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Preface 

This work is a fruit of the lectures given at the Institute of Fundamental 
Technological Research of the Polish Academy of Sciences (IFTR PAS) in 
November 2001. Its purpose is to present an introduction to inverse and 
identification problems in solid mechanics which are ones of the fast growing 
areas in this engineering field with applications in both other sciences and 
in industry. It presents a short overview of the field and methods, without 
pretending to cover the field. The contents is based on classical and recent 
results from the literature and some results of the author and of his coworker. 

A certain number of aspects are discussed here: 

• reciprocity gap, 

• gradient computations: direct differentiation and the adjoint state 
method, 

• crack identification, 

• identification of material parameters, 

• errors functionals: least squares, error on the constitutive law, etc. 

Aspects like ill-posedness and regularization, minimization algorithms, nu­
merical implementation details, etc., have been left aside. I hope that indi­
cating some references for further reading will help the reader and will prove 
enough precise for an introduction to this subject. 

This work is first of all, an expression of my gratitude to Huv DouNG 
Bui who was my PhD adviser. He patiently guided my steps through this 

field and who continuously shared his enthusiasm for these topics. I would 
also like to especially thank 1\IIARC BONNET, HUBERT MAIGRE, NICOLAS 
TARDIEU, ERIC CHARKALUK, LAETITIA VERGER and BRICE LECAMPION 
with whom I closely worked during the last years on different topics which 
are partially present in the book and who influenced my understanding of 
the field and underlying applications. A last thought goes to my colleagues 
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8 PREFACE 

and friends at the Laboratoire de Mecanique des Solides and elsewhere who 
always encouraged me during the work of the last years. 

This work would have not been possible without the kind invitation of 
Prof. ZENON lVIR6z to lecture in Warsaw or without the patience and kind­

ness of the colleagues and students at the IFTR who assisted at the lectures 
and made my stay so enjoyable. 

A special acknowledgment con1es for the kind encouragen1ents of 
Prof. J. JOACHIM TELEGA to bring this manuscript to its final form and 
to TOMASZ G. ZIELINSKI who helped with the Ib-'IF)C editing. 
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Chapter 1 

A historical introduction 

1.1. What are inverse problems? 

One of the major difficulties in discussing inverse problems is that there is 
no their precise definition. As Charles W. Groetsch has very nicely expressed 
it (1), they are defined by "community standards". That means actually that 
people have for a long time accepted a familiar formulation for the problem, 
which they call the direct problem. Every less familiar variant is an inverse 
problem. The familiarity itself is determined, for example, by the facility of 
solving the problem, historical priority, uniqueness properties of the solution, 
etc. 

On of the first arithmetical task children learn in school is the multipli­
cation: given two numbers one has to compute their product: 

(a, b) ---+ a x b = c. 

This is the direct problem. The associated inverse problem is the factoriza­
tioQ.: given a number, find all pairs such that their product is the initial 
number: 

c---+ (a, b), such that c =a x b. 

With this simple example we can already remark some characteristics to 
be retrieved in most direct and inverse problems. The direct problem has 
a unique solution, whereas the inverse problem might have a whole set of 
solUJ.tions. 

http://rcin.org.pl



10 1. A HISTORICAL INTRODUCTION 

FIGURE 1.1. Extracting points from a given line (left) and finding a line passing 
through a set of points (right). 

Another elementary pair of direct and inverse problems is that of extract­
ing points of a line and respectively that of linear interpolation, where a line 
has to be drawn through a set of points (see Fig. 1.1). The direct problem is 
then expressed as: 

(a,b) ~ x 

Find x such that a · x = b, 
(1.1) 

and the inverse problem becomes: 

{x1, ... , Xn} ~ (a, b) 

Find (a, b) such that a · Xi = b Vi = 1, ... , n. 
(1.2) 

In this case we remark that the inverse problem does not possess a solution. 
As such, one will define a quasi-solution or a solution in the least square 
sense: 

Find (a, b) minimum of L(a ·Xi- b) 2
• (1.3) 

This quasi-solution gives at least an approximate answer, in the sense of the 
least squares norm, of the inverse problem. 

If the direct problem is thought in terms of a model or a process with an 
input and and output (see Fig. 1.2), then one could imagine two correspond­
ing inverse problems (see Fig. 1.3) as the identification of the input or as the 
identification of the ~odel, generally understood as the identification of some 
characteristics or parameters of the model such that the generated output 
corresponds to the given input. In terms of classical problems of continuum 
mechanics the direct problem could be formulated as follows: 

http://rcin.org.pl



1.2. SHADOWS FROM THE ANTIQUITY 11 

input process output 

cause model effect 

FIGURE 1.2. A scheme of generic direct problem. 

input process output input process output 

X___.. D-Y ? ___.. D-· 
cause model effect cause model effect 

FIGURE 1.3. Two schemes of generic inverse problems: identification of in­
put (right) and model identification (left). 

• Compute the displacements of a structure provided that a system of 
forces is given. 

Some corresponding inverse problems are: 

• Determine the constitutive law of the structure provided that the dis­

placements and the system of forces are given. 

• Determine the initial ( undeformed geometry) from the displacements 

and forces. 

• Determine an unknown boundary condition. 

Some of these problems will be discussed in the next Chapter. 
Before proceeding to these topics let us recall briefly in a historical order 

some well-known problems, which can be considered as inverse problems. 

1.2. Shadows from the antiquity 

Plato's allegory of the cave. One of the most famous allegories of 
antiquity is Plato's allegory of the cave. It is the account of a group of pris-

http://rcin.org.pl



12 1. A HISTORICAL INTRODUCTION 

oners living in an underground den. The prisoners are chained around their 
necks and legs, so they are unable to move and they can only see what is in 
front of them. Behind them there is a fire and they see their own shadows 
and the shadows of the other prisoners that the fire reflects onto the wall. 
As such the only perception of the world the prisoners have comes through 
the projection by the light of the fire. Obliviously, they will have a very hard 
task to imagine the world from this very limited information. 

Now, the direct problem consists in the determination of shadow of an 
object from its outer shape and is straightforward. The associated inverse 
problem is to determine the shape of an object given its shadow and is a 
practically impossible task to perform since the solution is not unique (see 
for instance Fig.l.4). For example, if the shadow is a circle it can be the 
shadow of a sphere, an ellipsoid, or of a cylinder. However, if one begins to 
know all shadows, coming from all directions, we can have a precise answer. 

As we shall see these features are to be found in other inverse problems 
as well. 

A p 

FIGURE 1.4. Two different set A and B having the same orthogonal projection P 
on a given line. 

Sphericity of the earth. The sphericity of the earth has already been 
accepted since ancient times. It is interesting to know that one of Aristotle's 
(384 BC- 322 BC) arguments for the sphericity of the earth was the shape 
of the shadow projected by the earth on the moon during the eclipses. The 
argument is therefore the result of an indirect observation and we could assert 
that it is the "solution" of an inverse problem. 

http://rcin.org.pl



1.2. SHADOWS FROM THE ANTIQUITY 13 

An even finer reasoning for the solution of this inverse problem was pro­
vided by Eratosthenes of Cyrene (276 BC -194 BC) who proposed to estimate 
the radius of the earth by measuring the midday shadow in Alexandria and 
Syene. 

Eratosthenes knew that the length of an arc on a circle is directly propor­
tional to the angle it subtends and to the radius of the circle. He also knew 
that the length of the way from Alexandria to Syene was about 850 km. In 
order to estimate the radius of the earth he had then only to estimate the 
angle between the two locations (see Fig.1.5). 

Syene 

FIGURE 1.5. Scheme for Eratosthenes computation of the radius of the earth. 

In order to solve the last problem he noted that in the sun Syene is 
directly overhead at midday on the summer solstice, this comes from the 
fact that Syene lies practically on the Tropic of the Cancer. He could then 
measure at the same moment the angle of the midday shadow in Alexandria 
as a ~ 12°, which was equal to the angle between the two locations. His 
estimation conducts therefore to an earth radius of: 

R = 360° · dAs = 360° · 850km = 42500km, (1.4) 
a 12° 

which is an excellent estimation, when one takes into account the measure­
ment techniques of that period. 

Archimedes. Another now classical reasoning to estimate an inaccessi­
ble quantity is the famous story of Archimedes bath. King Herons (287 BC-
212 BC) suspected that the goldsmith of his new crown had cheated him 
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14 1. A HISTORICAL INTRODUCTION 

by changing partly the gold of the crown for another less noble material. 
As less noble materials were generally lighter that gold, the straightforward 
method was to melt down the crown and compare its volume to an equal 
volume of pure gold, however this would imply the destruction of the crown, 
which was to be avoided. Therefore the king asked Archimedes invent a ''non­
destructive" technique to tackle this question. It is told the idea came to 
Archimedes one day when he was taking a bath and the water was flooding 
out of the tube. It meant to measure the volume of the crown and of an equal 
weight of lump material. 

1.3. Trajectory problems: guns and stars 

Beginning with the medieval age a series of problems related to the com­
putation of trajectories of moving bodies gained the interest of scientists. 
Some had direct application in the art of gunnery and provided as such 
funding from princes of that time. 

Before to the works of Galileo Galilee (1564-1642) the scientific descrip­
tion was practically flawed. However, the main direct and inverse problems 
where already announced. 

The brescian mathematician Nicolo Tartaglia, his real name was Nicolo 
Fontano (1500?-1557), known for his results in solving the quadratic equation 
along Girolamo Cardano, also cla~med to be the inventor of the gunners 
square, a simple device to measure the shooting angle (see Fig.1.6), also 
denoted as the elevation. The direct problem is the result of a test shot, giving 
the shooting range for a given elevation. The interesting problem is the inverse 
one, which consists in finding the elevation which provides a given shooting 

FIGURE 1.6. The gunners ·square (left} and two trajectories with different initial 
shooting angle providing the same shooting range (right). 

http://rcin.org.pl



1.4. GRAVITY MEASUREMENTS 15 

range. This problem was solved by the gunners of that time by trial and error 
method: correcting at each step the elevation through a dichotomy algorithm. 
It is interesting to point out that the gunners had already discovered that 
this problem does not have a unique solution. 

