Chapter 4 

Stress-deformation relations for an 

isotropic material 

4.1. Unconstrained materials 

For an isotropic material the strain-energy function is expressible as a 

function of the principal stretches, as in (3.34). It follows that 

(4.1) 

But, from (3.26), 

W = Jtr (uL) = Jtr (uD). (4.2) 

Also, for an isotropic material, u is coaxial with V and can be written in the 

spectral form 
3 

u = L aiv(i) ® v(i). (4.3) 
i=l 

Equation ( 4.2) can therefore be expressed as 

3 

w = JLaiDii, (4.4) 
i=l 

where Dii are the normal components of D referred to the axes y(i). In order 

to obtain expressions for the principal stresses ai in terms of the derivatives 

of W with respect to the stretches we must compare (4.1) with (4.4). First, 

we need an expression for the components Dii· 
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Note that by using (1.35)1, (1.54) and (1.59)1, D may be written in the 

form 

D = ~R(UU- 1 + u-1U)RT, 

and that U has the spectral decomposition 

3 

U = L AiU(i) ® u(i), 

i=1 

from which it follows that 

3 u = Lc.Xiu(i) ® u(i) + AiU(i) ® u(i) + AiU(i) ® u(i)). 

i:;:::;l 

Using the connection y(i) = Ru(i) we calculate the components 

Dii = v(i) · (Dv(i)) = ~u(i) · [(uu-1 + u-1 U)u(i)] 
2 

= u(i) · (uu-1u(i)) = u(i) · (UAi 1u(i)) 

= Ail[u(i). (Uu(i))] =Ail ,Xi, 

in which we have used syn1rnetry and the fact that, since u(i) is a unit vector, 
u(i) . u(i) = 0. 

Corn parison of ( 4.1) and ( 4.4) now gives 

and hence 

i.e. 

(4.5) 

where 

(4.6) 

Expressions for T(l) and S analogous to ( 4.3) can also be obtained. First 
we note that since s = JF- 1u F-1 = u- 1 RT RT y(i) = u(i) and u- 1u(i) = 

' ' 
Ai1u(i) we may write 

3 

S = L tiu(i) ® v(i), (4.7) 
i=l 
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where 
_ 1 aw 

ti = J \ ai = 8Ai . (4.8) 

Furthermore, from Section 3. 7 we see that, for an isotropic rnaterial, 

where we recall from Section 2. 7 that T(l) is the Biot stress tensor. Hence, 

using (4.7) and (4.8), 
3 

T(l) = L tiu(i) 0 u(i), (4.9) 
i=l 

and ti are just the principal values of T(l), i.e. the principal Biot stresses. If 
W is regarded as a function of U then we may also write 

T (l) = aw 
au· (4.10) 

More generally, for the conjugate stress and strain tensors T(m) and E(m), 

we note that 
T(m) = 8W 

8E(m). 
( 4.11) 

4.2. Stress-deformation relations in terms of invariants 

4.2.1. The invariants h, 12,13 

Instead of using the stretches AI, A2, A3 as independent measures of de­
formation, we now use (equivalently) the invariants h, 12,13 defined by 

h tr (B) = Ai +A~+ A~, ( 4.12) 

h ![12
- tr(B2

)] = A2A2 + A2A2 + A2A2 
2 1 - 2 3 3 1 1 2' (4.13) 

13 det B = AiA~A~ = J 2
, ( 4.14) 

and we note that these are symmetric functions of the stretches. We regard 

the strain energy as a function of h, 12,13 and write W(h, 12, 13) to represent 
this. 

In order to obtain an expression for the nominal stress S we need the 
derivatives 

oh = 2J. F-1 
8F 3 

' 
(4.15) 
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and hence 

(4.16) 

where 

( 4.17) 

The corresponding expression for the Cauchy stress is 

(4.18) 

4.2.2. The invariants i1, i2, i3 

An alternative representation for the energy function and the stresses 
can be obtained on the basis of the principal invariants i1, i2, i3 of the stretch 
tensor V. These are defined by 

il tr (V) = A1 + A2 + A3, (4.19) 

i2 
1 ·2 2 (4.20) = 2 ['ll - tr (V )] = A2A3 + A3A1 + A1A2, 

i3 det V= A1A2A3 = J. ( 4.21) 

In this case we write the strain energy as W( i1, i2, i3) and S may be written 

( 4.22) 

where 

( 4.23) 

However, expressions for 8i1/8F and 8i2/8F are not immediately forth­
coming in this case. They may be obtained by making use of the connections 

(4.24) 

However, this requires a lengthy set of manipulations, which are not given 
here. We obtain the results indirectly by first calculating T(l) and then using 

the connection S = T(1)RT and comparing the result with (4.22). 

Using ( 4.8) we obtain 
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Hence, 

3 

T(l) = L tiu(i) ® u(i) = Wll + W2( ill- U) + i3 w3 u-l' 
i=l 

and then 

(4.25) 

Comparison of (4.25) with (4.22) shows that 

8i3 _ . F_1 
8F -'l3 . ( 4.26) 

In terms of i1, i2, i3 the Cauchy stress tensor has the representation 

( 4.27) 

This may be compared directly with (3.24) to provide expressions for the co­

efficients c/Jo, c/>1, c/>2 which appear in ( 3. 24). For a discussion of these invariants 

and a derivation of the above formulas we refer to Steigmann [23) . 
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Chapter 5 

Constrained elastic materials 

5.1. Incompressibility 

If the considered material is incompressible then the deformation gradient 
must satisfy the internal constraint 

(5.1) 

at each point of the material. It follows that 

and hence 

. At A2 A3 
d1vv =: tr (D)=:-+-+-= 0. 

AI A2 A3 
(5 .2) 

Because of (5.1) the derivatives 8Wj8Ai are not now independent, and 
the equation 

8W 
J a i = Ai a Ai , i E { 1, 2, 3}, 

is replaced by 

(5.3) 

where p is an arbitrary scalar. 
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Justification for this is provided by noting that the rate of working of the 

stresses, namely 

tr (uD) 

is not affected by p. The scalar p is a Lagrange multiplier in respect of the 

constraint (5.1), so we replace W by W- p(-A1A2A3- 1) and then regard this 

as a function of the independent variables -A1, -A2, A3,p. 
Thus, 

becomes 
a aw 

ai = Ai a.Ai [W- p(.X1.X2.X3- 1)) = Ai a.Ai - p, 

with A1A2A3 having been set equal to 1 on the right-hand side after the 
differentiation has been carried out. 

More generally, for a material which is not necessarily isotropic, consider 

the strain energy W (F) modified to 

W(F)- p(det F- 1) 

to accommodate the constraint det F = 1. Then the nominal stress tensor 
defined by (3.29) for a compressible material is modified to 

aw _1 
S = 8F - pF ' 

and, from (3.30) with J = 1, the Cauchy stress u is given by 

aw 
u = F aF -pi. 

This shows that p may be interpreted as a hydrostatic pressure. 

(5.4) 

(5.5) 

The corresponding expression for the Biot stress tensor, with det U = 1, 
is 

T (l) = aw - u-1 
au P · (5.6) 
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5.2. Stress-deformation relations 

5.2.1. Invariants h, 12 

For an incompressible material 13 = 1. Thus, for an incompressible isotropic 
material the dependence of the strain energy on the invariants discussed in 
Section 4.1 .1 now reduces to a representation in terms of the two independent 
invariants h and 12 alone, and we write W(h, h). It follows from (5.5), on 
use of (4.15), that 

(5.7) 

5.2.2. Invariants i1, i2 

The counterpart of (5.7) in respect of W(i1, i2) (with i3 = 1) is 

(5.8) 

although p in ( 5. 8) differs from that in ( 5. 7) . 
1 

5.3. Other constraints 

Any single internal constraint on the deformation can be written in the 
form 

C(F) = 0 (5.9) 

for all deformation gradients F, where C (for constraint) is a scalar function. 
Since a constraint (such as incompressibility) is unaffected by a superposed 
rigid motion, C must be an objective scalar function, so that 

C(QF) = C(F) (5.10) 

for all rotations Q. In particular, the choice Q = RT yields 

C(F) = C(U). ( 5.11) 

Note that in general, however, C(U) is not a scalar invariant of U . 
To accommodate the constraint in the stress-deformation relation we con­

sider 

W(F) + qC(F), 
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5.4.1. Use of the invariants It, !2 

A basic strain-energy function, known as the neo-Hookean material, has 

the form 
- 1 
w = 2J-L(ft- 3), (5.16) 

where J-L (> 0) is a material constant referred to as the shear modulus of the 
material in the natural configuration. This is a prototype model for rubber 
elasticity. The associated Cauchy and nominal stresses are given by 

(5.17) 

respectively. 
Another such model is the Mooney-Rivlin material, defined by 

- 1 1 w = 2/-Ll (It - 3) - 2J-L2(J2 - 3), (5.18) 

where /-Ll (~ 0) and /-L2 (~ 0) are constants such that /-Ll - /-L2 = J-L (> 0) . The 
Cauchy stress can be calculated from ( 5. 7). 

5.4.2. Use of the invariants i1, i2 

The Varga material has the form 

w = 2J-L(il- 3), 

while, analogously to (5.18), we could also consider 

(5.19) 

(5.20) 

where again /-Ll (~ 0) and J-L2 (~ 0) are constants (not the same as in (5.18)), 
this time satisfying /-Ll - /-L2 = 2J-L (> 0). These two strain-energy functions 
are useful in circumstances when the strains are of moderate magnitude. In 
respect of (5 .20) the Cauchy stress may be obtained from (5.8). 

5.4.3. Use of the stretches 

An example of a strain-energy function for incompressible materials is 
that given by 

N 

W = L 1-Ln (Arn + A~n + A~n- 3), A1A2A3 = 1, 
n=l Gn 

(5.21) 
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where N is a positive integer and J-ln and an are material constants such that 

N 

J-lnGn > 0, n = 1, 2, ... 'N, L J-lnGn = 2J.,L. 
n=I 

..,. From (5.3) the principal Cauchy stresses are calculated as 

N 

ai = L J-LnArn - p, i E {1, 2, 3}. 
n=I 

(5.22) 

(5.23) 

Note that since, on use of the incompressibility condition, 12 and i 2 may be 
written as 

I ,-2 ,-2 ,-2 
2 = "'I + ""2 + ""3 ' 

. - \-I + \-I + \-I 
22 - "'I ""2 ""3 ' 

the energy function (5.21) includes (5.16) and (5.18)-(5.20) as special cases. 
For more details of strain-energy functions in terms of the stretches we 

refer to Ogden [15, 16), for example. 

5.5. Application to homogeneous deformations 

We recall that for a homogeneous deformation the deformation gradient 
F is constant, i.e. independent of position X. 

A pure homogeneous strain is a deformation of the form 

(5.24) 

where the principal stretches AI, A2, A3 are constants and (XI, X2, X3) and 
(xi, x2, x3) are Cartesian coordinates. For this deformation F = U = V, 
R =I and the principal axes of the deformation coincide with the Cartesian 
coordinate directions, i.e. they do not change their orientation as the values 
of the stretches change. For an unconstrained isotropic elastic material the 
associated principal Biot stresses are given by ( 4.8). These equations serve 
as a basis for determining the form of W from triaxial experimental tests in 
which AI, A2, A3 and ti, t2, t3 are measured. If biaxial tests are conducted on a 
thin sheet of material which lies in the (XI, X 2)-plane with no force applied 
to the faces of the sheet (plane stress) then, when written in full, equations 
(4.8) are 
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and the third equation gives A3 implicitly in terms of AI and A2 when W is 
known. In this situation the stretches AI and A2 can be varied independently, 
but such a test is not sufficient to enable a complete characterization of W to 
be achieved since AJ is not varied independently of AI and A2· The situation 
is different for an incompressible material and we now focus on materials 
subject to the constraint 

(5.26) 

In this case the biaxial test is important since, in principle, it affords the 
possibility of determining the stress-stretch characteristics of the material for 
all valid values of the stretches. The counterpart of ( 4.8) for the incompress­
ible case is given by 

aw -I 
ti = OAi - PAi ' (5.27) 

or, in terms of the principal Cauchy stresses, 

(5.28) 

At this point we use (5.26) to express the strain energy as a function of two 
independent stretches and for this purpose we define 

(5.29) 

This enables p to be eliminated from equations (5.28) and leads to 

(5.30) 

It is important to observe that, because of the incompressibility con­
straint, equation (5.30) is unaffected by the superposition of an arbitrary 
hydrostatic stress. Thus, without loss of generality, we may set a3 = 0 in 
(5.30) . In terms of the principal Biot stresses we then have simply 

(5.31) 

These equations are important since they provide two equations relating the 
two independent stretches AI, A2 to the stresses t1, t2 and therefore a basis 
for characterizing W from measured biaxial data. 

http://rcin.org.pl



74 5. CONSTRAINED ELASTIC MATERIALS 

We note here that in the undeformed stress-free (natural) configuration 
W(Ab A2) should satisfy the conditions 

W(1, 1) = o, 
WI2 = 2jl, 

(5.32) 

(5.33) 

where the subscripts denote differentiation with respect to AI and A2 and Jl 

again is the shear modulus. 

5.6. Comparison of theory and experiment for rubber 

In order to relate the theory to experimental data on rubber it is conve­
nient to write the strain energy (5.21) in the Valanis-Landel separable form 

(5.34) 

where 
N 

w(Ai) = L(Afn- 1)/an. (5.35) 
n=I 

..,.. From (5.30) the stress difference ai - a2 is then written 

(5.36) 

It turns out that this is a very useful representation since, for fixed A2, the 
shape of the curve of ai - a2 plotted against AI for certain rubbers is essen­
tially independent of the value of A2 · This means that the shape of the curve 
is determined by taking A2 = 1, in which case (5.36) reduces to 

(5.37) 

For A2 # 1 the corresponding curve is obtained by a vertical shift defined by 

(5.38) 

which, when added to (5.37), reproduces (5.36). Typical data for a vulcan­
ized natural rubber, taken from biaxial experiments of Jones and Treloar [12), 
are shown in Fig. 5.1(a)-(d) with ai - a2 plotted against AI for four differ­
ent values of A2: (a) 1, (b) 1.502, (c) 1.984, (d) 2.295. The experimental re-
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FIGURE 5.1. Plot of o-1 - o-2 (vertical axes) against .\1 for (a) .\2 = 1, (b) .\2 = 
1.502, (c) .\2 = 1.984, (d) .\2 = 2.295. The data (circles) are compared with 
the theoretical curves corresponding to the Mooney-llivlin material (continuous 
curves) and the neo-Hookean material (dashed curves). 

sults (circles) are compared with the predictions of the neo-Hookean material 
(dashed curves), with 11 = 0.4807 Nmm-2 and the Mooney-Rivlin material 
(continuous curves), with Ill = 0.4206,112 = 0.0601 Nmm-2. 
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0 

FIGURE 5.2. Plot of a1 - a2 against >q with the data in Figures l(a)-(d) super­
imposed and, additionally, data for .\2 = 2.623. The continuous curves are based 
on the strain-energy function (5.21) with constants given by (5.39). 

Figure 5.2 shows the data from Fig. 5.1 for the four values of A2 super­
imposed, together with corresponding data for A2 = 2.623. This plot shows 
clearly that the shape of the curves is independent of A2. The data have been 
fitted with a strain-energy function of the form (5.21) with N = 3 and the 
following values of the material constants: 

Ot = 1.3, 02 = 4.0, 03 = -2.0 

J.Lt = 0.69, J.L2 = 0.01, J.L3 = -0.0122Nmm - 2• (5.39) 
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The theoretical curves are shown as continuous curves in Fig. 5.2. 

There are several special cases of the biaxial test which are of interest, but 

we just give the details for simple tension, for which we set t2 = 0. This has 
the advantage that relatively large values of the stretches can be achieved. 

By symmetry, the incompressibility constraint yields A2 = A3 = A~ 1 / 2 . The 

strain energy may now be treated as a function of just A= A1, arid we write 

(5.40) 

and (5.31) reduces to 

(5.41) 

where the prime indicates differentiation with respect to A and the subscript st 

signifies simple tension. 

• 

FIGURE 5.3. Simple tension data with the nominal stress t (dimensionless) plotted 
on the vertical axis against the stretch >.for a vulcanized natural rubber (circles) 
compared with the predictions of the neo-Hookean material (dashed curve) and 
a strain-energy function of the form (5.21) with N = 3 (continuous curve) . 
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Representative simple tension data are shown in Fig. 5.3 for a vulcanized 

natural rubber [24). The data are compared with the theory based on the 

neo-Hookean material (dashed curves) and a three-term energy function of 

the form (5.21) (continuous curve). 

5.6.1. Simple shear 

Experimental tests such as biaxial deformation and simple tension are 

such that the principal axes of strain do not change as the magnitude of 

the strain is varied. We now consider the predictions of the theory for a 

deformation for which the orientation of the principal axes of strain does 
change. This is the simple shear deformation discussed in Section 1. 7 .2. We 

recall from Section 1. 7.2 that in a simple shear deformation the Eulerian 
principal axes v(1) and v(2) are given by 

v(l) = cos cp e1 +sin cp e2, v(2) = -sin cp e1 +cos cp e2, 

where 
2 

tan 2cp = -, 1 = .X - .X-\ 
I 

and the stretches .X, .X - 1 correspond to v(l), v(2) respectively. Note that it 

also follows that tan cp = .X - 1. 

Since the material is isotropic we must have 

with v(3) = e3 , so that the Cartesian components of u are 

au = a1 cos2 cp + a2 sin2 cp, 
a22 = a1 sin2 cp + a2 cos2 cp, 

By substituting for the various expressions involving cp in favour of .X we 

obtain the normal stresses in the form 

1 1 .x-.x-1 
au = 2(a1 + a2) + 2(a1- a2) .X+ _x- 1, 

1 1 .x-_x-1 
a22 = 2(a1 + a2)- 2(a1- a2) .X+ _x- 1, 

and the shear stress as 
a1- a2 

a12 = .X+ _x- 1. 
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The connection 

(5.42) 

then follows. This is important to note since it is an example of a universal 

relation, i.e. a connection between the stress components that is indepen­

dent of the form of constitutive law (in this case, the class of incompressible 

isotropic elastic solids). For a recent discussion of universal relations we refer 

to the article by Saccomandi in [4] . 

Instead of regarding W as a function of I 1 and I 2 or of the stretches we 

may (for this specific deformation) take it to be a function of 1 and define 

(5.43) 

the subscript ss signifying simple shear. Then, we have simply 

(5.44) 

Note that for the neo-Hookean form of strain-energy function this gives a12 = 

J-ll, i.e. the shear stress is linear in the amount of shear 1. Note also that 
in general normal stresses are required in addition to shear stresses in order 

to maintain the shape of the material. The necessity for normal forces is an 

example of the Kelvin effect. 

For the considered simple shear deformation we record here for later ref­

erence that the invariants h, I2, I3 are given by 

(5.45) 

emphasizing that simple shear is an isochoric deformation. Simple shear is 
an important deformation since it arises locally in many problems of prac­

tical and theoretical interest, such as the problem of azimuthal shear to be 
considered in Chapter 10. 
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Chapter 6 

Boundary-value problems 

We now consider the formulation of (equilibrium) boundary-value problems. 
Specifically, we consider the equilibrium equation in the absence of body 
forces . The appropriate specialization of the equation of motion (3.2) is then 

divu = 0, (6.1) 

or, in terms of nominal stress, 

DivS = 0. (6.2) 

Equations (6.1) and (6.2) have to be taken in conjunction with the stress­
deformation relations 

= J-lFaw 
u 8F' 

aw 
S = 8F' (6.3) 

respectively, in the case of an unconstrained material, with the deformation 
gradient F given by F = Grad X with X = x(X). For an incompressible 
material the stress-deformation relations (6.3) are replaced by 

aw 
u = F- -pi 

8F ' 
aw _1 S = BF - pF , det F =: 1. (6.4) 

Appropriate boundary conditions are required in order to formulate a 
boundary-value problem. Typical boundary conditions arising in problems of 

nonlinear elasticity are those in which x is specified on part of the boundary, 
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oB; c oBr say, and the stress vector on the remainder, BB;, so that oB; u 
oB; = oBr and oB; n BB; = 0. We write 

x = e(x) 

STN = r(F,X) 

on oB~, 

on oB;, 
(6.5) 

(6.6) 

where e and T are specified functions. In general, T may depend on the 

deformation and this is indicated in (6.6) by showing the dependence of r 
on the deformation gradient F. (Note that r differs from the stress vector r 

defined in Section 2.5.) If the surface traction defined by (6.6) is independent 

ofF it is referred to as a dead-load traction. In the particular case in which 

the boundary traction in (6.6) is associated with a hydrostatic pressure, P 

say, so that un = - Pn, then r depends on the deformation in the form 

(6.7) 

When coupled with suitable boundary conditions, either of the equa­

tions (6.1) or (6.2) in conjunction with (6.3) or (6.4), as appropriate, forms 

a coupled system of three highly nonlinear second-order partial differential 

equations for the components of x = x(X). 
For homogeneous deformations, of course, the equilibrium equations are 

satisfied automatically and such deformations can be maintained by the ap­

plication of suitable boundary tractions. For non-homogeneous deformations, 

it is necessary to solve the equilibrium equations. In the case of unconstrained 

materials very few explicit solutions have been obtained for boundary-value 

problems involving non-homogeneous deformations, and these arise for very 
special choices of the form of W and for relatively simple geometries. For 

incompressible materials, on the other hand, many more explicit solutions 
are available. In the following section we describe a simple example of a 

boundary-value problem for an incompressible isotropic elastic material in 

which the deformation is non-homogeneous. A different nonhomogeneous de­
formation, namely azin1uthal shear, is discussed in Chapter 10. 

6.1. Extension and inflation of a thick-walled tube 

We consider a thick-walled circular cylindrical tube whose initial geome­
try is defined by 

A~ R ~ B, 0 ~ 8 ~ 21r, 0 ~ Z ~ L, (6.8) 
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where A, B, L are positive constants and R, 8, Z are cylindrical polar coor­
dinates associated with basis vectors (En, Ee, Ez). The deformed configura­
tion is specified in terms of cylindrical polar coordinates (r, B, z), with basis 
vectors (er, eo, ez) and the position vector in the deforn1ed configuration may 
be written 

(6.9) 

The tube is deformed so that the circular cylindrical shape is maintained. 
Since the material is incompressible the deformation is described by the equa­
tions 

(6.10) 

where Az is the (uniform) axial stretch and a is the internal radius of the 
deformed tube. 

Since, for this deformation, er= En, eo= Ee, ez = Ez, the deformation 
gradient is then calculated as 

8x 18x 8x 
F = Grad X = 8R ®er + R ae ®eo + az ® ez 

= f'(R)er ®er+ ~eo® eo+ Azez ® ez 

= Aler ®er+ A2eo ®eo+ A3ez ® ez. (6.11) 

Thus, F is symmetric and in spectral form with respect to the cylindrical po­
lar axes. The principal stretches AI, A2, A3, which are associated respectively 
with the radial, azimuthal and axial directions, are therefore identified. Thus, 

r 
A2=-=A R ' (6.12) 

where the notation A has been introduced. It follows from (6.10) and (6.12) 

that 

(6.13) 

where 

Aa =a/A, Ab= b/ B, b = f(B). (6.14) 

For a fixed value of Az the inequalities 

(6.15) 
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hold during inflation of the tube, with equality holding if and only if A = 

A_;- 1
/

2 for A ::; R ::; B. Note that when this latter equality holds the defor­

mation corresponds to simple tension. 