Exercise: Solve the gunners inverse problem, i.e. find the shot angle 0 
(modern equivalent of the medieval punti), such tl1at tl1e shot attains a range 
R in the absence of drag and assuming that the initial velocity is independent 
of 0. Remark that the solution is not unique (see Fig. 1.6). 

The basis of elementary ballistics gained a sound basis only with the work 
of Galileo Galilee. He proposed the key notions of trajectory computations by 
transferring the problem in vacuum, thus eliininating the effect of drag. With 
the evolution of the mathematical and physical foundations of this domain, 
problems pertaining gunnery have also been evolving and are at all time more 
or less present in the technical community. 

As impressive modern applications of the inverse gunners problem, we 
might cite the finding of the launch sites of the V1 bombs at Peenemuende 
by the Royal Air Force and the investigations of airplanes crashes from the 
distribution of debris. 

Another application of inverse trajectory problems is the simultaneous 
discovery of Uranus by Urbain Le Verrier 1811-1877 and John Couch Adams 
1819-1842. After the impressive work done by Newton in defining the laws 
of motion and the developments in calculus which followed it was a "sim­
ple" matter of direct computation to determine the path of a planet given 
the masses and positions of the other planets influencing its motion. The 
inverse problem solved by Le Verrier and Adams consisted in determining 
an unknown planet from the perturbation of the paths of known planets. 
The perturbations should be understood as a difference between astronom­
ical measurements and the predicted path obtained by computations from 
the positions of the known planets. In modern times similar path problems 
are solved for the flight control of artificial satellites. 

1.4. Gravity measurements 

It is well known that the gravitational attraction between points is di­
rectly related to their respective masses and inverse proportional to the 
square of their distance. In each position we can add up the earthly attrac-

http://rcin.org.pl



16 1. A HISTORICAL INTRODUCTION 

tion and express it as the local gravitational acceleration in function of the 
distribution of mass density. Mathematically this is written in the following 
integral equation (2): 

a j 1 g3(x) = Q-
8 

--p(y)dv(y), 
x 3 x-y 

(1.5) 

S1 

where Q is Newton's universal gravitational constant, n represents the earth 
and p(y) is the mass density at the point y. 

The gravitational acceleration 93 ( x) can directly be measured for example 
from the frequency of a pendulum. Therefore one can imagine that from a 
precise measurement of the acceleration at the surface one could reconstruct 
the underground distribution of density indicating the existence of oil trap [3) 
or the even the position of the pharaohs chamber in a pyramid. For this type 
of application a good introduction is to be found in (2) (see Fig.1.7). 

X 

FIGURE 1. 7. Configuration for the inverse gravity problem in the case of under­
ground reservoir (left) and the pharaohs chamber (right). 

This inverse gravity problem can be formalized as: 

Determine p(y) from g3(x). 

From mathematical point of view Eq. (1.5) is a Fredholm equation of the first 
kind. This type of equations is generally difficult to solve as they possess 
generally a very weak continuity of the solution with respect to the input 
data and are therefore numerically unstable (4). 

In the special case of gravimetry one can show that the solution is not 
unique, as shown in the next exercise. In such a case one will add some 
a priori information has to be added, i.e. additional information known in 

http://rcin.org.pl



1.5. X-RAY TOMOGRAPHY 17 

advance, in order to solve the problem. For example, in the determining the 
location of the mortuary chamber of the pyramid one can suppose that the 
mass density is vanishing in the chamber and is a given constant outside. 

Exercise: Prove the non uniqueness of the solution of this problem by 
taking 'l/J a function defined on an such that: 

Hint: 

'l/J = 0 and 8n'l/J = 0. 

1 
~--=0; 

x-y 

apply the Stokes theorem 

· 1 (!6g- g6f) dv = 1 uang- g8nf). 
n an 

1.5. X-Ray Tomography 

The discovery by Wilhelm Roentgen (1845-1923) of the X-ray technique 
was a great achievement for the evolution of medicine in the beginning of 
the twentieth century as it was a first step into non-invasive diagnosis. His 
technique consisted in exposing the body to a beam of X-rays and recording 
the image of the rays after they passed through the body on photographic 
film. The record represents a shadow of passed tissues. The intensity of the 
image is inversely proportional to the attenuation coefficient, the capacity 
of each tissue to absorb X-rays. The image is therefore a sum of the tissues 
passed. The main main drawback of the method is that projections of differ­
ent organs are overlapped on the final picture. This will always be the case 
independently of the projection direction of X-rays. 

In the same period, in 1917, an Austrian mathematician Johann Radon 
(1887-1956) solved a mathematical inverse problem. The problem of Radon 
was to reconstruct a real valued function defined on a plane from its line 
integrals computed on all lines of the plane. 

Half a century later, in 1955, Allan Cormack, a young lecturer at the 
Groote Schuur Hospital in Capetown (South Africa) succeded to solve the 
X-ray "overlapping" difficulty. Jointly with G.N. Hounsfiel, in 1979, he was 
awarded the Nobel Prize in medicine. 

http://rcin.org.pl



18 1. A HISTORICAL INTRODUCTION 

Allan Cormack tried to prepare isodose charts for radiotherapy, i.e. he pre­
pared the X-ray exposure of patients such that different parts would get an 
equal amount of X-rays. The initial assumption was that the body was homo­
geneous. Then he improved the technique using an inhomogeneous body. He 
also understood that the spatial distribution of the attenuation coefficient 
could be reconstructed from external X-ray images. From a mathematical 
point of view, this is actually the Radon problem (for more technicalities 
see [2]). 

Let us denote by p,(x) the attenuation coefficient in the current point x. 
Then the intensity of the image at the point of position p of the screen for 
an X-ray taken in the direction (}will be directly dependent of: 

a(9,p)= j J.l(x)dv= j J.I(Xl,x2)0(xlcos9+x2sin9-p)dxldx2, (1.6) 
line( 8 ,p) R2 

i.e., the sum of the attenuation coefficient over the line(O, p) (see Fig. 1.8). 

X] 

FIGURE 1.8. A scheme of generic direct problem. 

The corresponding inverse problem is now formulated as: 

Determine p,(x) from a(O,p) VO Vp. 

The solution proposed by Radon was to take first the partial Fourier 
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1.6. NOTES 19 

transforms with respect to the variable pin order to obtain: 

00 

Fp[a(O, p)] = j a(O, p)e-iPkp dp 

-00 

00 

= j j p.(x,,x2)cl(xtcos9+x2sin9-p)e-ipk,dx,dx2dp. (1.7) 
-oo R2 

Second, denoting: k1 = kp sin() and k2 = kp cos() one can take partial Fourier 
transforms with respect to k1 and k2 to obtain the final solution in the form: 

(1.8) 

This rough version of a solution presents actually the main idea; however, 
from the numerical point of view a series of additional works have been done 
in order to obtain the actual resolutions of X-ray tomographies. 

From the physical point of view other complementary techniques, such as 

MRI (Magnetic Resonance Imaging) were proposed in the last decades. In 
spite of different physical phenomena, one will observe similar mathematical 
settings for these techniques. Let us simply resume that the MRI measure­
ments are based on two steps: in the first step protons, acting like infinitesi­
mal magnets, are oriented and set into rotation by a microwave pulse. In the 
second step the current induced by the moving magnetic field is recorded. A 
series of recordings is then obtained for different orientations and the inverse 
problem consists in the determination of the spatial density of protons. 

1.6. Notes 

Further reading. For further reading regarding different inverse prob­
lems we recommend two books: 

• Inverse Problem in the Mechanics of Materials by H.D. Bui (2) . The 
book provides a fast overview of problems and equations involving in­
verse problems in solid mechanics. The applications discussed range 
from fracture mechanics and identification of cracks to vibrations and 
acoustic waves, demography and seismic demography, microgravity, 
residual stresses, etc. Each chapter has a comprehensive bibliography 
on various related topics. 
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20 1. A HISTORICAL INTRODUCTION 

• Inverse Problems by C.W. Groetsch gives a charming introduction to 
a series of inverse problems. It is written at an undergraduate mathe­
matics level and presents a series of exercises and worked out examples 
in Matlab. 

Other more technical introductions at a graduate level can be found in 
the DEA lectures notes of M. Bonnet [5) and S. Andrieux [6). 

1. 7. References 

1. C.W. GROETSCH, Inverse Problems, The :Mathematical Society of America, 
1999. 

2. H.D. Bui, Introduction aux Problemes Inverses en Mecanique des Materiaux, 
Eyrolles, Paris / CRC Roca Baton, 1993. 

3. G.E. BACKUS and F. GILBERT, Numerical applications of a formalism of geo­
physical inverse problems, Geophysical J.Roy.Astr.Soc, 13:247, 1967. 

4. G .M. WING, Primer on Integral Equations of the First Kind, SIA!vl, 1991. 

5. M . BONNET, Problemes Inverses, DEA: Dynamique des Structures et Couplages, 
Ecole Polytechnique, 2001. 

6. S. ANDRIEUX, Problemes Inverses, DEA: Techniques Avancees de Calcul des 
Structures, Ecole Polytechnique, 2001. 
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Chapter 2 

Applications of Betti reciprocity 

2.1. The Betti reciprocity principle 

Michael Faraday ( 1791-1867), one the most famous physicists of the 19th 
century, in 1834 designed a simple experiment with important consequences 
for the later theory of elasticity and electricity. 

Let us consider an elastic rod. We shall impose vertical forces in two 
different points P, Q, and denote the pair as f = (fp, /Q)· The measurement 
of the normal displacements at the same points is given by the pair: u = 
(up, UQ) · In a real experiment one can now remark l) that for two distinct 

p: i Q 
lr--------t-:-~ 

~: : h 
~ 

~~ 
FIGURE 2.1. The Faraday experiment for what was later called the Betti reci­
procity principle. 

I) A simple verification as a table top experiment can be done using a saw blade and 
a simple weight for the force. 
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22 2. APPLICATIONS OF BETTI RECIPROCITY 

experiments in which we denoted displacements and forces by ( u 1 , f 1) and 
respectively (u2, / 2 ), that the crossed mechanical work of the displacements 
and forces is always equal, i.e.: 

(2.1) 

This relation is called the Betti reciprocity principle to honour Enrico Betti 
(1823-1892) who studied this property in the case of continuous elastic sys­

tems. Such an experiment where / 1 = (fp, 0), / 2 = (0, /Q) is depicted 
in Fig. 2.1. 