We use the notation (5.29) for the strain energy but with A2 = A and 

A3 = Az as the independent stretches (instead of AI and A2), so that 

(6.16) 

Hence 
(6.17) 

where the subscripts indicate partial derivatives, and, because the material 

is isotropic, 
(6.18) 

Since the deformation depends only on the radial coordinate, it follows 

from (6.18) that 

diva= [~1 +~(a1-a2)]e,., 
and the equilibrium equation (6.1) therefore reduces to the radial equation 

(6.19) 

in terms of the principal Cauchy stresses. Associated with this equation we 

have the (radial) boundary contlitions 

{ 
-P 

lTI = 0 
on r =a 
on r = b 

(6.20) 

corresponding to pressure P (~ 0) on the inside of the tube and zero traction 

on the outside. 
By making use of (6.10) and (6.12)-(6.14) we obtain (after some rear­

rangement) 
dA 2 

r dr = -A(A Az- 1), 

and it is convenient to use this to change the independent variable from r 

to A. Then, integration of (6.19) and application of the boundary conditions 
(6.20) leads to 

(6 .21) 
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..,. From (6.13) we recall that Ab depends on Aa· Equation (6.21) therefore 
provides an expression for P as a function of Aa (equivalently of the deformed 
radius) when Az is fixed. 

In order to hold Az fixed an axial load, N say, must be applied to the 
ends of the tube. This is given by 

N = 21f J.b a3rdr. (6.22) 

After some rearrangements and use of (6.17) and (6.19) equation (6.22) can 
be expressed in the form 

A A A 

2 2 1 a 2 -2 ( aw aw) 2 Nj1rA = (AaAz-1) (.A Az-1) 2-Az!l_A -.A !l_A .Ad.A+P.Aa. (6.23) 
Ab ll z ll 

We note that 1rA2 times the integral in (6.23), i.e. N- P1ra2 , is referred to 
as the reduced axial load since it accounts for the effect of the pressure on the 
ends of the cylinder, it being assumed that the cylinder has closed ends. For a 

more detailed discussion of this problem, including an analysis of bifurcation 
into non-circular cylindrical modes of deformation, we refer to Haughton and 
Ogden [5, 6]. 

Representative results for the pressure P calculated from (6.21) are shown 
in Fig. 6.1 in dimensionless form. This demonstrates the very different be­
haviour of biological soft tissues and rubberlike materials. 

P* P* 

0.95 1.1 1.2 

FIGURE 6.1. Plot of the dimensionless pressure P* against the stretch Aa for 
different wall thicknesses and an axial pre-stretch Az = 1.2 in respect of (a) a 
typical soft tissue, and (b) a typical rubberlike material. 

In the special case in which the wall thickness of the tube is small com­

pared with the radius the integral (6.21) may be approximated in the fol-
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86 6. BOUNDARY-VALUE PROBLEMS 

I owing way (this corresponds to the membrane approximation). Let € = 
( B - A)/ A be a dimensionless measure of the wall thickness in the refer­
ence configuration. Then, from (6.13), we may obtain the approximation 

(6.24) 

where, to the first order in €, A may be taken as either Aa or )..b· On use of 
(6.24) we may then approximate Pas 

(6.25) 

so that, at fixed Az, the behaviour of P as a function of A is that of A -l W ,x. 
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Chapter 7 

Anisotropic elastic materials 

The elastic response of some rubberlike materials is in essence isotropic. 

This is also true to a limited extent for some biological soft tissues. However, 

when subjected to tensile stresses of sufficient magnitude soft tissues exhibit 
anisotropy in their mechanical response. This is associated with distributions 

of collagen fibres that endow the material locally with preferred directions. In 

ligaments and tendons, for example, the material can be regarded as having 

a single preferred direction (on average). The material can then be treated 

as transversely isotropic. Other soft tissues have two distinct distributions of 

collagen fibre directions and these can be associated with two preferred direc­

tions. This is the situation for the layers of an artery wall, for example. Also, 

in many industrial applications of rubber the material is rendered anisotropic 

by the inclusion of layers of steel wires (in high pressure hoses and car tyres, 
for example) and/or fabric (also in car tyres). The elastic response of such 

composite materials can be regarded as that of a homogeneous material with 

anisotropic properties associated with the preferred directions generated by 
the fibres. 

In this chapter we illustrate the structure of the strain-energy function of 

an anisotropic elastic solid for two important examples: (i) transverse isotropy 

(characterized by a single family of fibres), and (ii) the anisotropy associated 
with two families of fibres, and, in particular, orthotropy. The work in this 
chapter owes much to the theory of invariants developed by Spencer (see, for 

example, [21, 22]). 
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7 .1. Transverse isotropy 

Let the unit vector M be a preferred direction in the reference configura­

tion Br of the material. Without the preferred direction the material would 

be isotropic relative to Br. In general M varies with position X and is a unit­

vector field which, when the strain-energy function is endowed with suitable 

properties, can be regarded as modelling the fibres as a continuous distri­
bution. The material response is therefore indifferent to arbitrary rotations 

about the direction M. Also, no physical distinction can be made between 
the directions M and -M. Thus, the response must also be unaffected by 

interchange of M and -M. 

The strain energy W(F) must therefore satisfy W(FQ) = W(F) for all 
proper orthogonal Q such that QM =±M. Note that the direction of M is 
reversed by a rotation of 1r about any axis perpendicular to M. Equivalently, 

such a material can be characterized by a strain energy that is an isotropic 

function ofF and the tensor M®M jointly. Since, by objectivity, W depends 

on F only through the right stretch tensor U (or, equivalently, C = U 2 ), this 
means that, on writing the dependence as W(C, M® M), we must have 

W(QCQT, QM ® QM) = W(C, M® M) for all proper orthogonal Q. 

(7.1) 
For an unconstrained material, the requirement (7.1) implies that W de­

pends on five invariants, namely the principal invariants h, /2, /3 of C, 

defined by (4.12)-(4.14) with B replaced by C, together with two invariants, 

denoted /4 and /5, that depend on M and are defined by 

/4 =M· (CM), h =M· (C2M). (7.2) 

Note that /4 has a direct kinematical interpretation since, in accordance with 
(1.37), /Y4 represents the stretch in the direction M. In general, however, 

there is no immediate simple interpretation for /5. We use the notation 

(7.3) 

to represent the strain energy when treated as a function of the invariants 

based on C, extending the notation used in the isotropic case to include / 4 

and /5. 

In order to calculate the stresses we require the derivatives 

814 
oF =2M®FM, 

[}J a:= 2(M®FCM+ CM®FM), (7.4) 
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7 .1. TRANSVERSE ISOTROPY 89 

together with the derivatives of h, /2,/3 given by (4.15). The resulting nom­
inal stress tensor is given by 

S = 2WIFT + 2W2(hl- C)FT + 2/3 W3F-I + 2W4M Q9 FM 

+ 2W5(M ® FCM +CM® FM), (7.5) 

where Wi 8W /8Ii, i = 1, ... , 5. The result for an isotropic material is 
recovered by omitting the terms in W4 and W5 . Equation (7.5) gives the stress 
in a fibre-reinforced material for which the fibre direction corresponds to M 

locally in the reference configuration. The Cauchy stress can be calculated 
from (7.5) using the general formula Ju = FS. 

Henceforth, we restrict attention to incompressible materials, so that /3 = 
1. The notation (7.3) is retained but with /3 omitted. Equation (7.5) is then 
replaced by 

S = 2WIFT + 2W2(hl- C)FT - pF-I + 2W4M Q9 FM 

+ 2W5(M ® FCM +CM Q9 FM), (7.6) 

and Cauchy stress tensor is given by 

u = FS = -pi+ 2WIB + 2W2(hB- B2) + 2W4FM ®FM 

+ 2W5(FM Q9 BFM + BFM Q9 FM), (7.7) 

where B is the left Cauchy-Green deformation tensor and we have used the 
connection FCM = BFM. The symmetry of u is apparent from (7.7). Note 
that (7.7) reduces to the corresponding result (5.7) for an isotropic material 
when the dependence on /4 and /5 is omitted. 

7.1.1. Application to pure homogeneous deformation 

In Section 5.5 we examined the pure homogeneous strain defined by (5.24) 
in the case of an isotropic material. Here we obtain, for comparison, the 
corresponding results derived from (7.7). Let M lie in the (XI, X2 )-plane 
and suppose it has components (cos <p, sin <p, 0). Then, we calculate 

while, in terms of the (independent) stretches AI and A2, we have 

(7.9) 
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..,. From (7. 7) the components of u are calculated as 

Note that a12 does not in general vanish, unlike the situation for an isotropic 
material. This means that (as a result of lack of symmetry) shear stress 
is required to maintain the pure homogeneous strain in this case, and it 
vanishes only if the preferred direction is along one of the coordinate axes. 
This illustrates the fact that the principal axes of u do not in general coincide 
with the Eulerian principal axes (which, here, are the coordinate axes) . 

..,. From (7.10), (7.11) and (7.13) we obtain 

(7.14) 

(7.15) 

Equations (7.8) and (7.9) show that h, 12, 14, h, and hence the strain 
energy, depend only on A1, A2 and the angle cp. We express this dependence 
by extending the notation W defined in (5.29) to the present situation. Thus, 
we define 

(7.16) 

It is important to note, however, that, in general, in contrast to the isotropic 
situation, W(Ar, A2, c.p) is not symmetric in AI and A2. It is then easy to show 
that (7.14) and (7.15) may be written in the simple forms 

(7.17) 

Equations (7.17) are identical in form to the corresponding equations (5.30) in 
the isotropic case, except that here a 11 and a22 are not principal stresses since 
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the shear stress a12 does not in general vanish and, it should be emphasized, 
that W(Al,A2,cp) is not symmetric in Al and A2· 

We recall that for incompressible isotropic materials homogeneous biaxial 
deformation$ in which two independent stretches (or I 1 and I 2) are varied 
independently are sufficient to characterize the material properties (i.e. the 
strain-energy function). This is clearly not the case for an incompressible 
transversely isotropic material, for which there are four independent invari­
ants. Characterization of the properties of a transversely isotropic material 
requires experiments in which (in principle) these invariants are varied inde­
pendently. 

We note here that for the considered pure homogeneous strain the com­
ponents of FM are (Al cos c/>, A2 sin c/>, 0). Let m denote the unit vector in the 
direction FM and suppose m has components (coscp*,sincp*,O). Then, we 
have 

(7.18) 

7.1.2. Plane strain 

It is interesting to examine the simplifications that arise in the case of a 
plane deformation. We consider a plane deformation in which A3 = 1. It then 
follows that A1A2 = 1 and from (7.8) and (7.9) that 

(7.19) 

Thus, we may regard the energy as a function of just two independent in­
variants, such ash and I4, and we write 

(7.20) 

It follows that the Cauchy stress is given simply by 

(7.21) 

which should be compared with (7.7). 

For pure homogeneous strain, the in-plane components of u are obtained 
from (7.21) as 

= 2 = 2 2 au = 2W 1A1 + 2W 4A1 cos cp- p, 

= 2 = 2 2 
a22 = 2W 1A2 + 2W 4A2 sin cp- p, 

(7.22) 

(7.23) 
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a12 = 2W 4 sin <p cos c.p, (7.24) 

with ..\1 ..\2 = 1. 
For the simple shear deformation discussed in Sections 1.7.2 and 5.6.1, 

we obtain from (7.21) 

with 

Note that 

au = 2W 1 (1 + 1 2
) + 2W 4(cos c.p +{Sin c.p) 2

- p, 
= = 2 

a22 = 2W 1 + 2W 4 sin <p - p, 

a12 = 21' W 1 + 2W 4 sin c.p( cos <p + 1 sin <p), 

(7.25) 

(7.26) 

(7.27) 

(7.28) 

(7.29) 

so that the universal relation (5.42) obtained in the isotropic case does not 

carry over to transverse isotropy, except in the very special case in which 
M coincides with the Lagrangian principal direction u(l) (which can only 

happen for an isolated value of 1). On the other hand, the formula (5.44) 

does apply, as can be shown by differentiating W(h, I4) with respect to 1 
and making use of ( 7. 28). 