As the rod has been supposed to be linear elastic therefore it is represented 
by a linear operator A, defined by: 

(2.2) 

The balance of forces and the equivalent principal of virtual work on the 
system is then simply written as: 

(2.3) 

A straightforward algebraic computation (left as an exercise to the reader), 
shows that Eq. (2.1) is equivalent to the symmetry of A, i.e. A= AT. This 
statement is of crucial importance as it also ensures the existence of a po­
tential energy for the system: 

1 T W= 2u ·A·u. (2.4) 

Suppose now that the system has a "defect" which has to be identified, 
i.e. consider A+ c5A and suppose A known and c5A unknown. 

Let us now consider one experiment, in which we measure the data 
(u~, / 1) on the system A+ c5A and a second ficticious experiment (u2, /2). 
We then have the following relations for the real experiment: 

(2.5) 

and 
T A * T /* \...1 v · · u 2 = v · 2 vv (2.6) 

for the ficticious experiment. 
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2.1. THE BETTI RECIPROCITY PRINCIPLE 23 

P: i Q 
[lr--.,___.__~ 

Pj 
lf-----~----ll 

Q 

~! ~u· 

FIGURE 2.2. The real and virtual Betti reciprocity experiment for a rod. 

It is obvious that the reciprocity principle is generally not respected for 
these two experiments: 

(2.7) 

However, we remark by a simple algebraic computation that the gap to fulfill 
the reciprocity principle (2.1), denoted as the Reciprocity Gap, is directly 
related to defect: 

(2.8) 

The identification technique proposed in the sequel is based on the idea 
that for a given experiment, one can choose the solution of the ficticious 
experiments in such a way as to give an insight into oA. 

Exercise: Compute the volume change of a linear elastic isotropic body 
due to the following load: 

AB=au 

Hint: Use as a second state the body subject to the strain: e = ~I. 

Remark: The Betti reciprocity principle for a continuous sys­
tem. For the similar experiment performed on an elastic body occupying 
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the domain n, one would classicaly write: 

j UJ • t2 ds + j 11.1 ·/2 ds = j 11.2 • t1 ds + j 11.2 ·/1 ds, (2.9) 
an n an n 

where Ui, Ji, ti (i = 1, 2) are the vector fields of displacements, body forces 
and surface tractions respectively. We can remark that the left and the right 
hand side of the preceding equation are equal to: 

j Vu1 : C : Vu2 dv = j V11.2 : C : Vu1 dv, (2.10) 

n n 

and the equality is equivalent to the symmetry property of the elastic ten­
sor C ( Cijkl = Cklij, i, j, k, l = 1, 3) which also ensures the existence of the 
energy potential for the system. 

2.2. Identification of cracks 

In this section we shall present a series of recent mathematical results 
in which planar cracks are identified using the idea of the reciprocity gap 
introduced in the preceding section. The main difficulty is linked with the 
"choice" of appropriate ficticious experiment. 

2.2.1. Elliptic equation 

In this section, we shall consider a scalar potential solution of an elliptic 
equation. From a practical point of view this will model the electric or thermal 
stationary conduction problem and some practical applications are to be 
found in these fields. 

Let us consider a body occupying the domain n c JR3 , with boundary an 
and containing a planar crack r (see Fig. 2.3). 

The system is repesented by an elliptic equation expressing stationary 
heat or electric conduction. The balance equation is written as: 

A(u) = 0, div(k grad u) = 0, (2.11) 

where u represents the temperature distribution or the field of electric po­
tential, k denotes here the heat or the electric conduction coefficient which 
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X 

FIGURE 2.3. The body containing a planar crack. 

is supposed to be known. The crack r = r + U r _ is defined as a flux free 
surface: 

k8nu = 0, (2.12) 

We assume that both the potential and the flux ( ~, c.p) are measured on the 
external boundary an which implies the following boundary conditions: 

U=~, k8nu = c.p. (2.13) 

In the direct problem 'P one wants to determine the spatial distribution of 
the potential u knowing the exact position of r and one of the two boundary 
conditions (2.13). 

The inverse problem p-l is defined as: 

Identify the geometry of r from the over-specified boundary mea­
surements ( ~, c.p). 

We are talking about over-specified boundary measurements, as in a well 
posed problem is sufficient to give only one of the potential or the flux on 
the boundary. 

The solution presented here was initially proposed in a pioneering paper 
by Andrieux and Benabda [1]. They defined the reciprocity gap corresponding 
to this problem as in the previous section and proposed a series of virtual 
test fields in order to identify the crack provided its domain r lies completely 
in a plane. 

The Betti Reciprocity Gap 'RB. The multiplication of (2.11) by a 
smooth field w defined over n, followed by an integration over n and series 
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of integration by parts leads to: 

j ([8nu]w- [u]8nw) ds 
r 

=- j u( div k gradw) dx + j (w8nu- u8nw) ds. (2.14) 

n\G an 
We choose w to be a smooth solution of the equation: 

A*(u) =- div(k grad w) = 0 (2.15) 

in the domain 0 without the crack and call such a solution an adjoint field 

and the corresponding equation the adjoint equation. If w is an adjoint field, 
Eq. (2.14) becomes an integral equation relating fields defined on the exterior 
boundary an and on the crack r. We define the reciprocity gap 'RB, as: 

'RB(w; ~' <p) = j (~8nw- w<p) ds, 
an 

which is also equal to: 

(2.16) 

'RB(w;~,<p) = j ((8nu]w -(u]O,.w) ds. (2.17) 

r 

From the point of view of the inverse problem we can remark that the reci­
procity gap, depends only on measurable quantities(~, c.p) and on an arbitrary 
adjoint field w. 

Identification of the planar crack. In order to identify the crack, 
we suppose that its position and shape is completely revealed by the jump 
of the potential over the crack [u]. This is a restrictive definition as not all 
potentials are discontinuous over the crack, and as such does not preserve the 
geometry completely. However, we accept this definition and suppose that we 
dispose of an experiment giving a potential with a non zero jump. 

The crack is supposed to be planar, i.e. completely included in a plane 
and as such it will be identified in three distinct steps using for each one 
a special adjoint function: 

• Orientation of the plane 
Let us define the following family of adjoint functions, parametrized 
by p E 1R3 : 

Wp( X) = p · X + c, \lwp = p. 
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A simple computations shows that the normal to the plane of the crack 
is given by: 

RB(wei; cp, 'l/1) 
n = ei, 

k frlu)ds 

where ei are the vector of the basis. The condition: In~ = 1 gives the 
the relation: 

which completes the proof. 

• Position of the plane 
The next family is defined by: 

w = 3(n · x)2
- (x · x). 

Similar computations provide: 

RB(w; cp, 'l/1) 
n. x = 4k fr[u) ds e;. 

• Extension of the crack in the plane 
Consider a transformed coordinate system such that the plane of the 
crack is now defined by X3 = 0. 
By (wi)ieN, we denote the solutions of the following eigenvalue problem: 

-6.wi(x~, x2) = Aiwi(XI, x2), i E N, 

and recall that the eigenfunctions of such a problem form a complete 
basis in L2 (1R2). 

If the third family of adjoint functions { Wi heN is defined by 

sh( JXix3) 
wi(x~, x2, x3) = wi(x~, x2) Ai , 

then 

8nWi(Xt, X2, 0) = Wi(XI, X2). 

The reciprocity relation for this family . of adjoint functions becomes: 

J (u) 8,w; ds = J (u) w;(XJ. x2) dx1dx2 = nB(w;; cp, t/J). 
r r 
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plane orientation plane position crack extension 

FIGURE 2.4. The identification of the three characteristics of the crack. 

Consequently, the coefficients of (u] in the basis £ 2 given by(wi)iEN 
are known. We conclude that (u] is completely known and its support 
revealed by the crack opening the exact shape of the crack: 

supp(u] = r. 

Exercise: Check the preceding equations ! 

A series of enhancements of these results have recently been proven: some 
numerical results [2), extension to elastostatics (3), uniqueness and stability 
results [4). 

2.2.2. Hyperbolic equation: acoustic case 

In this section we will show how the Betti reciprocity gap can be defined 
in the case of an acoustic equation, i.e. which is a hyperbolic equation with 
scalar potential, and used to identify a crack in a similar way as has been 
shown in the last section. In a similar way we will define as before three 
families of adjoint solutions which will permit us to define the complete 
geometry of a planar crack by identifying the orientation of the plane of 
the crack, its position and finally its complete extension. These results were 
obtained by Bui et al. [5). 

Let us consider a body occupying the domain n c 1R3 , with the boundary 
an and containing a planar crack r (see Fig. 2.3). 
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The system is repesented by a hyperbolic equation expressing scalar wave 
propagation. The balance equation is written as: 

A(u) = 8t8tu- Llu = 0, (2.18) 

where u is the scalar field of the acoustic pressure. The crack r = r + U r _ 
is defined as before as a flux free surface: 

k8nu = 0. (2.19) 

The initial conditions are specified by 

u(x, t ~ 0) = 0, 8tu(x, t ~ 0) = 0, Vx E fl. (2.20) 

We assume, as before, that both the history of the potential and of the flux, 
( ~, c.p) are measured on the external boundary an in the time interval [0, T], 
which implies the following boundary conditions: 

u = ~' k8nu = c.p. 

The inverse problem p-l can be defined as: 

Identify the geometry of r from the histories of boundary mea­

surements ( ~, c.p). 

The Betti reciprocity gap. Let us consider a function 

w: n X [O,oo]--+ R. 

(2.21) 

After multiplication of A(u) by wand a series of integration by parts (again 
left to the reader as an exercise!), we obtain the following integral equation: 

00 00 J J ((8nu)w -(u)8nw) dsdt = J J u(8t8tw- C.w) d:cdt 

0 F 0 11\F 

00 

+ j [w8tu- u8tw]:;' d:c + j j (w8nu- u8nw) dsdt. (2.22) 

11\F o an 

In this case one will define the adjoint problem as: 

A*(w) = 8t8tw- Llw = 0 (2.23) 
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together with a series of initial conditions at t = oo, such that: 

00 

j j u(8t8tw- .C.w) dxdt = 0, 

0 n\F 

j [w8tu- u8tw]:;" dx = 0, 

n\F 

(2.24) 

where the choice of the conditions on w will be dual to the ones specified 
for u. 

With u solution of A( u) = 0 and w solution of A* ( w) = 0 the preceding 
equation becomes: 

00 00 -J J [u) 8nwdsdt = J J (u8nw- w8,.u) dsdt. (2.25) 
o F o an 

Therefore we shall define the Betti reciprocity gap RB as: 

00 

'R(w;t/J,<p) = J J (t/J8nw- w<p) dsdt. 
o an 

(2.26) 

For a series of problems it will be interesting to reduce the time interval 
from (0, oo) to (0, t] and to monitor the evolution of the reciprocity gap with 
growing t. Therefore we define the instantaneous reciprocity gap: 

'R(w;t/J,<p)[t] = j (t/J8nw- w<p) ds. 
an 

(2.27) 

Identification of a planar crack. As in the previous section, in order 
to identify the crack we assume that its position and shape are completely 
revealed by [u]. The crack is assumed to be planar, i.e. completely included 
in a plane and as such it will be identified in three distinct steps using for 
each one a special family of adjoint functions: 

• Orientation of the plane 
Let us define the following family of adjoint functions: 

( ) {
f(k · x + t) if t E (0, T], 

wk x,t = 
0 if t E [T, oo] . 
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A straightforward calculation shows that: 

{
f'(k · z + t)k if t E [0, T], 

\lwk = 
0 if t E [T,oo], 

{
f'(k · z + t)(k · n) if t E [0, T], 

8nwk= 
0 if t E [T, oo]. 

Therefore k is a solution of 

31 

only if k · n = 0. The normal to the plane of the crack is then given by: 

with k1, k2 such that their corresponding reciprocity gap is zero. 

• Position of the plane 
In order to determine the position of the plane, once its normal n is 
known, let us consider the following family of adjoint functions: 

( ) {
!(z·n-b)2 +!(t-T)2 if tE[O,T], 

Wb z,t = 
0 if t E [T, oo]. 

The normal derivative of the adjoint function on the plane of the 
crack is: 

8nwb(z, t) = (z · n- b), 

and the reciprocity gap is then expressed by 

00 

'RB(wb; ,P, cp) =- j j [u)(x · n- b) dsdt. 
0 F 

The position of the plane is given by b, the solution of: 

• Extension of the crack in the plane 
In order to identify the extension of the crack in the plane, let us recall 
the expression of the reciprocity gap: 

00 

J Jlu]lJnwdsdt = n(w;t/J,cp). 
0 F 
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As in the preceding section, where the elliptic case has been solved, 
we have to identify a family of adjoint functions such that the cor­
responding family of normal derivatives an w forms a functional basis 
in L2. More precisely, the technique developed by Bui et al. in [5] yields 
actually the planar Fourier transform of [u]. Without proving their re­
sult, let us just remark that in order to find the solution they used a 
perturbed problem with a small viscosity term: 

and the family of adjoint fields had the following form: 

wq{'(x, t) = exp(iqt) exp (- i(e' · x')) exp ((le'l 2
- q2 - ic:q)!x3), 

where e' = (~b ~2) E 1R2 and q E 1R and x' = (xl, x2) E 1R2. 

2.2.3. Hyperbolic equation: elastodynamics 

Next we will extend the Betti reciprocity gap to elastodynamics. In this 
case we present only some numerical results where the complete position 
and shape of a planar crack were identified using only one family of adjoint 
waves, see also [6). Only planar waves are used as adjoint fields but different 
interpretations of the reciprocity enable us to reconstruct the crack. 

Let us consider a homogenous elastic body n containing a crack rc in its 
interior (see Fig. 2.5). We assume that the crack rc is included in a plane II. 
The exterior boundary of n will be denoted by ar. 

. 1 real crack 

. -- . . --- --··--·-· --·-·· -- ~ . -- -- -- --. ... ·---- __j 

body 

If 

I 
; 

f 
'[ 

_, · - - . .!.. - - - ·- --- .... . . .. . . ~ - -- ----

' 

FIGURE 2.5. The geometry of the body and the position of the "real" crack. 
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For each t E [0, oo) we consider that the vector field of displacement u 

and the tensor fields of strains and stresses E, u, respectively, satisfy the 
following system of equations: 

divu = pU,, u=Ce, (2.28) 

Hence we get: 
div C Vu = pu, (2.29) 

where C denotes the fourth order tensor of elastic moduli. 
We assume that both displacements and tractions are known on the ex­

terior boundary 80. for each t E [0, oo): 

ulan= e, u · nlan = l/J. (2.30) 

In most practical case a free surface is considered l/J = 0. The displacements e 
are then measured in a finite numbers of locations. The two faces of the crack 
are stress free: 

u · nlrc = 0. (2.31) 

The variational principle associated with the equation (2.29) permits after a 
series of integrations by parts and application of the boundary condition for 
the solution to define the adjoint problem: 

divCVv = pv. (2.32) 

The Betti reciprocity gap takes the form 

00 00 

RB = j j (u1
) • T[w] ds dt = j j { u · a-[w] · n - w · a-[u] · n} ds dt 

o rc o r 

+ j [u · 81w- Btu· w]'; dv. (2.33) 

0\fc 

In the definition of the reciprocity gap, u is a solution of the direct problem 
and w a solution of the adjoint problem. 

The instantaneous reciprocity gap will be simply defined by the following 
expression: 

'R-B(t) = j {[u1
] • T[w]} ds = j { u · a-[w]· n- w · a-[u]· n} ds. (2.34) 

rc r 
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Propagation of adjoint wave 

FIGURE 2.6. The evolution of the instantaneous reciprocity gap with the advanc­
ing adjoint wavefront (red corresponds to a zero value). 

The instantaneous reciprocity gap measures the instantaneous virtual work 
done on the crack tips by the real -displacements on the adjoint traction field. 

Its importance in the identification process will be illustrated by numerical 
example. 

The example considered here corresponds to the body presented in 

Fig. 2.5. The numerical computations were done in two steps. In the first 
step we simulated the direct wave propagation problem and obtained a set 
of "artificial" displacement measurements. In the second step, these measure­

ments were convoluted with a series of adjoint fields and the results were 
interpreted in order to identify the crack. 

The direct computations and part of the identification procedure were 

programmed using the Cast3M finite element programming language. The 
complete mesh had 800 nodes and 1500 linear triangular elements. The crack 

faces were represented by 10 linear elements. A second order algorithm was 
used for the numerical integration of the direct wave propagation problem. 

In the case of the direct problem a tangential shear vector was applied to 

the crack faces , next completely released after the initial moment t = 0, i.e. : 

r (t) = cb(t)t , (2.35) 

where a , c are constants. All exterior surfaces are considered as stress free . 
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The boundary displacement has been collected in the direct problem and 
considered in the identification part as a measurement. 

We notice that this loading opened the crack and no interpenetration of 
the material was observed during the considered time interval. As a conse­
quence the real contact conditions on the crack tips, which would conduct to 
a nonlinear problem, can be neglected for this loading. 

From a practical point of view this loading type describes an earthquake, 
but this case will not be discussed here. 

The adjoint wave fields were constructed as 36 planar share wave fields. 
All directions of propagation of the wave fields were passing through the 
center of the body and where equally, spaced every 27r /36 degrees. 

Moreover, the initial time for the adjoined waves was chosen such that 
all reach the center of the body at the same instant. 

1 
w(x, t) = kY(t- -X· p- T) k. 

c 
(2.36) 

Here x and t denote the space point and time instant when the displacement 
w is computed, while p and k are the direction of propagation of the wave 
and the direction of shear, respectively, and are for each wave orthogonal, 
i.e.: p · k = 0; T is the time parameter chosen such that the shear wave is 
outside the body at the initial instant t = 0, whereas c denotes the velocity 
of the propagation of the shear waves and equals: 

m 
a: : ., 
:J a ... 
c I 
!I .! I' 

:! f 

-··r 

c= J p(l!v) 

~-----..... · - • • · ·-· • •• -""""'---- - - - -...___. ----· • ·--L .__4. ••• &..-o .. _ooO . oo 0 .~-

~1) I Gft ISO :oo :~0 'on 

time 

FIGURE 2. 7. Time evolution of the reciprocity gap computed using two adjoint 
fields in opposite directions. 
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for an isotropic elastic body with Young modulus E, Poisson coefficient v 

and a mass density p. 

The stress state corresponding to the adjoined wave is a travelling Dirac 
impulse. It does therefore not produce any mechanical work with the dis­
placement jump (u] on the crack unless the adjoined wave field has "arrived" 
at the crack rat time tp. Therefore is instantaneous reciprocity gap vanishes 
fort< tp and has a non zero value after this instant (see Fig. 2.7). 

Next using the previous observation on the interpretation of the instan­
taneous reciprocity gap and the fact that the waves are plane, certain char­
acteristics of the crack can be identified: 

• Normal of the crock 

From a simple geometric reasoning one can deduce that the adjoint 
wave having its wave front parallel to the crack tips will interact with 
the crack at a later instant when compared with the wave coming from 
the same half space with respect to the crack. Representing these time 
instants with respect to the angle of the incoming adjoint field defines 
by its two maxima the normal of the crack. 

• Position of the crock plane 
Assuming that the normal of the plane is known, let us , analyse the 
instantaneous reciprocity gap obtained from the adjoint waves propa­
gating in the direction of the normal and denote t 1, tb the moments 
when the adjoint waves begin their interaction with the crack. If R 
represents the distance from the starting point of the adjoint waves to 

Identified 
position 

/rea/crack 

··---· -··· . . ·· ··-·· ··· -- ·-·-
2 

FIGURE 2.8. The real crack and its identified normal and position given by the 
intersection of the normal with the circle. 
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center of the body, we have: 

where vis the propagation speed of the wave. Then the distance of the 

crack to the center of the body is given by either: 

The results of this analysis are represented in Fig. 2.8 and compared with 

the initial position of the crack. 