7. 2. Two preferred directions 

We now consider the situation in which there are two distinct preferred 
directions in the reference configuration. Let M and M' denote the associated 

unit vectors. Then, in addition to h, I2, I4, Is, the strain energy depends on 
the invariants 

I6 =M'· (CM'), I7 =M'· (C2M'), Is= M· (CM'). (7.30) 

Note that 16 and I1 are the counterparts for M' of I4 and Is, respectively, 

and that there is now a coupling term Is. The energy also depends explicitly 
on the angle between the directions, as determined by the product M· M' 
(which does not depend on the deformation). There is no term M· (C2M') 
since it can be shown that it depends on the other invariants and on M· M'. 
The invariant Is as defined above is not unchanged with respect to reversal 

of M or M' separately, but it can be made so by multiplying by M· M'. For 
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simplicity, however, we retain Is as given above and note that, by symmetry, 
this 'correction' is unnecessary for the problem considered in Section 7.2.1 

below. 
VVe now use the notation W to represent W for an incompressible material 

when regarded as a function of h, I2, I4, Is, I6, I7, Is, and M·M'. The Cauchy 
stress tensor is then written 

- - 2 -
u =-pi+ 2W1B + 2W2(hB- B ) + 2W4FM Q9 FM 

+ 2W5(FM Q9 BFM + BFM Q9 FM) + 2W6FM' Q9 FM' 

+ 2W7(FM' Q9 BFM' + BFM' Q9 FM') 

+ Ws(FM Q9 FM'+ FM' Q9 FM), (7.31) 

where the notation wi = aw I 8Ii now applies for i = 1, 2, 4, .. . '8. 
Although (7.31) is in general very complicated some useful information 

can be obtained by restricting attention again to pure homogeneous strains 

and simple shear. The extension and inflation of a tube discussed in Sec­
tion 6.1 for an isotropic material will also be examined in respect of (7.31) 

appropriately specialized. 

7.2.1. Pure homogeneous strain 

Again we consider the pure homogeneous strain defined by (5.24) and now 

we include two preferred directions, symmetrically disposed in the (X1, X2)­

plane and given by 

(7.32) 

where the angle cp is constant and e 1, e2 denote the Cartesian coordinate 

directions, see Fig. 7.1. Let the corresponding unit vectors in the deformed 

configuration be denoted 

m= cos cp* e1 +sin cp* e2, I * . * m = cos cp e1 - sin <p e2, (7.33) 

with cp* given by (7.18). 

When expressed in terms of A1 and A2 the invariants h, h are given by 
(7.9) and the other invariants are calculated as 

I I ,2 2 ,2 . 2 
4 = 6 = 1\1 COS <p + 1\2 Sill <p, I I ,4 2 ,4 . 2 

5 = 7 = 1\1 COS <p + 1\2 Sill <p, (7.34) 

(7.35) 
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FIGURE 7.1. Depiction of pure homogeneous strain with two symmetrically dis­
posed families of fibres in the (Xt, X2) plane. 

The components of u are obtained from (7.31) as 

(7.38) 

(7.39) 

Note that (7.39)1 is identical in form to (7.13)1 but is different in content 

since W now depends on I6, I7, Is. 

As for the case of transverse isotropy, a 12 =I 0 in general. Thus, shear 
stresses are required to maintain the pure homogeneous strain and the prin­
cipal axes of stress do not coincide with the Cartesian axes. However, in the 
special case in which the two preferred directions are mechanically equivalent 

the strain energy must be symmetric with respect to interchange of I 4 and 

I6 and of I5 and I7. For the considered deformation, we have I4 = I6, I5 = I7 

and it then follows that w4 = w6, w5 = w7 and hence, from (7.38), that 
a12 = 0. In this special case the principal axes of stress coincide with the 

Cartesian axes (i.e. with the Eulerian principal axes), and au, a22, a33 are 
therefore precisely the principal Cauchy stresses a1, a2, a3. 

~From (7.9), (7.34) and (7.35) we see that, just as in the case of trans­
verse isotropy, the invariants collectively depend only on A1, A2 and c.p and 
we may therefore write 

(7.40) 
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Again, as in the transversely isotropic case, W is not symmetric with respect 
to interchange of AI and A2. It is straightforward to show that 

(7.41) 

which are identical in form to equations (5.30) except that here W depends on 

c.p and is not (in general) symmetric in (AI, A2)· These equations describe an 
orthotropic material with the axes of orthotropy coinciding with the Cartesian 

axes. 

7 .2.2. Simple shear 

We now extend the discussion of simple shear in Section 7.1.2 to the 

present material. For the simple shear deformation the invariants are given 
by 

(7.42) 

!4 = 1 + 1 sin 2c.p + 1 2 sin2 c.p, 16 = 1 - 1 sin 2c.p + 12 sin2 c.p, (7.43) 

!5 = (1 + ·"?) cos2 c.p + 2r(2 + 1 2) sin c.p cos c.p + ( 1 4 + 3r2 + 1) sin2 c.p, (7.44) 

!7 = (1 + 1 2) cos2 c.p- 2r(2 + 1 2) sin c.p cos c.p + ( 1 4 + 3r2 + 1) sin2 c.p, (7.45) 

Is = cos2 c.p- (1 + 1 2) sin2 cp. (7.46) 

The components of the Cauchy stress tensor are now calculated as 

au = -p + 2WI (1 + 1 2) + 2W2(2 + 1 2) 

+ 2[W4 + w6 + Ws + 2(W5 + W1 )(1 + 12)] cos2 c.p 

+ 4[W4- w6 + (W5- W1 )(3 + 12)]1 sinc.pcos c.p 

+ 2[W4 + w6- Ws + 2(W5 + W1 )(2 + 1 2)]12 sin2 c.p, (7.47) 
- - - - - 2 

a22 = -p + 2WI + 4W2 + 2(W4 + W6 - Ws) sin c.p 

+ 4(W5 - W1 )! sin c.p cos c.p + 4(W5 + W1 )(1 + 1 2) sin2 c.p, (7.48) 

O"I2 = 2(WI + W2)1 + 2(W4 - W6) sin c.pcos c.p 
- - - 2 + 2(W4 + W6 - Ws)! sin c.p 

+ 2(W5 + W1 )1[cos2 c.p + (3 + 1 2) sin2 c.p], (7.49) 
- 2 - 2 4 

a33 = -p + 2WIA3 + 2W2(JIA3- A3), O"I3 = a23 = 0. (7.50) 

Since the invariants (7.42)-(7.46) depend only on 1 and c.p we may treat the 

strain energy as a function of these two quantities and write Wss(!, c.p) to 
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represent this, where, as in (5.43), the subscript ss stands for simple shear. 

It is then straightforward to show, using (7.42)-(7.46) and (7.49) that 

8Wss 
(J 12 = --a::;- ' 

exactly as in the isotropic and transversely isotropic cases. 

(7.51) 

It is interesting to note that while the orientation of the Eulerian principal 

axes, in the (1, 2)-plane, is given in terms of the angle cjJ through the formula 

2 
tan 2</> = -, 

I 
(7.52) 

the corresponding orientation of the principal axes of 0' is defined by an 

angle, c/J* say, which is given by 

20"12 
tan 2cjJ* = ----

0"11 - 0"22 
(7.53) 

In respect of (7.47)-(7.49) the right-hand side of (7.53) is not equal to that of 

(7.52), and hence c/J* i= c/J. We observe that </>* = <P if and only if the universal 
relation (5.42) holds. 

7.2.3. Extension and inflation of a thick-walled tube 

We now revisit the problem of extension and inflation of a thick-walled 

tube which was discussed in Section 6.1 for an isotropic material. Since, 

locally, the deformation corresponds to a pure homogeneous strain certain 
formulas obtained in Section 6.1 carry over to the anisotropic material con­

sidered here. We suppose that the preferred directions M and M' are locally 

in the (8, Z)-plane and symmetrically distributed with respect to the axial 
direction. The cylindrical polar directions are then the principal directions 
of strain (and stress) and the strain energy may be written in the form 

(7.54) 

where, as in Section 6.1, A= A2 and Az = A3 respectively are the azimuthal 
and axial stretches. The formulas (6.21) and (6.23) also apply here. We repeat 
equation (6.21) here in the form 

http://rcin.org.pl



7.2. TWO PREFERRED DIRECTIONS 97 

(7.55) 

with the arguments of W made explicit. 

It is easy to evaluate the integral in (7.55) for particular choices of energy 

function, as was indicated in the case of isotropy in Section 6.1. It turns 

out that the qualitative nature of the results based on equation (7.55) does 

not depend significantly on the thickness of the wall of the tube wall. Here, 

therefore, it suffices to consider the thin-wall (membrane) approximation of 

(7.55), which has the form 

(7.56) 

where E = (B- A)/A, as in Section 6.1, and A represents any value of the 
azimuthal stretch through the wall. 

We now illustrate the dependence of the pressure-stretch response on the 
degree of anisotropy by using (7.56). For this purpose we consider an energy 

function that is a natural extension to the type of anisotropy considered here 

of the isotropic law (5.21). With just a single term this has the form (see 

[19]) 

W(A, Az, <p) = [ILl (cp)(An- 1- n ln A)+ IL2('P)(A~- 1- n ln Az) 

+IL3(A-nA;-n -1 +nln(AAz))]/n, (7.57) 

where the logarithmic terms are needed to ensure that the stresses vanish in 

the undeformed configuration, IL3 is a material constant and IL 1 ( <p) and IL2 ( <p) 
are material parameters dependent of the angle <p. Note that the single-term 

version of (5.21) is recovered by setting /-Ll = IL2 = IL3 = 2p,/n and n = a1 

since, by incompressibility, the logarithmic terms cancel. 

On substitution of (7.57) into equation (7.56) we obtain, in dimensionless 
form, 

(7.58) 

where ILi =ILl/ IL3· It should be noted that (7.58) is independent of IL2· The 
results for isotropy are recovered by setting J-Li = 1. The material can be 

regarded as reinforced in the circumferential direction (relative to the radial 

direction) if ILi > 1 and weakened if J-Li < 1. Results for ILi = 0.5, 1, 2 are 
plotted in Fig. 7.2 for comparison, with Az set to the value 1.2, as for Fig. 6.1. 
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p• 

0.9 1.1 1.3 

FIGURE 7.2. Plot of the dimensionless pressure P* against the azimuthal stretch 
A for fixed Az and for values J.Li = 2, 1, 0.5 of the anisotropy parameter, corre­
sponding to the upper, middle and lower curves respectively. 

We recall that for isotropy the inequality -\2 Az 2 1 must hold for inflation 
following an initial axial stretch. For the considered anisotropic material this 
must be replaced by an inequality on ,\n whose lower limit is determined by 
setting P = 0 in (7.58). This is reflected in the curves in Fig. 7.2, which cut 
the,\ axis at different points. The upper, middle and lower curves in Fig. 7.2 
correspond to Mi = 2, 1, 0.5 respectively. For illustrative purposes only the 
value n = 10 has been used for the above calculations. 

The membrane counterpart of (7.58) for equation (6.23) has the form 

2 _ 2 2 _ [ 8w -1 8W ] Fj1rA = Nj1rA - P,\ - E 2 
8

,\z (-\, Az, cp)- ,\,\z 
8

,\ (-\, Az, cp) , (7.59) 

where F is the reduced axial load on the ends of the tube. 
The combination of equations (7.56) and (7.59) with an appropriate form 

of strain-energy function can be used to fit data from experiments in which 
the reduced axial load F is held constant . A representative set of data from 
a human iliac artery is shown in Fig. 7.3. The pressure P is plotted against 
the circumferential stretch ,\ for a range of fixed values of the reduced axial 
load F . These curves show the characteristic stiffening of the material as the 
radius increases. 

In Fig. 7.4 the same data as in Fig. 7.3 are plotted with the pressure 
against the axial stretch Az. This reveals a so-called inversion effect at the 
value of Az corresponding to the change from positive to negative gradients of 
the curves. This critical value of Az is determined by solution of the equation 

82 w 82w 8w 
A 

8
,\2 (,\, Az, <p) - 2,\z 

8
,\

8
,\z (-\, Az, <p) +A 

8
,\ (-\, Az, <p) = 0 (7.60) 
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FIGURE 7.3. Typical characteristics of the response of a human iliac artery under 
pressure and axial load. Dependence of the internal pressure P (kPa) on the 
circumferential stretch >. at a series of fixed values of the reduced axial load. 
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FIGURE 7.4. Typical characteristics of the response of a human iliac artery under 
pressure and axial load. Dependence of the internal pressure P (kPa) on the axial 
stretch >-z at a series of fixed values of the reduced axial load. 

99 

in conjunction with (7.59) for constant F, where F* = F j1r A2E. Equation 

(7.60) is obtained from (7.56) and (7.59) by setting d-\zfdP = 0 at con­
stant F. For further details we refer to Ogden and Schulze-Bauer (19]. 
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Although the membrane approximation gives a good qualitative picture 
of the pressure-stretch behaviour it should be used with caution. For exam­

ple, membrane theory is not able to account for the through-thickness stress 

distribution in arterial walls or the important influence of residual stresses 
which are present in arterial wall components. To account for these influ­

ences it is necessary to use a 'thick-wall' model. Both residual stresses and 

stress distributions through the wall thickness will be discussed in Chapter 8 

following a treatment of some particular aspects of the influence of residual 
stress on the formulation of elastic constitutive laws. 
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Chapter 8 

The effect of residual stress on 

elastic response 

Thus far we have assumed that the reference configuration Br is stress free . 

However, there are many situations in which a (global) stress-free reference 

configuration does not exist and there are so-called residual stresses not as­

sociated with a deformation and not given by a constitutive law. They may, 

for example, be induced by some manufacturing process or, in the case of 
biological tissues , be generated by the processes of growth, remodelling or 

adaptation. In this chapter we examine some basic aspects of the effect of 

residual stress on the constitutive law of a nonlinearly elastic solid. 

8.1. Elastic response in the presence of residual stress 

We suppose that the reference configuration Br is not stress free and 
denote by u(r) the residual stress in Br. Since this is the reference configura­

tion there is no distinction between the Cauchy stress in Br and the nominal 
stress S(r) relative to Br. In general, the residual stress is not obtained from 

a strain-energy function, and we may take the strain-energy function W to 

be measured from Br and to vanish in Br. The stress calculated from this 
energy function must reduce to the residual stress when evaluated in Br. We 
shall discuss this further in Section 8.2. 

The residual stress must satisfy the equilibrium equation 

Div s(r) = 0 in Br, (8.1) 

where the Div operator refers to the position vector X in Br. 
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If the boundary 8Br is traction free (unloaded) then, additionally, the 
residual stress must satisfy the boundary conditions 

g(r)T N = 0 on 8Br. 

Now, since 

it follows from (8.1), (8.2) and by use of the divergence theorem that 

{ g(r)dV = 0. 
}Br 

(8.2) 

(8.3) 

(8.4) 

An immediate consequence of (8.4) is that residual stress cannot be uniform. 

In other words, if, in a residually-stressed configuration, the boundary 8Br 

is load free then the residual stress distribution is necessarily inhomogeneous 

and is therefore geometry dependent. A further consequence is that the mate­

rial response of a residually-stressed body relative to the residually-stressed 

configuration, and hence the constitutive law, is geometry dependent and 

inhomogeneous. If, however, 8Br is not traction free and all or part of the 
boundary is fixed spatially then the above conclusion requires modification. 
We do not pursue this here. 

Residual stress places restrictions on the material symmetry in Br and, in 

view of the above remarks, the material symmetry may therefore vary from 
point to point within the considered material body. The constitutive laws 

resulting from these restrictions are, in general, very complicated, and we 

shall not discuss the associated analysis in detail. We remark, however, that, 

in the presence of a residual stress and without any preferred directions, the 
elastic strain energy relative to Br depends on the independent invariants 
of u<r) and the Cauchy-Green deformation tensor C and their combinations. 

Moreover, if there are also preferred directions in Br, such as M, then further 
independent invariants involving u<r), C and M® M are needed. It is left 

as an exercise to determine the number of independent invariants of (a) C 
and u(r) for the cases in which u(r) has one, two or three distinct principal 
values, and (b) C, u(r) and M® M for the cases in which u(r) has one, two 

or three distinct principal values. 

Here we shall adopt a simpler approach and examine what restrictions 

are imposed on the residual stress by specific material symmetries. In this we 
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follow the work of Coleman and Noll (3), Roger [7) and the article by Ogden 
in [10). 

Suppose that Q is a rotation tensor belonging to a symmetry group rela­
tive to Br. Then, by combining the stress-deformation relation (3.30) for the 
nominal stress (relative to Br) with the objectivity and material symmetry 
requirements, we obtain 

h(QF) = h(F)QT, (8.5) 

for all proper orthogonal Q, and 

h(FQ) = QTh(F), (8.6) 

for all members Q of the symmetry group. By setting F = I and S(r) = h(I) 
and using (8.5) and (8.6), we then obtain 

(8.7) 

or, equivalently, 

(8.8) 

for every member Q of the symmetry group. Thus, equation (8. 7) imposes 
restrictions on the form of s{r). We now examine three specific material 
symmetries in order to determine the nature of these restrictions. 

8.1.1. Isotropy 

For isotropic response equation (8.8) must hold for all rotations Q. This 
implies that the residual stress has the form u(r) = a(r)I, where a(r) is a 
scalar. The equilibrium equation (8.1) reduces to Grad a(r) = 0, so that a(r) 

is constant. Application of the boundary condition (8.2) then shows that 
a(r) = 0. 

Thus, residual stress cannot be supported by an isotropic body whatever 
the geometry of the body if the boundary is traction free. This is an impor­
tant result in the context of soft tissues, for some of which residual stress 
contributes to their effective function. It therefore emphasizes the need to 
consider soft tissues as anisotropic materials. 
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8.1.2. Transverse isotropy 

If the material response is transversely isotropic relative to Br then there 
is a preferred direction, defined by a unit vector, denoted k, which will in 

general depend on position in the material. The symmetry group consists of 

all rotations Q that preserve or reverse k. It may be shown, by following 
the procedure outlined for the isotropic case, that u(r) must have two equal 

principal values and is expressible in the form 

(8.9) 

where aY) = O"~r) and O"~r) are the principal values, in general dependent on 

position. 

8.1.3. Orthotropy 

In the case of orthotropic response the material symmetry identifies three 

mutually orthogonal directions, here specified by the unit vectors k 1, k2, k 3. 

The symmetry group consists of rotations through ?T about each ki, i E 

{1, 2, 3} together with reversal of each ki. The resulting form of u(r), obtained 

using (8.8), is 

(8.10) 

the principal values of u(r) being distinct and associated with principal direc­

tions k1, k2, k3. In general, k1, k2, k3 and O"~r), O"~r), O"t) depend on position. 

Of course, u(r) can always be put in the form (8.10) for some orthonor­

mal basis k1, k2, k3 whatever the material symmetry, but here k11 k2, k3 are 
specifically determined by the symmetry. 

An important special case is that in which one of the principal directions, 
k3 say, is independent of position. It follows on substitution of (8.10) into the 
equilibrium equation (8.1) that O"~r) is independent of the Cartesian coordi­

nate associated with k3. If we identify this direction with the axis of a right 
circular cylindrical tube then application of the boundary condition (8.2) on 
the ends of the tube leads to O"~r) = 0. In terms of cylindrical polar coor­

dinates (R, 8, Z) in Br, this means that there is no dependence on Z. If, 
further, there is no dependence on e then the equilibrium equation (8.1) 
reduces to the radial equation 

d (r) (r) (r) 
O"RR O"RR- O"ee 
dR + R = O, (8.11) 
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together with the azimuthal equation 

d (r) 
aRe 2 (r) _ 
dR + RaRe-0, (8.12) 

where a~k, a~k, a~~ are the relevant components of u<r). 
It follows from (8.12) and the zero traction boundary conditions on the 

cylindrical surfaces that a~k = 0 and hence that k1 and k2 coincide with 

the polar coordinate axes and a~1 = a~r), a~~ = a~r). Equation (8.11) then 

remains and is coupled with the boundary conditions 

a~r) = 0 on R =A, B. (8.13) 

Equation (8.11) and the boundary conditions (8.13) are important in connec­

tion with the analysis of the effect of residual stress on the elastic response 

of an artery treated as a circular cylindrical tube subject to extension and 

inflation, which will be discussed in Chapter 9. 

8.2. Change in reference configuration and strain energy 

Let Br be a residually-stressed configuration, F the deformation gradient 

in a deformed configuration Bt measured relative to Br and W(F) the strain 

energy per unit volume in Br. Suppose that there exists a reference configu­
ration, denoted Br, that is stress free and let P be the deformation gradient 
of Br relative to Br, as depicted in Fig. 8.1. Then, the deformation gradient 

in Bt relative to Br, denoted F, is given by 

F=FP. (8.14) 

Let W(F) denote the strain energy in Bt relative to Br per unit volume in 

Br. Then, for an incompressible material, we must have the connection 

W(F) = \tV(F)- W(P) . (8.15) 

The corresponding formula for an unconstrained material is similar but in­
volves factors related to the determinants of the deformation gradients. 

According to the discussion in Section 3.4, if g denotes the symmetry 
group relative to Br and 9 that relative to Br then g = PQP- 1. Thus, in 

the situation where a global stress-free configuration exists the material sym­

metry in a residually-stressed configuration can be determined directly from 
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FIGURE 8.1. Schematic of the stress-free reference configuration Br, the 
residually-stressed reference configuration Br and the deformed configuration Bt 
showing the connecting deformation gradients P, F and F. 

that in the stress-free configuration without the need to consider invariants 

associated with the residual stress. The existence of such a stress-free config­

uration is problematic in general, but in some circumstances a configuration 

that is approximately stress free can be considered useful (and is the basis of 

part of the analysis in Chapter 9). The stresses associated with the different 
configurations are related in the following way. 

For an incompressible material the nominal stresses, denoted S and S, 
relative to Br and Br respectively are given by 

aw _1 S = aF (F)- pF , 
- aw - _-_ 1 S = -- (F) - pF , 

aF 
(8.16) 

while the Cauchy stress u = FS = FS in Bt is independent of the choice of 
reference configuration. Thus, we must have the connections 

S =PS, p =p, (8.17) 

which may also be deduced by differentiation of (8.15) and use of (8.14). 

When evaluated in Br these give 

sCr) = .,.Cr) = ~~(I) _ P(r)I = p§(r), (8.18) 

where p(r) is the value of p in Br, s<r) is the corresponding value of the 

residual stress and I is the identity in Br. 

http://rcin.org.pl



Chapter 9 

Application to arterial tissue 

When a length of artery is excised from a body it contracts. Thus, in vivo 

arteries are stretched (i.e. subject to a large axial deformation) and tethered 
(i.e. held in place) by the surrounding tissue. However, an excised artery, 
although in an unloaded configuration, i.e. it is not subject to any axial load 
or to any tractions on its inner and outer surfaces, is not unstressed. In fact, 
there is a residual stress distribution through the artery wall, and this has a 
very important influence on the mechanical response of the artery under phys­
iological conditions. The existence of the residual stresses is demonstrated by 
the so-called 'opening angle experiment' in which a short length of artery in 
the form of a ring is cut radially. The ring springs open to form an open 
sector, thus indicating the presence of a compressive circumferential stress in 
the inner part of the wall of the ring and a tensile circumferential stress in 
the outer part. The magnitude of the opening angle gives a rough estimate of 
the residual stress (at least the circumferential residual stress, but it should 
be noted that there will in general also be residual axial and radial stresses). 
However, even such an open sector is not stress free since the opening angles 
of circumferentially separated layers are different. 

In most analyses in the literature to date, however, the opened-up sector 
is assumed, for simplicity, to be stress free in order to facilitate calculation 
of the (residual) stress required to re-form the intact ring (the unloaded con­

figuration). It is normally assumed that the ring is a circular annulus, that 
the opened-up sector is also circular and that the deformation required to 
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re-form the ring depends only on the radius. Any assumptions that are less 
simple than these would almost certainly require a purely numerical treat­

ment. Some aspects of the opening angle approach are discussed in Section 

9.2. The opening angle experiment gives only a very rough estimate of the 
residual stress, and a detailed understanding of the mechanical influence of 

residual stress therefore remains to be developed. Influences that need to be 

accounted for are, for example, growth, remodelling and adaptation since 

these are clearly candidates for generating residual stresses. Analysis of such 

effects is at an early stage of development and much more needs to be done 

in this area. 