Analysis of the numerical results. Another way to analyse the re­

sults of the instantaneous reciprocity gap is the following one. On the rays , 

characterizing the direction of propagation of the adjoint waves, we represent 
at each time instant , in the real position of the wave front, the value of the 

instantaneous reciprocity gap by a color code. If the zero value is plotted in 

red, the colored domain, representing the start of non zero values, displays 
together with the wavefronts a convex hull of the crack. This representation 

is compared in Fig. 2.9 with the position of the real crack. Small errors at 
the end of the crack have the length order of one element and are justified 

by the fact that the crack tips do not open too much during the loading. As 

FIGURE 2.9. The real crack and the convex hull of null reciprocity obtained from 
the incoming adjoint waves with different directions. 
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such the virtual work measured by the reciprocity is nonzero only after an 
penetration of the adjoint wave of more than one element of the crack. 

Note that both techniques give a very good match of the identified posi­
tion and extension of the crack with the real crack. 

2.3. Notes 

Other reciprocity results. The reciprocity gap was also applied to 
crack identification in other problems which were not discussed here. Let us 
mention the following two domains: 

• Elastostatics 
Ben Abda et al. [4] obtained a series of mathematical results for the 
idetification of a two-dimensional (2D) crack in an elastic body by 
means of static displacement and traction boundary measurements. 
These authors proved a uniqueness result in the general case, as well 
as the local Lipschitzian stability in the case of line segment emergent 
cracks. In last case, the search for the unique zero of the reciprocity 
gap functional related to the singular solution of the elasticity problem 
provides a fast algorithm to determine the unknown crack tip. 

• Heat equation 
In the framework of the transient heat equation, A. Ben Adba and 
H. D. Bui [7] obtained a series of three families of adjoint solutions of the 
heat equation which permit to solve the crack identification problem. 

Other techniques for crack identification. Before commenting a 
series of complementary techniques used in crack identification, let us just 
note that Bryan and Vogelius [8] provided a very interesting identifiability 
result, showing that n + 1 boundary measurements are sufficient to identify 
n cracks in a body. 

An overview of some practical methods for non-destructive crack evalua­
tion are given in [9]. 

• Scattering 
Classical mathematical studies in the literature [10] within dynamics 
are subject to various limitations: unbounded domain, domain with 
known Green function, source in the interior of the body, source far 
away from the crack in order to consider plane waves, etc. In all these 
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investigations, a diffracted wave in an unbounded medium is examined 
to obtain the information on the crack. For recent results on the subject 
the reader is referred to [11] and references therein. 

• Complex functions 
A series of crack identification techniques in the case of an electrostatic 
problem use the special representation formulas of the harmonic func­
tions in the framework of complex analysis. 
Ban Abda et al. (12) dealt with non-destructive recovery of planar crack 
in a plane problem using approximation techniques in classes of ana­
lytic and mesomorphic functions. The localization algorithms are based 
on boundary computations of the reciprocity gap within this functional 
space. 
Elcrat et al. [13, 14) interpret the crack reconstruction problem as a 
parameter problem around the classical Schwarz-Christoffel formula. 

• Optimal control 
After assuming that the crack at epicenter of an earthquake can be 
modeled as a time dependent concentrated force, Graselli and Ya­
mamoto (15) provided an interesting optimal control formulation of 
the identification problem and showed that the identification problem 
has a solution. 

• Experiments 
A recent paper by Lazarovitch et al. (16) presents a series of experi­
ments performed on a network of resistors and a continuous medium 
containing one or two flaws. The identification method is based on the 
minimization of least squares cost functional and a gradient com­
puted through direct differentiation. The results are interesting as they 
show that the method have a change to be applied in real engineering 
situation. 

Variational method for the identification of elastic moduli. It 
is important to cite at this point a technique which is based only on the 
variational formulation (weak integral equation) of the elasticity equations in 
order to identify the values of elastic moduli. The technique was proposed by 
Grediac and Vautrin in early 1990 [17, 18, 19) and has been applied since then 
in a series of configurations (see for example (20]). On the one hand these 
authors performed measurements of surface distributions of displacements 
and strain by optical techniques and, on the other hand, they well chose 
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solutions of the elastic problem as test functions in the weak formulation in 
order to obtain a well-posed over-determined system of linear equations for 
the moduli. 
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Chapter 3 

Identification of distributed fields 

In this Chapter we shall not present applications of specific technique used 
for solving a series of inverse problems, but shall explore a series of prob­
lems related to one type of inverse problems, namely the identification of 

distributed fields from over-determined boundary conditions. 
From a practical point of view problems of this type arise in practical 

applications like: 

• the identification of stiff and soft areas in human body by palpation, 
the method doctors used from the antiquity to investigate patients; 

• the identification of ground permeability from pressure and flow mea­
surements in wells of interest for water management, oil recovery or 
tracing contaminants; 

• medical electric tomographies, in order to identify pulmonary emboli, 
blood cloth in lungs, breast cancer, tracing of blood flow, understood 
as the identification of electric conductivities from boundary voltages 
and fluxes; 

• identification of epilepsy disorder centers in brains, as an identification 
of electric sources from boundary measurements; 

• identification of residual stresses. 
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3.1. Electricity 

The identification problem of distributed electric conductivity can be for­
malized in the following mathematical structure. 

Let us consider a body n with boundary 80. The scalar field of the 
electric potential (voltage) u is a solution of the following elliptic system of 
PDE's: 

div ( 1( X) grad u( X)) = 0, X E 0, (3.1) 

where 1(x) is the electric conductivity. We remark that 1 is considered a 
scalar field and corresponds as such to an isotropic conductor. In the case of 
anisotropy 1 would become a second-order tensor field. 

The classical boundary conditions are: 

• the Dirichlet boundary condition (i.e. given potential): ulan = ~' 

• the Neumann boundary condition (i.e. given flux): 18nulan = <p. 

In the direct problem, one wants to recover the potential field u from 
the given Dirichlet or Neumann boundary data, supposing that the field of 
the electric conductivity is known in advance. We shall just recall that this 
problem has a unique solution with Dirichlet boundary conditions and a 
unique solution up to a constant for Neumann boundary conditions. 

The aim of the inverse problem is to recover the unknown field of electric 
conductivity 1 from pairs of over-specified boundary conditions ( ~, <p). The 
data pair represents the results of an experiment where one would impose 
the voltage~ on the boundary and would measure the corresponding flux <p. 

The Dirichlet-to-Neumann data map. If we disposed of all imagin­
able experiments, we would dispose of the Dirichlet-to-Neumann data map: 

(3.2) 

mapping each boundary voltage ~ in the corresponding boundary flux <p for 
the body with conductivity 1. 

Using this definition, we can state the inverse problem as the identifica­
tion of the conductivity 1 from the Dirichlet-to-Neumann data map A-y. 

Important questions. In analysing this inverse problem we must ac­
tually answer a series of questions like: 

• what is the form of A-y ? 
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• is A'Y ---+ 'Y injective? (uniqueness) 

• is A'Y ---+ 'Y continuous? (stability) 

• effective reconstruction algorithms ? 

• ... can one define best measurements ? 

3.1.1. The difficulty with distributed coefficients 

The difficulty of identifying distributed coefficients can be illustrated 
through some simple one-dimensional examples. 

Let us consider the one-dimensional version of Eq. (3.2) on the interval 

[0, n-]: 
(3.3) 

The measured boundary data (corresponding to the A'Y map) are given by 
the two pairs of real numbers: 

(u(O), 8xu(O)) and (u(1r), 8xu('rr)). (3.4) 

A simple integration of the equations gives the balance of fluxes as the fol­
lowing series of equalities: 

')'(0)8xu(O) = ')'(x)8xu(x) = f'(7r)8xu(7r), x E [0, 1r]. (3.5) 

Intuitively one can understand that the measured boundary data carry just a 
small amount of information, and as such we would probably have difficulties 
in reconstructing the distribution of "Y(x) from the values at the end of the 
interval. 

Let us consider a slightly modified equation: 

(3.6) 

corresponding to the heat equation with a constant source term. Suppose 
now that the real, measured data, correspond to the following solution: 

1 
'Y(x) = 2' 

We can construct the following series of perturbed solutions: 

(3.7) 

1 
'YN(x)- ---­

- 2+cosNx' uN(x) = x2 + ~ sinNx + ~2 cosNx, (3.8) 
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Coeltlclenla a e1 a_N pour N • 2.1 Solutlona u e1 u_N pour N = 2,8 

10 

0. 2.------l---+--+--+--+---H 

0.5 1.5 2.5 
X X 

FIGURE 3.1. Variations of the conductivity coefficient "Y (left} and of the poten­
tial u (right). 

which have the property that the boundary data, as well as the potential 
u, can be brought as close as desired to the real solution, provided that the 
conductivity begins to oscillate with a constant amplitude (see Fig. 3.1). 

W note that in the one-dimensional example we have actually tried to 
identify a real function from the knowledge of its boundary values which are 
actually just a pair of real numbers. In higher dimensions the information 
gets richer as we shall try to identify a function from boundary data which 
are also functions. 

Exercise: {1} Consider the following system: 

8x("t8xu) = f(x), -k(O)u'(O) =A, k(l)u'(l) =B. 

Show that a differentiable function k exists only if: 

1 

f f(x)dx=A-B. 
0 

Interpret this result in term of balance ! 

Exercise: {1} . Show that u(x) = x and k(x) = x are solutions of the 
equation: 

Then show that for 77 > 0 the following functions are also solutions: 

k (x)- TJX and "'-(x) = TJSin(x/TJ2
) + x. 

" - 'fJ + cos(x/TJ2 ) ~, 
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What can be stated about the following limits: 

3.1.2. Variational formulations 

In this Section we shall recall the technique presented in the preceding 
Chapter and apply it to the identification of distributed coefficients. 

The Dirichlet-to-Neumann data map and the energy functional. 
In order to characterize the physical interpretation of the Dirichlet-to-N eu­
mann data map we show it is a directly related with the "electric work" of 
fluxes and potential on the boundary an, which depends also essentially on 
the function 'Y= 

A-, +-+ W-y(u) = j uA-y(u) ds. 
ar 

Let us introduce the energy function, defined for each 'Y: 

as a map on the voltage functions: 

Q-y(u) = ~ j "Vu"f Vudv. 
n 

(3.9) 

(3.10) 

(3.11) 

The next exercises permit to show that the knowledge of the Dirichlet-to­
Neumann data map A'Y is equivalent to the knowledge of the energy function 
Q"f. This reflects the well-known physical relations between work and energy 
in linear materials. 

Exercise: Polarization Q"f --+ A"f. Show that 

4 j vfv.,(u)ds = Q-y(u + v)- Q-y(u- v). 
an 

Exercise: Clapeyron Energy Theorem A"f--+ Q"f. Show that 

Q-y(u) = ~ j uA-y(u)ds. 
an 
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The foregoing relations hold even if we pass to anisotropic conductivities, 
that means that the scalar conductivity field 1 becomes a symmetric second­
order tensor field 'Y· In this case Kohn and Vogelius [2] showned that we can 
construct two conductivity matrices 'Y, "' related through a diffeomorphism 
1/J such that the two bodies have the same Dirichlet-to-Neumann data map: 

(3.12) 

Exercise: Find the relation between the two conductivities using the 
equality of the two energies Q'"Y = Q"' and the fact that the solution should 
be related through 

1Vy = VK- 0 'l/J. 

Hint: Use the formula for change of variables. 

The Betti reciprocity gap RB. Let us apply the Betti reciprocity 
relations, as presented in the last Chapter, to two problems: 

• u solution of div(1Vu) = 0 inn, 

• w solution of div(KVw) = 0 in 0. 

In this case we obtain: 

j [uA"(w) -wA-y V'(u)] ds = j V'u(K- 'Y)V'w dv. (3.13) 

an n 

If K is only a perturbation of 1 (see Fig. 3.2), i.e., 

(3.14) 

the last relation becomes: 

nB(<h;u,w) = J [uA-y+61 (w)- wA1 (u)] ds = J V'u(<h)V'wdv. (3.15) 
an n 

Exercise: Prove the two preceding relations using the Stokes formulas. 

With the preceding notations, assuming the following linearisation hy­
pothesis with TJ as a small parameter: 

• 1 = ro + 'f/11 + l(TJ2
), 

• U = Uo + 'f/Ul + l(TJ2
), 

• w = wo, 
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-
FIGURE 3.2. Body with perturbed {left) and unperturbed {right) conductivity. 

we obtain the following linearized reciprocity gap: 

RB(A-y0 ; uo, wo) 

= j [A'YO ( uo )wo - A.,. ( wo )uo] ds = j V' uo ( rrf1) V' wo dv. (3.16) 
oo n 

Exercise: Find the preceding reciprocjty relations directly by using po­
larization and series expansions of Q-y, A-y. 

Calderon's uniqueness theorem. Calderon [3) was the first to pro­
pose the foregoing linearization of the reciprocity relation. Moreover he pro­
posed a choice of the unperturbed field uo and the adjoint field wo showing 
that 'Yl can be identified from this relation. He chose the harmonic functions: 

where: 

uo = exp( -i( · x), 

C = ~(m + im.L), 

lml = lm.LI, 

wo = exp( -i( · x), 

- 1 .L C=
2
(m-im ), 

m·m.L =0. 

This choice transforms Eq. (3.16) into: 

j (rrn) exp{ -im · x) dv = 'RB(uo, wo, A.,), 
n 

(3.17) 

(3.18) 

showing that the spatial Fourier transform of the conductivity perturba­
tion ('TJ'Yl) is completely determined by the Dirichlet-to-Neumann data map. 

In the last decade this method was exploited by many authors [4, 5, 2, 6, 7) 
to obtain various properties in the identification procedure. 
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3.1.3. The error on constitutive law 

Up to now, we discussed various techniques stemming from the variational 
form of the equations of the problem using a series of privileged solutions 
to be used as test functions. These considerations apply to the reciprocity 
principles but also to the technique developed by Calderon. 

At this point let us pass to another class of techniques, in which the 
problem is reformulated as a minimization problem for a well chosen cost 
functional. Without getting into the details we can already state that it is 
generally a constrained minimization problem and that a series of questions 
and answers for this general form problem statement will be discussed in the 
next two Chapters. 

In this framework the identification problem of an inhomogeneous con­
ductivity can be stated in the following form: 

Find 'Y minimizing ECL(E, a, 1) under the constraints f. E K A(~) 
and a E SA ( <p), where the error on the constitutive law is de­
fined by 

ECL(E, u, C)= j (u"Y-1u- 2uE + E')'E) dv. 

n 

divu = 0 u · nloo = <p 

! 

statically 
admissible 

t:r = 1'\lu t:=Vu 

i 

kinematically 
admissible 

FIGURE 3.3. The Tonti diagram in electrostatics (9). 
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In Fig. 3.3 we have plotted a scheme with the equations and boundary 
conditions forming the final electric conductivity problem. On the left hand 
side we have the equilibrium equations relating fluxes and on the right hand 
side we have the equations defining the potential. 

From a historical point of view, this error functional was first defined by 
Wexler around 1985 to determine the permeability distribution of aquifers. 
Second, numerical applications in the electric case were discussed by Kohn 
and McKenney (8). More theoretical results, like convexity of the error func­
tional and existence and uniqueness of the minimum procedures were dis­
cussed in (2). Similar error functionals were proposed for elasticity and other 
problems and will be discussed in the next Sections. 

3.2. Elasticity 

We shall explore the next identification problem of distribution of elastic 
coefficients using a similar framework as in the case of electric coefficients. 

Let us consider an elastic body n with the boundary an under the hy­
pothesis of small strains and in the absence of initial stress field. The vector 
field of the displacements u is a solution of the following elliptic system of 
PDE's: 

divC(z) Vu = 0, X En, (3.19) 

with C the positive definite fourth-order tensor of elastic moduli. This tensor 
has the following symmetries in the Cartesian coordinate system: 

(3.20) 

which assure the existence of the energy potential fu~ctional and, respec­
tively, the symmetry of the stress tensor. 

In the case of elastic identification problem, we shall describe most of the 
properties of the general anisotropic C; and specific cases, like isotrpy: 

(3.21) 

will be mentioned, when needed. The classical boundary conditions are sim­
ilar. to the ones in electricity: 

• the Dirichlet boundary condition, i.e. the displacements u = e are 
prescribed on the boundary, 
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• the Neumann boundary condition, i.e. the boundary tractions u·n = c.p 
are prescribed on an. 

Regarding contact boundary conditions, one can remark that they introduce 
a nonlinearity in the system and will therefore be discussed in the next Chap­
ter. 

In the direct problem, one wants to recover the displacement field u from 
the given Dirichlet or Neumann boundary data, assuming that the tensor 
field of the elastic moduli C ·is known in advance. Recall that this problem 
has a unique solution with the Dirichlet boundary condition and a unique 
solution up to a rigid displacement for the Neumann boundary condition. 

As we already know, the inverse problem proposes to recover the un­
known field of electric conductivity C from pairs of over-specified boundary 
conditions (e, c.p). The data pair represents the results of an experiment where 
one would impose the displacement e on the boundary and measure the cor­
responding boundary traction c.p. 

The general character of the elasticity problem is similar to the preceding 
electricity problem. However, the complexity is increased as we pass from 
scalar fields to tensor fields. 

The Dirichlet-to-Neumann data map. Exactly as before we can 
imagine that we dispose of all imaginable experiments and define the 
Dirichlet-to-Neumann data map: 

A..., : ~ ---+ Ac(~) = <.p, (3.22) 

mapping each boundary displacement e in the corresponding boundary trac­
tion c.p for the body with elasticity tensor C. 

Using this definition, the inverse problem leads to the identification of C 

from the Dirichlet-to-Neumann data map Ac. 
Of course one would like to answer the same questions about Ac as in 

the electric case. 

3.2.1. The difficulty with distributed coefficients 

In the electric case, we have shown that a non-uniqueness problem arises 
in a one-dimensional example when one tries to identify the conductivity 
from the Dirichlet-to-Neuman data map. Let us consider a similar example in 
elasticity: an elastic ball of radius R under the conditions of radial symmetry 
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Solution u et u_N pour N = 2,8 Contrainte &igme et sigme_N pour N = 8,10 

1. 41----+----t---ir----+- ----

1. 2 -----+----t-----+----+---·- -
---

:; 0. 8 1-----+---1-----+---- r----­
:::1 

0. 61----+----+------ - -- -- ·-

0 . 41---·--+-----·+----+-----+-·----t 

0. 21-----+--- ----+----+----1 

0.6 o. 7 0.8 0. 9 

Coefticient lambda et lambda_N pour N = 8,10 

j 0. 2t----""!'--=-----f"'-..-.;::-f----ft-+-~----t 
~ 

... 

., 
E 
-~ 0. 5~---1--
!/) 

Coefticlent mu et mu_N pour N = 8,10 

FIGURE 3.4. The perturbed and unperturbed distributions of the radial displace­
ment (upper left), radial stress (upper right) and of the elastic moduli >. (lower 
left) and respectively J.-L (lower right) in the case of an elastic ball. 

(see Fig. 3.4). In this case, the equations of elasticity are reduced to: 

a (.A+2JL a 2 ) JL' 
ar r2 ar (r Ur) - -:;:ur = 0, r E [O,R]. (3.23) 

On the one hand, we have the unperturbed solution corresponding to the 
radial displacement: 

Ur(r) = 1 (a.24) 

and the elastic moduli: 

1 
.A(r) = 2 - 2JL(r). (3.25) 

On the other hand we can construct a family of perturbed solutions ( N E N) 
with radial displacements: 

u~ (r) = 1 + ~r sin Nr + N;r2 cos Nr (3.26) 

http://rcin.org.pl



54 3. IDENTIFICATION OF DISTRIBUTED FIELDS 

and the elastic moduli: 

r2 

N j rdr 
J.t (r)=J.to+ 1 . 1 ' 

1 + Nr s1nNr + N 2r 2 cosNr 
r1 

N 1 N A (r) = 
2 

N - 2JJ, (r). 
+cos r 

(3.27) 

We note that similarly to the electric case there is no convergence of the 
perturbed moduli AN toward A in spite of the convergence of the perturbed 
boundary displacements and stresses toward the unperturbed ones. 