The residual stresses have an influence on the overall behaviour of an 
artery under extension and internal pressure and, more significantly, on the 

stress and strain distributions through the arterial wall. It has been suggested 

in the literature that in the physiological state a healthy artery has an es­

sentially constant circumferential stress in each layer of its wall (note that 

because of different material properties in different layers of the artery wall 

there is a discontinuity in the circumferential stress across a layer boundary, 

and also, in general, in the axial stress). This can only be the case if there 

is residual stress present. Some consequences of the assumption of uniform 

circumferential stress will be examined in Section 9.3. It is interesting to note 
that the residual stress distributions calculated on the basis of the opening 

angle method and the uniform circumferential stress assumption are very 

similar in character. 
We begin by extending our previous analysis of the extension and inflation 

of a thick-walled circular cylindrical tube to allow for residual stresses. 

9.1. Extension and inflation of a thick-walled tube 

In Section 7.2.3 the problem of extension and inflation of a thick-walled 

tube was analyzed for the case of an orthotropic material. Here we adapt that 

theory so as to incorporate residual stresses. The strain energy may again be 
written in the form (7.54) and is again denoted by W(,\, Az, cp), with ,\and 

Az being the azimuthal and axial stretches. We emphasize, once more, that 

W ( ,\, Az, cp) is not in general symmetric in ,\ and Az and that the angle <p 

may depend on R. 
The principal Cauchy stress differences are given (locally) by 

(9.1) 
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Residual stresses associated with the unloaded (traction-free) configuration 

may be incorporated through W, in which case the residual stress differences 

are given by (9.1) evaluated for .X = Az = 1 and subject to a~r) = 0, as 

discussed for the case of orthotropy in Section 8.1. Alternatively, it may be 

convenient to separate out from the residual stresses the additional stresses 

required to deform the material from the unloaded configuration. It is then 
these additional stresses that are accounted for through W via (9.1), but 

the residual stresses (which, in general, are unknown) then have to be incor­

porated separately. This approach enables the separate contribution of the 

residual stresses to be highlighted, and is therefore adopted here. Accordingly, 

and consistently with the assumed cylindrical orthotropy, we replace (9 .1) by 

(9.2) 

where a~r), a~r) and a~r) = 0 denote the residual principal Cauchy stresses 

in the unloaded configuration, in which the terms in W in (9.2) vanish. Note 
that a~r) and a~r) are independent of the deformation from the unloaded 

configuration (i.e. they depend only on R). 
For the considered cylindrically symmetric deformation the (radial) equi­

librium equation for the deformed configurations is 

da1 1 
- + -(al - a2) = 0, 
dr r 

(9.3) 

m terms of the principal Cauchy stresses. The solution of equation (9.3) 
should satisfy the boundary conditions 

{ 
-P 

al = 0 
on r =a 
on r = b, 

(9.4) 

corresponding to pressure P (?::. 0) on the inside of the tube and zero traction 
on the outside. We do not include the effect of tethering and surrounding 

material here. 
In the unloaded configuration the residual stresses must satisfy the equa-

tion 
da~r) 2_( (r) _ (r)) _ O 
dR + R al a2 - ' (9.5) 

and this is coupled with the boundary conditions 

a~r) = 0 on R = A and R = B. (9.6) 
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By making use of (6.10) and (6.12)- (6.14) together with equatior.s (9.2)­

(9.6), we obtain 

(9.7) 

where, as in (6.21), the independent variable has been changed from r to A 

in the first integral, while in the second integral 

(9.8) 

When the residual stress is unknown the latter term in (9. 7) cannot be de­

termined. When the residual stress is absent the formula (7.55) is recovered. 

Since, from (6.13), Ab depends on Aa, equation (9.7) provides an expres­

sion for P as a function of Aa when Az is fixed provided that the distribution 

of residual stress is known. In order to hold Az fixed an axial load, N say, 

must be applied to the ends of the tube. Recalling that a~r) = 0, this can be 

expressed, after some rearrangements, in the form 

and, as for P, this can only be calculated if the residual stress is known. 

The formulas (9.7) and (9.9) are valid for a tube with any number of 

concentric layers and for a general strain energy with the specified symmetry. 

In general, W will be different for each layer, or, at least, the angle <p will be 

different in each layer. The radial stress is continuous across the boundary 

between two layers but, as noted above, the circumferential stress is in general 

discontinuous at such a boundary. 

At this point we emphasize that the residual stress distribution is un­

known, and, therefore, to proceed further we require some means of deter­

mining or estimating it. For this purpose some additional information is 

needed. One possible approach is to take the opened-up sector of an arterial 

ring after a radial cut to correspond to the unstressed configuration and to 

investigate the consequences of this assumption. For a thin layer this can be 

regarded as a reasonable approximation. We now examine some aspects of 

this 'opening angle experiment'. 
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9.2. The opening angle method 

In Fig. 9.1 an arterial ring in three different configurations is depicted. 

Figure 9.1 (b) shows the cross-section of an intact artery in the unloaded 
configuration, while (c) corresponds to an artery subject to internal pressure 

P. The deformation from (b) to (c) has already been discussed. Here, we focus 

on the deformation from the opened-up configuration, shown in Fig. 9.1(a), to 

the unloaded configuration (b). For reference, we recall that the strain energy 
associated with the deformation from (b) to (c) is given by W(A, Az, <p), where 

Az (constant) is the axial stretch and A = r / R is the circumferential stretch. 

The fibre angle in (b) is <p. 

(a) (b) (c) 

0 
FIGURE 9.1. Arterial ring: (a) opened-up configuration; (b) unloaded intact ring; 
(c) deformed configuration under pressure P. 

We assume that the sector in (a) is circular and has an opening angle 
a, as indicated in the figure. It should be noted, however, that a different 

definition of opening angle is often used in the literature. For convenience we 

introduce the notation 

k = 27T /(27T- a), 1 ::; k < oo, (9.10) 

as a measure of the opening angle. In the deformation from (a) to (b) we 

assume that there is a uniform stretch Azo induced in the axial direction. 
The radial part of the deformation is then given by 

(9.11) 

where R0 is the radial coordinate in (a) and A0 is the inner radius. The 

associated circumferential stretch, denoted A0 , is 

(9.12) 
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and we denote by c.p0 the fibre angle in (a). In the deformation from (a) to 

(b) the fibre angles are related by 

(9.13) 

Next, we assume that the deformation from (a) to (b) is an elastic defor­

mation and described by the strain energy W0 (A0 , Az0 , c.p0 ), where the sub­

script o is attached to W since, in general, the material response relative to 

(a) will be different from that relative to (b) even after accounting for the 

change in fibre angle because, in general, the deformation induces anisotropy 

in the response relative to (b) separate from the anisotropy associated with 

the fibres. 
In most analyses it is assumed that the configuration (a) is stress free. 

We now show that (under the restrictions adopted) this assumption is valid 

since the choice of geometry necessarily leads to (a) being stress free. Suppose 

that (a) is not stress free. The geometry ensures that the principal axes of 

strain are radial and circumferential. Since the deformation is independent 

of the polar coordinate angle, denoted e0 , it follows that the principal axes 

of stress coincide with those of strain and that the only equilibrium equation 

not satisfied trivially in (a) is the radial equation 

d 
{r) 

aol ~( {r) - (r))- 0 
dRo + Ro aol ao2 - ' (9.14) 

where a~;) and a~;) are, respectively, the radial and circumferential (residual) 

principal stresses in (a). Since the load must vanish pointwise on the (flat) 

ends of the opened-up ring we must have a~;) = 0 on those ends (on which 

eo is constant). It follows from (9.14) that d(R0a~;))/dRo = 0 on the ends, 

and hence for all e0 • Integration of this and application of the zero traction 

condition a~;) = 0 on Ro = A0 shows that a~;) = 0 and hence, by (9.14), 
{r)- 0 

ao2 = · 
This result applies for one layer or for two or more concentric layers, and 

hence, in particular, for the case of two layers, the interface must form a per­

fect geometrical match in the configuration (a). In practice this is unlikely to 

happen, and experi1nents have shown that this not the case. The length of 

the outer boundary of the middle layer of an arterial wall (the media) is not 

in general the same as the length of the inner boundary of the outer layer 

(the adventitia) in the opened-up configuration. Moreover, the curvatures of 
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these boundaries are not in general the same. For the media and adventi­
tia to fit together in the opened-up configuration there will necessarily be 
residual stresses in that configuration. In view of the above analysis such a 
configuration cannot be described by the geometry discussed above and the 
deformation from (a) to (b) must depend on 8 0 , and possibly also on the 
axial coordinate Z. The analysis associated with this more general geometry 
is, of course, more complicated than described above and will undoubtedly 
require numerical treatment. In particular, the plane strain assumption is un­
likely to be a good approximation to the real situation for a short length of 
artery. Specifically, the assumption that Azo is uniform is untenable without 
the application of an axial load, which we are omitting from consideration 
here. A further comment on this is made below. The analysis here is based 
on (9.11) with Azo constant. 

The residual stress distribution in (b) is governed by equation (9.5), 

which, on integration, gives 

(r) _ {R( (r) (r)) dR 
al - J A a2 - al R' (9.15) 

but now the integrand in (9.15) is given by 

(9.16) 

Thus, in principle, the residual stress can be calculated. However, this re­
quires some additional information. 

First, we note that if B 0 denotes the outer radius in (a) then the geomet­
rical quantities in (a) and (b) are related by 

(9.17) 

Secondly, by applying the boundary condition a~r) = 0 on R = B to (9.15) 

we obtain 

(9.18) 

or, equivalently, by changing the integration variable from R to A0 using 
(9.11) and (9.12), 

r>..oa Wo>..o (Ao, Azo, <fJo) dA = 0 
}>..ob A~Azo- k 

0 
' 

where Aoa and Aob are the values of A0 on the boundaries R0 

Ro = B0 respectively. 

(9.19) 

A0 and 
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Since our objective is to calculate the residual stress distribution, we sup­

pose that k, A0 , B 0 and Azo are known. Equations (9.17) and (9.19) are then 

two equations from which to determine A and B, the latter equation depend­

ing on the material properties through W and <p0 • Note that A, B, A 0 , B 0 

occur in (9.19) only through the limits. Once A and B are determined the 

residual stresses can be calculated from (9.15) and (9.16). In this way the 

residual stresses in the unloaded configuration can be determined as functions 

of the opening angle. 

In the above considerations we have not made use of the equation 

(r) (r) - \ wh ( \ \ ) 
a3 - al - Azo OAzo Ao, Azo, 'Po . (9.20) 

This is important to note since the zero axial load condition a~r) = 0 in (b) is 

not in general compatible with the assumed geometrical transformation from 

(a) to (b). Thus, (9.20) must be regarded as giving the stress distribution a~r) 
needed to maintain the cylindrical geometry in (b), in particular uniform Azo· 

As is done in some treatments, this problem can be circumvented by setting 

to zero the total axial load 

2'11" LB a~r) RdR (9.21) 

so as to determine the value of Azo· Alternatively, Azo can be prescribed and 

a~r) calculated from (9.20) once air) has been determined by the procedure 

outlined above. 

Some results based on the latter approach are shown in Fig. 9.2 with 

Azo set to 1. In Fig. 9.2(a) dimensionless radial and circumferential residual 

(a) (b) 
0.01 

0.02 

-0.02 

-0.01 

FIGURE 9.2. (a) Plot, in dimensionless form, of the residual radial stress (dashed 
curve) and residual circumferential stress (continuous curve); k = 1.5: (b) com­
parison of the residual circumferential stresses for k = 1.5, 1.6, 1.7. 
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stresses are plotted against the dimensionless radius R0 / A0 with B0 / A0 = 

1.2. An opening angle of 27r /3, corresponding to k = 1.5, has been selected. 
The calculations are based on use of the energy function (7.57) and the non­

dimensionalization is through division by the constant IJ.£31· Figure 9.2(b) 
shows a comparison of the circumferential stresses for three different opening 
angles, corresponding to k = 1.5, 1.6, 1. 7. Two features should be noted. First, 
the circumferential stress is compressive on the inner boundary and tensile on 

the outer boundary; second, the maximum magnitudes of the stresses increase 
with the value of k. The point at which the stress vanishes is slightly different 

for the three curves although this is not apparent on the scale used here. The 
radial stress likewise increases with k but remains very small compared with 
the circumferential stress and hence the corresponding comparison is not 
shown. 

If it is not assumed that Azo is uniform then the problem becomes more 
difficult because the deformation from (a) to (b) then necessarily involves 
shearing through the wall thickness. 