This actually shows that the uniqueness and stability problems can be 
encountered in solving inverse problems. More precisely, we can speak of a 
weak continuity, because small errors in the input data can lead to large 
errors in the final solution. 

Exercise: Prove the relations of this Section. 

3.2.2. Variational formulations 

The Dirichlet-to-Neumann data map and the energy functional. 
Similar to the reasoning done in the electric case, one can directly relate the 
Dirichlet-to-Neumann data map to the mechanical work done on the surface 
of the body: 

Ac +--+ Wc(u,v) = j u·Ac(v)ds. 
an 

(3.28) 

We can also introduce the energy functional Q C for each fourth-order tensor: 

c -+ Qc 

as a functional defined on displacement fields: 

Qc = ~ j 'i7u : C : 'i7v. 

n 

Exercise: Polarization Q'Y-+ A-y. Show that 

4 j v · Ac(v)ds = Q'Y(u + v)- Q'Y(u- v). 
an 

(3.29) 

(3.30) 
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Exercise: Clapeyron Energy Theorem A'Y ~ Q'Y. Show that 

Q7 (u) = ~ j u · Ac(u)ds. 
an 

55 

Non-uniqueness in the anisotropic case. In the foregoing relations 
between Ac and Q c we have not used any information involving the mate­
rial symmetries of C, meaning that they hold for any entropy. 

As in the electric case, where Kohn and Vogelius (2) showed that we 
can construct two conductivity matrices which will correspond to the same 
Dirichlet-to-Neumann data map, it was shown in [10] that one can construct 
two different fields of elastic moduli L and C, equally related through a diffeo­
morphism 1/J, such that the two bodies have the same Dirichlet-to-Neumann 
data map: 

(3.31) 

Exercise: Find the relation between the two conductivities using the 
equality of the two energies Q c = Q L and the fact that the solution should 
be related through 

1Vy = VK, 0 1/J. 

Hint: Use the formula for change of variables. 

However the complete discussion is more complicated here as both tensor 
Land C have to respect the symmetry relations (3.20). 

Betti reciprocity gap. If one applies the Betti reciprocity relations for 
two different bodies occupying the same volume nand having two different 
fields of elastic moduli: 

• u solution of div c V'u = 0 in n, 

• w solution of div LV'w = 0 inn, 

one obtains the following reciprocity gap: 

jlu · Ac(w)ds- w · AL(u)] ds = j 'Vu: (L- C): 'Vwdx. 

an n 
(3.32) 
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If L differes from C by a small perturbation, i.e. L = C + 6C, we can write 
the reciprocity gap in the following form: 

1l8(6C; u, w) 

= j[uAcHC(w) ds- wAc(u)[ ds = j Vu: .SC: Vvodv. (3.33) 

oo n 

With the preceding notations, assuming the following linearisation hypothesis 
with rJ a small parameter: 

• C =Co+ ryC1 + l(ry2
), 

• U = Uo + rJU! + l(rJ2), 

• w = wo, 
one obtains the following linearized reciprocity relation: 

1?.B(.SC; uo, wo) = J!uoAcHC(wo) ds- w Ac(u)J ds 
an 

= j Vuo: rtCt: Vwodv. (3.34) 

n 

Exercise: Prove the preceding relation using Stokes formulas, directly 
by using polarization and series exp811Sions of Q c, Ac. 

Exercise: Prove similar relations in the case of a elastodynamic problem: 

div C'\1 u = pu 

under the assumption that both C and p can vary between the two bodies. 

Ikehata 's uniqueness theorem. Ikehata [ 11 J used the linearized reci­
procity relation (3.34) for an isotropic elastic body. The elastic moduli are 
represented by (.X+ 6-X, J.L + 6J.L), the Lame moduli. 

The technique of the proof was the one given by Calderon (3) in electricity, 
i.e. constructing special solutions of the unperturbed equations, such that the 
first order term of the deformation energy of the body will provide a spatial 
Fourier transform of the perturbed moduli (6-X, 6J.L). 
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In order to introduce the fields proposed by Ikehata, let us introduce the 
following notations: 

1 . C = 
2

(m + zm.l), 

( 1 = ~(m + im.l), 

lml = lm.ll, 

- 1 .l C = 
2
(m- im ), 

'2 = _,1, 
m · m.l = 0. 

The first family of test functions ( uo, vo) is then defined as: 

Ui = v( exp(-x. Ci)), i = 1,2, 

and the second family of test functions ( uo, vo) has the form: 

(3.35) 

(3.36) 

Uij = (Ao + 2p,o) !:::. 9ij - (Ao + J.to)V( +9ii) (3.37) 

with 9ij biharmonic: 

(3.38) 

If el = ullan and e2 = u2lan then the linearized reciprocity relations is 
written for the first family of test functions as: 

If e3 = U12lan and e4 = U21lan then the linearized reciprocity relations is 
written for the second family of test functions as: 

j ea dA(>.o ,I'<J) [( OA, OJ1)J(e4 ) ds 
an 

=~1:1
4 j 20-X exp(-v'=Ix·m)dx 

n 

lmi
4 J + J.£5-

4
- 2 8p, exp( -J=Ix · m) dx 

n 

+ (A0 + 11o? 1";1
4 

<:f (;2 j 2xT x OA exp( -Rx · m) dx. 

n 

(3.40) 
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These relations prove that 8p, 8-X are obtained as an inverse Fourier transform 
of the measured boundary values and as a consequence we conclude that the 
measured boundary values expressed as the Dirichlet-to-Neumann boundary 
data map determine uniquely the perturbation of the elastic moduli. A sketch 
of the passage to a more general uniqueness theorem is given in (9]. 

From a practical point of view, we note that the inverse Fourier transform 
is not appropriate for simple inversions as a series of numerical oscillation 
problems might be encountered on the boundary of the perturbation. We 
will therefore explore some other numerical techniques to compute unknown 
perturbation from boundary measurements. 

3.2.3. The error on constitutive law 

Let us discuss now a practical approach to the elastic inverse problem 
defined in an ideal case as: 

Identify the distribution of elastic moduli C from the knowledge 
of the Dirichlet-to-Neumann data map. 

One of the convenient techniques for a numerical reconstruction algorithm 
is a minimization approach, which is based on two choices: one regarding 
the cost functional to be minimized and the second pertains to the descent 
algorithm. 

In this ~ection, we shall explore an extension to elasticity of the error on 
constitutive law presented in the last Section for the electric case. We shall 
leave the discussion on more classical least square cost functionals as well as 
on the direct differentiation and the adjoint state method to the ~ext Chap­
ter. We shall start the discussion from a global point of view analysing the 
structure of the elasticity equations as presented by Tonti (9] (see Fig. 3.5). 
In this diagram, one can remark that on the left hand side we find the stat­
ically admissible fields (SA) defined by the given boundary traction <p and 
on the right hand side, the kinematically admissible fields ( K A) defined by 
the boundary displacement e. As such, only the constitutive relation: 

a=Ce (3.41) 

relates the two sets. It seems therefore natural to define a distance on the 
constitutive relation and then to try to match using a field of elastic moduli C 
preserving the symmetry relations (3.20), a displacement field u E K A(E) 
and a stress field a E SA( <p). 
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(¢,H) 

1-div u = 0 u · nl8n = cp I 
i 

! 
u=V<P+rotH ul8n=e 

! 
u =rot rot* B 

i 
I u = Ce I I e = !(V + VT)u I 

! 
B 

statically 
admissible 

rotrot*e = 0 
kinematically 

admissible 

FIGURE 3.5. Tonti's diagram in elasticity [9). 

The error on constitutive law is defined as: 

ECL(E,u, C)= J IC-tu- ctEI2 dv 

n 

which is also equivalent to: 

ECL(E,u,C) = J (u: c-l: (1'- 2uE + E: c: E) dv. 

n 

(3.42) 

(3.43) 

In the last formula we note that the physical dimension of the EC L is the 
energy, and that actually it is measures a distance between strain energy and 
stress energy taking into account the work of the boundary conditions. 

This error functional can be first retrieved in the works of Ladeveze and 
Leguillon [12] as a measure of the error of finite element computations. The 
second time it has been used as a cost functional for identifying spatially dis­
tributed electric conductivities by Kohn et al. [2, 8] (see Sec. 3.1.3). Therefore 
the Inverse Problem can be stated as: 

Find C minimizing EC L( e, u, C) under . the constrains 

e E KA(e) and u E SA(cp). 

The expression of the EC L conducts straightforward to an alternating 
direction minimization algorithm, where at each iterations one minimizes the 
strain, respectively the stress energy, which are equivalent to ELC in these 
directions and the updates of the elastic moduli by minimizing the ELC with 
given strain and stresses. This will be discussed in the next Section. 
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60 3. IDENTIFICATION OF DISTRIBUTED FIELDS 

The algorithm. In a practical case one can suppose that we dispose 
of a finite number of displacement-traction boundary data pairs: (~i' <t'i)[:1 . 

For each data pair (ei, <t'i) we shall have a strain and a stress field (ei, ui) 
and as such we shall define the ELC for the all the measurements as: 

N 

ECL(€1. ... , €N,O"b ... ,uN, C)= I; j IC-~u;- C~€;12 dv. 
t=I n 

An integration by parts yields the following expression: 

ECL(€I, ... '€N, O't, ... 'O'N, C) 
N 

= L f (u;, c-1 
, u;- 2u;€; + €; , c, €;) dv 

t=l n 
N N 

= L f ( u i , c-1 , u i + €; , c , €;) dv - 2 L f {; . 'Pi ds. 
t=l n t=l 

(3.44) 

(3.45) 

As (ei, <t'i) are known quantities, one can reduce the minimization of the 
ELC to the minimization of sum of strain and stress energies. 