9.3. Uniform circumferential stress 

For simplicity of illustration we restrict attention here to a tube with 
a single layer, but the analysis (although somewhat more complicated) can 
easily be carried over to a tube with two or more layers. If the circumferential 
stress a 2 = a2o is assumed to be constant then it follows from the equilibrium 
equation (9.3) and the boundary conditions (9.4) that 

Poao 
a2o = b ' o- ao 

where the zero subscript indicates evaluation at the normal 
pressure (denoted Po) and 

r2- a2 + A-l(R2- A2) 0 - 0 zO • 

(9.22) 

physiological 

(9.23) 

Note that the zero subscript o should be distinguished from the 'oh' subscript 

o used earlier. 
Use of equations (8.13), (9.2)2, (9.3) and (9.5) then enables the residual 

radial stress to be calculated explicitly as 

(r) _ Poaobo 1 l ((ro- eo)(ao +eo)) _ {RA W (A A )dR 
al - bo- ao 2eo og (ro + eo)(ao- eo) }A 0 A 0' zo,<p R' 

(9.24) 
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where 
(9.25) 

The corresponding residual circumferential stress is then obtained using (9.5). 
This leads to 

(r) _ (r) ~ aoboPo 
a2 - a 1 - AoW>.(Ao, Azo, <p) + (b ) 

o- ao ro 
(9.26) 

Once the residual stresses have been calculated for any given form of W, 
the pressure P in a general (cylindrically symmetric) configuration can be 
calculated from (9.7) and the corresponding stresses from (9.2) and (9.3). 
The axial load N can be obtained from (9.9). 

By applying the boundary condition (9.6) at R = B to (9.24) we obtain 

Poaobo 1 l ((bo- eo)(ao +eo)) _ {
8 

A W (A A )dR (9.27) 
bo - ao 2eo og ( bo + eo) ( ao - eo) - 1 A 0 >. 0 ' zO' <p R . 

Since, from (9.23), b5 = a5 + A;l(B2
- A2

), equation (9.27) provides a con­
nection between the pressure Po and the internal radius ao (equivalently, 
Aoa = ao/ A) for any given value of the axial stretch Azo and aspect ratio 
B/A. 

A representative plot of the residual stresses is shown in Fig. 9.3 in di­
mensionless form with the dimensionless stresses defined by 

air)• =air) l/ /-t3, a~r)• = a~r) l/ Jl-3, (9.28) 

0.2 

-0.2 

FIGURE 9.3. Plot of the dimensionless residual stress distribution for a typical 
member ofthe class of anisotropic strain-energy functions (7.57) based on equa­
tions (9.24) (radial stress - dashed curve) and (9.26) (circumferential stress -
continuous curve). 
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9.3. UNIFORM CIRCUMFERENTIAL STRESS 

where l > 0 is defined by 

l = log ( ( bo - CO) ( ao + CO) ) 
( bo + CO) ( ao - CO) 

117 

(9.29) 

and J-L3 is the material constant appearing in the strain-energy function (7.57), 

which has been used in this calculation with n = 12 and 1-li = J-LI/ J-L3 = 2. 
The axial stretch Azo has been set to 1.2 and the aspect ratio to B /A = 1.2. 
The general qualitative character of the results in Fig. 9.3 is not significantly 
affected by using different values of the material parameters over quite a large 
range of values. 

We observe that the residual radial stress is quite small and is negative 
except at the boundaries (where it vanishes). The circumferential stress is 
compressive at the inner boundary and tensile at the outer boundary, as 
anticipated on the basis of the opening-angle experiment. It is also much 
larger in magnitude than the radial stress. 
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Chapter 10 

Boundary-value problems: some 

exact solutions 

As mentioned earlier, there are relatively few exact solutions known for 

boundary-value problems in nonlinear elasticity when the constraint of in­

compressibility is not imposed. Here we provide a method of generating forms 

of strain-energy function for which such solutions can be found. It is based 

on the idea of considering the possibility that isochoric deformations can 

be maintained in a compressible material. For an incompressible material, 

the incompressibility constraint is compensated for by including an addi­
tional variable - the Lagrange multiplier p - and the governing equations 

and boundary conditions determine this function. By contrast, if the defor­

mation is assumed to be isochoric in a compressible material there is no such 

compensation and the equations, in general, over-determine the deformation 
in such a way that they are incompatible. However, in some problems the 
equations can be made compatible if suitable restrictions are placed on the 

form of strain-energy function. In this chapter we illustrate this procedure 

for a representative problem, namely azimuthal shear of a circular cylindrical 

tube. 

10.1. The azimuthal shear problem 

The discussion in this chapter follows closely that in Jiang and Ogden [11), 

to which we refer for more details. We consider a compressible nonlinearly 

elastic thick-walled circular cylindrical tube whose cross-section in its natural 
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120 10. BOUNDARY-VALUE PROBLEMS: SOME EXACT SOLUTIONS 

(unstressed) configuration is defined by 

0 < A ~ R ~ B, 0 ~ 8 ~ 21r, (10.1) 

where (R, 8) are polar coordinates. Attention is restricted to plane deforma­

tions in which there is no extension along the axis of the cylinder and the 
deformation of a cross-section is independent of the axial coordinate, Z say. 

To maintain plane-strain conditions appropriate axial loading is required on 

the ends of the tube, but this will not be needed explicitly for our purposes 

here. 

An azimuthal shear deformation is defined by 

r = r(R), () = 8+g(R), z = Z, (10.2) 

where (r, (), z) are cylindrical polar coordinates associated with the deformed 

configuration. 

We take the boundary conditions as 

a= r(A) =A, b = r(B) = B, g(A) = 0, g(B) = 'ljJ (10.3) 

in the cross-section of the tube, 'l/J being the angle through which the bound­

ary R = B is rotated. 

Referred to cylindrical polar coordinates the deformation gradient tensor 

F has components 

[ 

r' 0 0 l 
F = rg' rl R 0 , 

0 0 1 

(10.4) 

where the prime indicates differentiation with respect to R, and its inverse is 

[ 

1lr' 0 0 l 
F-1 = -Rg' lr' Rlr 0 . 

0 0 1 

(10.5) 

The principal invariants h, /2, /3 of the deformation tensor B = FFT are 

given by 

h = r'2 + r2 g'2 + r2 I R2 + 1' 

/2 = r2g'2 + r2 I R2 + r'2 + r2r'2 I R2, 

/3 = r 2r'
2 IR2

, (10.6) 
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10.1. THE AZIMUTHAL SHEAR PROBLEM 121 

and it follows immediately that 

(10.7) 

Note that ( 10. 7) holds in general for plane strain deformations, not only for 
the deformation (10.2). 

With the restriction to plane strain only two of the invariants 11, 12,13 are 
independent, and the strain energy W(11 , 12 , h) per unit reference volume of 
a compressible isotropic elastic material may then be regarded as a function 
of two invariants. Accordingly, we define W(ft, 13) by 

(10.8) 

when (10. 7) holds identically. Note that W here is different from that used 
earlier. 

The in-plane restriction of the nominal stress tensor S is then calculated 

as 

(10.9) 

where W1 = 8W /8ft, W3 = 8W /813 and A is the in-plane restriction ofF, 
with components given by the leading 2 x 2 matrix in (10.4) and similarly 
for F-1. The corresponding (in-plane) Cauchy stress tensor er= T3 1

/
2 AS is 

(10.10) 

where I is the (in-plane) identity tensor and B is now taken as AAT. 
For the strain energy and the stress to vanish in the natural configuration 

and for compatibility with the classical (linear) theory of isotropic elasticity 
we require 

W(3, 1) = o, l¥1 (3, 1) + w3(3, 1) = o, 
A A 1 

W1(3, 1) = -W3(3, 1) = "2/"' (10.11) 

and 
A A A 1 1 

W11 (3, 1) + 2W13(3, 1) + W33(3, 1) = 4~ + 3/-L' (10.12) 

where J.-L is the shear modulus and ~the bulk modulus in the natural config­
uration. 
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After substitution of the components of S from (10.9) with (10.4) and 

(10.5) into the (in-plane) equilibrium equations Div S = 0 two equations are 

obtained. The radial equation may be written 

(10.13) 

while, after integration, the azimuthal equation yields 

(10.14) 

where the constant T is the value of the azimuthal shear stress are (or SRe) 
at the outer boundary r = b = B. 

10.2. Pure azimuthal shear 

Pure azimuthal shear is the isochoric specialization of the deformation 

(10.2) corresponding to r = R. With this specialization, equations (10.6) 

reduce to 

(10.15) 

and, locally, the deformation is a simple shear with amount of shear rg', the 

azimuthal direction being the direction of shear. 

When the restrictions (10.15) apply equations (10.13) and (10.14) reduce 

to 
d A A ,2 A 

dr (W1 + W3) - rg W1 = 0, 

2r3g'Wl = b2
T. 

(10.16) 

(10.17) 

Let 1 = rg' denote the amount of shear. Then 1 > 0 is associated with 
T > 0 (shearing in the positive () direction with g(r) > 0 for r > a) and 

1 < 0 corresponds to T < 0. Thus, we now have It = 3 + 1 2, as in the case 
of simple shear discussed in Section 5.6.1. By defining 

(10.18) 

we can rewrite (10.17) as 

(10.19) 

with w'(l) > 0(< 0) for 1 > 0(< 0). 
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10.2. PURE AZIMUTHAL SHEAR 123 

Increasing shear 1 corresponds to increasing shearing stress a rO provided 

w"(!) > 0, (10.20) 

and we therefore impose (10.20) for an,. The monotonicity of w'(!) implied 

by (10.20) ensures that, in principle, (10.19) can be inverted to give 1 ( = rg') 
uniquely as a function of r and hence g is determined by integration. Note 

that from (10.19) and (10.20) it follows that rg" + g' < 0 (> 0) when 1 > 
0 ( < 0) . 

..,. From (10.18)-(10.20) it is easy to show that the above requirements on 

w' ( 1) and w" ( 1) are equivalent to 

(10.21) 

With these conditions holding we may replace r by h as the independent 

variable in (10.16) by using (10.15) and (10.17). First, we rewrite (10.16) as 

d A A A 

r dr(W1 + W3) = (h- 3)Wl 

and then differentiate ( 10.1 7) with respect to r and use ( 10.1 7) again to 

obtain 
d ~A ~A 

r dr (V h- 3 Wl) = -2y h- 3 W1. 

On elimination of differentiation with respect to r in favour of that with 
respect to h the combination of the latter two equations leads to the key 
condition 

(10.22) 

on the strain-energy function. 

It is emphasized that equations (10.21) and (10.22) together are sufficient 

conditions for the strain-energy function W to admit a pure azimuthal shear 
deformation for all T (provided w' ( 1) --+ oo as 1 --+ oo). On the other hand, 
whilst (10.22) is also a necessary condition the inequality (10.21)2 is not in 

general necessary since the latter can be relaxed, if need be, to allow for 
shear softening effects in which the shear stress exhibits a maximum as a 

function of 1 (with consequent loss of ellipticity). In these circumstances 

non-uniqueness of solution arises. Existence and uniqueness of solution is 

guaranteed if (10.20) holds. To ensure existence of solution for all T when the 

strain-energy satisfies (10.22) and when (10.20) does not hold, the (weaker) 

http://rcin.org.pl
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requirement is that w' ( 1) be continuous and unbounded. If the latter has 
a finite global maximum then there will be values ofT for which solutions 

do not exist, and this point is illustrated by one of the exainples considered 
below. 

We may integrate (10.22) with respect to It to obtain 

(10.23) 

where the conditions (10.11) have been used to eliminate the constant of 

integration. Thus, (10.23) is equivalent to but, since it only involves first 
derivatives, slightly simpler than (10.22). 

In the following section we apply (10.23) to a particular class of strain­
energy functions. Together with the inequalities (10.21) equation (10.23) then 

determines a subclass of materials for which the pure azimuthal shear defor­

mation is possible. We then use (10.17) to determine g(r) subject to the 

boundary conditions (10.3) for several members of the subclass. 

10.3. Solutions for a class of strain-energy functions 

We now consider the class of strain-energy function for which W is given 

in the form 
(10.24) 

where f(lt) is to be determined using (10.23) while the functions h1, h2 are 
to be consistent with (10.11) and (10.12). The nwtivation for considering 

(10.24) is that for strain-energy functions considered previously for which 

pure azimuthal shear solutions have been found W(ft, 12, 13) is linear in It 
and 12 and hence, by (10.7), W(ft, 13) is linear in It, while h1(13), h2(13) 
have very specific forms. Thus, (10 .24) provides a more general class of strain­
energy functions for which pure azimuthal shear might be possible. 

Without loss of generality we take h 1 ( 1) = 1, and we define the con­
stant k by 

2k = 1- 4h;(l). (10.25) 

Then, on use of (10.24), equations (10.11) and (10.12) give 

/(3) + h2(1) = 0, !'(3) = ~Jl, f(3)h; (1) + h;(1) = -~JL, (10.26) 

/"(3) + J1h;(1) + j(3)h~(1) + h~(l) = ~K + ~Jl, (10.27) 
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while (10.23) yields 

2(h - 1)/'(h)- 2kf(h) + 4h~(1)- h2(1) = 0. (10.28) 

Provided k f= 0 we may, without loss of generality, set 

(10.29) 

since the constant particular solution of (10.28) for f(h) times h1 (!3) may 

be absorbed into h2(J3). 

It then follows that, in order to satisfy (10.28) and (10.26)1, f(h) must 

have the form 

f(h) = 2~k (h - 1)\ (10.30) 

from which the values of /(3), !"(3) appearing in (10.26) and (10.27) may 

be read off. From (10.26), (10.29) and (10.27) we then have 

h2(1) = -11/k, h~(l) = -M/4k, 

11 /-1 "( ) 1 1 1 
h2 ( 1) + k hl 1 = 4 K: + 3/-1 + 4 J.lk' 

in terms of the parameter k. 

Equation (10.19) may now be written as 

It is easy to show that (10.20) holds for all r if and only if 

1 
k > -. - 2 

(10.31) 

(10.32) 

(10.33) 

(10.34) 

Here we restrict attention to values of k satisfying (10.34) so that r is deter­

mined uniquely as a function of r. Note that in the limiting case k = 1/2, 

w' ( r) --+ J.l../2 as r --+ oo, which puts an upper bound on admissible values 

ofT in this case. In what follows we obtain solutions for g(r) from (10.33) 

with r = rg'(r) for specific values of k. 

Case (i): k = 1/2. With h~(1) = 0 this case yields 

~ In 1/2 W(h, !3) = v2M(h- 1) h1(!3) + h2(J3), (10.35) 

where 

(10.36) 
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Equation (10.33) simplifies to 

(10.37) 

where the notation 

(10.38) 

is introduced as a dimensionless measure of the shearing stress on r =b. 
It is easily shown that the solution of (10.37) for g(r) satisfying the bound­

ary conditions (10.3) is 

g(r} = ~ [sin-1 ('Is)- sin-
1 c:n] (10.39) 

and hence 

(10.40) 

where rJ = b2 / a 2
. We note that (10.40) has limited validity in that it yields 

a real value of 'ljJ only if Is I ::; 'T}-l, and hence an upper bound is placed on 
the permissible values of the shearing stress, i.e. 

(10.41) 

In this sense the applicability of the strain-energy function (10.35) is limited. 

Case ( ii): k = 1. In this case we have 

(10.42) 

with 

h~ ( 1) = - ~, h2 ( 1) = - J-l, h~ ( 1) = - ~ J-l, (10.43) 

"( ) "( ) 1 7J-£ J-lhl 1 + h2 1 = 4 K + 12 . (10.44) 

Equation (10.33) yields 

J-l! = b2
T jr2 (10.45) 

and the solution for g(r) satisfying (10.3) is then simply 

s ( b
2

) g(r) = v'2 'TJ- r2 , (10.46) 
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so that 
s 

'lj; = g(b) = /2(rJ- 1), (10.47) 

s again being defined by (10.38). 
Equation (10.47) is precisely the result obtained in the incompressible 

theory for the neo-Hookean (or Mooney-Rivlin) form of strain-energy func­
tion, 'lj; being linear in s. Equation (10.42) is a compressible version of the 
neo-Hookean strain-energy for plane deformations. The solution (10.46) is 
valid for any functions h1 (!3), h2(h) satisfying h1 (1) = 1 and the conditions 
(10.43) and (10.44). 

Case (iii): k = 3/2. Here we have 

(10.48) 

with (10.31) and (10.32) appropriately specialized, and (10.33) becomes 

(10.49) 

Equation (10.49) can be solved to give 

1 1 
g(r) = v'2m(a)- v'2m(r) + /2 tan-1 m(r)- /2 tan- 1 m(a), (10.50) 

1.5 

s 

0.5 

FIGURE 10.1. Plot of the dimensionless shear stress s against ,P../2 for 17 = v'2 
and the following values of k: (a) 1/2, (b) 3/4, (c) 1, (d) 3/2. 
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where m( r) is defined as 

1 [( 4b482) 1/2 ] 
1
/
2 

m(r) = J2 1 + ~ - 1 ( 10.51) 

For illustration, numerical results in which s is plotted against 7f;J2 are 
shown in Fig. 10.1 for the above three cases for a representative value of 
'T} = J2 together with the corresponding result for k = 3/4. 

10.4. Strain-energy functions in terms of i 1 , i 2 , i 3 

We now consider an alternative representation for the strain-energy func­
tion Win terms of the principal invariants i1, i2, i3 of the stretch tensor V. 

In general, h, I2, I3 are given in terms of i1, i2, i3 by 

I ·2 2' 1 = ~1 - ~2, I ·2 2 ' . 2 = ~2- ~1 ~3, I ·2 
3 = ~3, (10.52) 

but for the plane deformation considered here these may be reduced using 
(10.7) and, analogously to (10.7), we have 

(10.53) 

Thus, we may write 
(10.54) 

where W satisfies 

W(3, 1) = o, w1(3, 1) = -w3(3, 1) = 211-, (10.55) 

- - - 4 
W11 (3, 1) + 2WI3(3, 1) + Waa(3, 1) = K + 311-· ( 10.56) 

In terms of W it is easy to show by using (10.52) and (10.53) that the 

condition (10.23) becomes 

( 10.57) 

This prompts consideration of the class of strain-energy functions defined 

by 
(10.58) 

in parallel with (10.24). 
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Following the procedure used in Section 10.3 we obtain 

(10.59) 

with 
- 1 -
h~(1) = 2(1- k), (10.60) 

(10.61) 

4J.L - If ) - If 4 - k hi (1 + h2(1) = K: + 3/-L' ( 10.62) 

where (10.60)2 defines the parameter k. 
The equilibrium equation (10.19) becomes 

(10.63) 

and (10.20) is satisfied for all 1 if and only if 

k ~ 1. (10.64) 

If k = 2 equation ( 10.63) yields, apart from differences in notation, the 

same solution as in Case (ii) in Section 10.3, and (10.24) and (10.58) represent 
the same ( con1pressible neo-Hookean) form of strain-energy function. 

If k = 1 then (10.58) becomes 

(10.65) 

with (10.60)-(10.62) appropriately specialized, and (10.63) reduces to 

(10.66) 

where s is again defined by (10.38). 

Equation (10.66) is solved for g(r) using 1 = rg'(r) to give 

g(r) = sin- 1 
( ~) - sin- 1 

( ~;2 ), ( 10.67) 

and the twist-shearing stress relationship is therefore 

,./, - (b) . -1 ( 7]8 ) . -1 ( s ) '+" = g = Sln J2 - Sln .j2 . ( 10.68) 
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Comparison of (10.66) with (10.37) shows that (10.67) may be obtained from 

(10.39) by making the transformations g---+ glvf2, s---+ slvf2 in (10.39). 

Equation (10.67) should be compared with (10.39) arising in Case (i) in 

Section 10.3. As with (10.39) the solution (10.67) is restricted to a finite 

range of values of s, in this case lsl :S yf27]-1. 

Solutions for certain other values of k may also be obtained explicitly. It 
suffices here to mention briefly one such solution. 

For k = 3 we have 
- 1 3 
f(ii) = 6/L(il - 1) ' (10.69) 

and (10.19) becomes 

(10.70) 

Again the transformations g ---+ g I V2, s ---+ sI V2 enable the solution of 

(10.70) to be read off from (10.50) with (10.51). More generally, the trans­

formations k---+ kl2,{---+ riV2,r---+ riV2 take (10.33) into (10.63), thus 

establishing a direct relationship between the solutions of (10.33) and (10.63) 

for all kin the considered range of values. Curves of s against 'l/JV2 for these 

strain energy functions are very similar to those shown in Fig. 10.1 but coin­

cide only fork= 2, which corresponds to k = 1. Further details are given by 

Jiang and Ogden [11). 

10.5. Use of the stretches 

In Sections 10.3 and 10.4 we have obtained solutions by considering two 

distinct pairs of deformation invariants, namely (in plane strain) (h, h) and 

(i1, i3). Further solutions may be obtained by using different pairs of invari­

ants or the stretches, )q, A2 say, with A3 = 1. In the latter case we note that 

(10.23), or equivalently (10.57), may be expressed in terms of the stretches 

to give 

(10. 71) 

evaluated for AI A2 = 1. 

We illustrate this by considering a strain energy of the form 

(10. 72) 

where 

(10. 73) 
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as discussed by Kirkinis and Ogden [13). It follows that for J = 1 with AJ = 1 

we have J(-o:) = J(o:). By taking h1(1) = h2 (1) it is then easy to show that 

( 10.71) is satisfied for arbitrary functions f and arbitrary values of a provided 

the mild restrictions 

h~ (1) + h~(1) = 1, 2h~(1) = h3(1) (10.74) 

are imposed. 

Then, 

w(r) = 2f(I) + h3(1), 2f(3) + h3(1) = 0, (10.75) 

where I = J(o:) = J(-o:) = Ao: + Ao: + 1, ')' = A- A- 1 and we have set 

A= A1, A2 =A - 1. Equation (10.19) now gives 

(10.76) 

For particular choices of a and the function f this equation can be solved in 

a similar way to Sections 10.3 and 10.4. For further details see [13]. 

10.6. The incompressible problem 

Results for incompressible materials 1nay be deduced from those for pure 

azimuthal shear in a compressible material by considering the incompressible 

material to have strain-energy function (in plane strain), Wine say, defined 

by 

Wine(h) = W(h, 1), 

where W(h, !3) is defined by (10.8). 

(10.77) 

Correspondingly, in terms of the amount of shear ')', we define Wine ( ')') by 

A 2 
Wine(')')= Wine(3 + ')' ). (10.78) 

Then, equation (10.19), which serves to determine')', is unchanged but now 

written 

(10.79) 

For an incompressible material the Cauchy stress tensor u in (10.10) is 

replaced by the plane-strain specialization of (5.7), namely 

( 10.80) 
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where pis the arbitrary hydrostatic pressure associated with the incompress­
ibility constraint. The radial equation of equilibrium may be written 

darr 1 rdr = 0'()()- O'rr =')''Winch'). (10.81) 

The role of this equation in the incompressible theory is different from that of 
its counterpart (10.16) in the compressible theory. For any given incmnpress­

ible isotropic strain-energy function equation (10.81) serves to determine arr 

(or, equivalently, p) once 1 is found using (10.79). 

Equations (10.79) and (10.81) involve no restriction on the strain-energy 

function other than that imposed by the incompressibility constraint . But, 
by adapting the strain-energy functions discussed in Sections 10.3 and 10.4 

to the incompressible situation the . solutions obtained there are seen to be 

equally valid for incompressible materials. For example, by taking 

Winc(h) = J(h)- /(3) (10.82) 

with f(h) given by (10.30) we have 

'Wine = 2~k [ (2 + !2)k - 2k] . ( 10.83) 

Similarly, in view of the connection h =if- 2il obtained from (10.52) and 
(10.53) with i3 = 1, we may consider 

Winc(h) = ](il) - ](3) (10.84) 

with (10.59) and obtain 

- 41-l [( 2)k/2 k] 'Wine - --::-::- 4 + ')' - 2 . 
2kk 

(10.85) 

The solutions given in Sections 10.3 and 10.4 for specific values of k and 
k can now be applied in the incompressible situation and equation (10.81) 

may be used to calculate the complete stress distribution. 
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