Each iteration of the algorithm consists of the following steps: 

1. with C fixed (as determined by the previous step) minimize the strain 
energies, i.e. solve theN Dirichlet problems (imposed displacements): 

div(CVui) = 0 

Uilan = ei 
in n, 
on an, (3.46) 

2. with C fixed (as determined by the previous step) minimize the stress 
energies, i.e. solve the N Neumann problems (imposed forces): 

div( CVui) = 0 in n, 
CVuilan = <t'i on an, 

(3.47) 

3. with (ei)~1 determined by 1 and (ui)~1 determined by 2, update C, 
by minimizing: 

(3.48) 

The last step is simplified if one uses the spectral decomposition of the elas­
ticity tensor Q. For detailed presentation of different classes of anisotropy, 
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see [13, 14, 15). Let us simply remark that in the isotropic case, the eigen­
values are the bulk and the shear moduli: 

K = 3.X + 2J.L 
3 ' 

(3.49) 

and they correspond to the spherical and deviatoric part of the strain and 
stress fields which play the role of eigenvectors: 

1 
e = 3 trel + deve, (3.50) 

1 
u = 3 trul + devu. (3.51) 

The minimization of the ELC with respect to K and G with fixed (ei, ui)~1 
gives: 

(3.52) 

This method has the advantage of decreasing the value of I at every itera­
tion, even if the convergence rate proves to be small as we approach to the 
minimum. 

Numerical results in 2D Elasticity. In Figs. 3.6 and 3.7, we present 
(for a detailed description see [15]) the real and the reconstructed distribution 
of different elastic moduli obtained with the algorithm presented before. The 

real 2 iterations 
10% noise 

14 iterations 
0% noise 

FIGURE 3.6. Copper corner inclusion in aluminum matrix, real distribution of 
the Poisson coefficient (left) and reconstruction with noise (middle) and without 
noise (right). 
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real 

3. IDENTIFICATION OF DISTRIBUTED FIELDS 

5 iterations 
moments 
0% noise 

32 iterations 
moments 
b% noise 

FIGURE 3. 7. Copper corner inclusion in aluminum matrix, real distribution of 
the Young moduli (left) and reconstruction with noise (middle) and without 
noise (right). 

considered material symmetry was cubic symmetry and the values of the 
moduli correspond to aluminum and copper. 

l?JL1 = 66 · 109 Pa, VJLI = 0.32, 
l?}ll 9 

GAl= 2(1 +VAt) = 25.10 Pa, 

l?cu = 66 · 109 Pa, vcu = 0.42, Gcu = 75.109 Pa. 

The measurements correspond to parabolic and concentrated force distribu­
tions as well as localized moment distributions. They have been simulated 
by direct computations and eventually distorted by white noise. 

Spatial localization property. An intriguing result of the numerical 
reconstruction using the ELC has been the good spatial localization of the 
defects or perturbations of the elastic moduli through the error on constitu­
tive law. The good spatial localization of defects of the error on constitutive 
law have been reported in a series of papers [16, 17, 10, 15, 18]. 

In order to explain the spatial localization property of the ECL functional 
we shall examine o series of differences between solutions of perturbed and 
unperturbed problems and express them as boundary integral equations (for 
a complete discussion, see [19]. 

In the sequel we shall consider the following ·Series expansion of the fields 
depending on a small parameter 17 E R: 

• c = c 0 + ,.,c 1, 

http://rcin.org.pl



3.2. ELASTICITY 

VAL - ISO VAL - IS 

A 2.87E+l0 A 2 . 11E - 0 

B 3 . 21E+l0 B 7.39E-0 

c 3 . 56E+l0 c .13 

3 . 90E+l0 . 18 

4.24E+l0 .23 

I 4 . 59E+l0 I . 28 

I 4 . 93E+l0 I .34 

I 5 . 27E+l0 I . 39 

I 5 . 61E+l0 I . 44 

I 5 . 96E+l0 I . 50 

I 6 . 30E+l0 I . 55 

I 6 . 64E+l0 I . 60 

I 6 . 99E+l0 I .65 

I 7 . 33E+l0 I . 71 

FIGURE 3.8. Spatial localization property during a torsion experiment: spatial 
localization of the inclusion {left) and spatial distribution of the error in consti­
tutive law {right). 

• u = uo + 'T/Ul + o( "12), 

• u = uo + 'T/lTl + o('T/2), 

where the support of cl is strictly included in the interior of n. 
The zero order displacement uo is solution of the following equation: 

63 

div(Co: Vuo) = 0, (3.53) 

with boundary conditions: 

uol80 = w or uonl80 = t. (3.54) 

The stress field uo can be expressed using a classical integral representa­
tion: 

ao(z) =- j Pc
0
(z,y) ·Uo(y)dSy 

80 

+ j Qc
0 
(z, tl) · (ao(tl) · n(y)) dSy, (3.55) 

80 

with Pc
0 

and Qc
0 

vectors fields computed from the Green function of the 
domain. 
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64 3. IDENTIFICATION OF DISTRIBUTED FIELDS 

Integral representation formulas {20/ 

The fundamental solution or the Green function Gc is defined on an open set 
() 

E compatible with n by the equations: 

div Lo VyGbo (x, y) + 8(x- y)ek = 0. 

For x E n it can shown that the elastic stress field can be expressed as: 

O"ij(x) =I Co: VxGc
0
(x,y) · tdSy 

an 

(3.56) 

-In· Co: VxGc
0
(x,y) · wdSy +I Co: VxGco · bdVy, (3.57) 

oo n 

where w, t, b denote, respectively, the vector of boundary displacement, boundary 
traction and body forces. n represents the unit outward normal of the domain. The 
following notations will be used for the third order tensor fields: 

Qc
0
(x,y) =Co: VxGc

0
(x,y), (3.58) 

Pc
0
(x,y) = n ·Co: VxGc

0
(x,y) = n ·Co: VxQc

0
(x,y). (3.59) 

If U.o has been determined with the imposed displacement w we can 
further write: 

uo[w](:z:) =- j Pc
0 
(x, y) · w(y) dSy 

an 

+ j Qc
0
(x, y) · Ac

0
(w)(y) dSy. (3.60) 

an 

The first order displacement u 1 is solution of the following equation: 

div(Co: Vu1) =- div(Ct : \7uo), (3.61) 

with boundary conditions: 

(3.62) 

The first order perturbation displacement is therefore generated by the body 
force term corresponding to stresses created by the zero displacement and 
the perturbation of the elastic moduli. 

The Dirichlet-to-N euman data map corresponding to this problem will 

be denoted by Ac c . o, 1 
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Similarly, we can rewrite the perturbed system of equations: 

div(C: V'u) = 0 

under the following equivalent form: 

div(Co: V'u) =- div(17C1 : V'u), 

which yields the following integral representation of the stress field: 

u(x) = j Co: 'VxGc
0
(x, y) · divy(7JCJ : 'Vu(y)) dVy 

n 

65 

(3.63) 

(3.64) 

- j P Co (x, y) · u(y) dSy + j Qc
0 
(x, y) · (u(y) · n(y)) dSy. (3.65} 

an an 

The difference between the nonlinear and the zero order solution, u[w] and 
u 0 [w], can be written after an integration by parts as: 

u[w](x)- uo[w](x) 

= (fp) j (Co: 'Vx'VyGc/x,y)) · (C1: 'Vu(y))) dVy 
n 

+ j Qc
0
(x,y) · (Ac(w)- Ac

0
(w))dSy, (3.66} 

an 

where (fp) denotes that the finite part of the integral. 
A close inspection of the integrals shows their behaviour for X E n \ 

supp C 1. For a three dimensional problem: 

• the first term behaves as lx- yl-3 . As the inclusion lies in the interior 
of the body, supp c1 c n, it follows that the integral decreases as r-3 

where r = d(x,suppC), 

• the second term behaves as lx- yl-2 , it then follows that the integral 
decreases as r- 2 with r = d(x, 80). 

For two dimensional problems, the decrease is in r- 2 from the inclusion 
(r = d(x,suppC)) and in r-1 from the boundary (r = d(x,80)). 

A direct consequence of this behaviour, whether in two or three dimen­
sions, is that the stress difference u[w]- uo[w] is negligible outside the sup­
port of the perturbation of the elastic moduli c1 and far from the boundaries. 
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The error on constitutive law can also be expressed in one of the following 
equivalent forms: 

.:J(C, £,a) = j (a- C: F-) : c-1 
: (a- C : F-) dV 

n 

= J ( c-1 : a - F.) : c : ( c-1 : a - F.) dv. 
n 

(3.67) 

For these fields one can write the error on constitutive law from (3.67) as: 

.:J(C,F-c[w],ac[t]) = j (uclwJ- uc[tl): (ac(w]· n- ac[t]· n) dS 
an 

= j (w- uc[tl) · (ac(w]n- t) dS. (3.68) 
an 

Exercise: Show using integration by parts and the exact boundary con­
ditions that the preceding equations hold. 

We note that if (w, t) is a measurement pair, i.e. t = Ac(w), then 
uc[w) = uc[t), consequently the ECL vanishes as expected: 

:J(C, €c[w], uc[t]) = 0. (3.69) 

The last boundary integral provides another physical interpretation for 
the ELC as the mechanical work provided by the error in displacements on 
the error on forces. 

Let us now assume that ( w, t) is a measurement pair, i.e. t = Ac ( w) 
and compute the zero order approximations u 0 [w) and u 0 [t]. 

Using the solution of the unperturbed problem u[w] = u[t] we obtain the 
following expressions of the error on constitutive law computed for the zero 
order fields: 

.:J(Co, F-o[w], tro(t]) = j (F-o[w]- F-o[t]) : Co : (F-o[w]- F-o[t]) dV 

n 

= j (F-o[w]- F.[w]): Co: (F-o[w]- e(w]) dV (3.70) 
n 

+ j (F. [t] - eo(t]) : Co : ( F-[t] - F-o[t]) dY. 

n 
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The ELC is now expressed in terms of the difference between the per­
turbed and the zero order solution of the direct problem which have been 
previously computed. 

The integrand in the ECL is therefore negligible far from the support 
of the inclusion and the boundary. More precisely, in the three dimensional 
problem they behave like: 

• r-6 as a function of the distance to the support of the inclusion r = 
d(x,suppC), and as 

• r-4 as a function of with the distance to the boundary r = d(x, an). 
For two dimensional problems, the decrease is in r-4 from the inclusion 
(r = d(x,suppC)) and in r-2 from the boundary (r = d(x,an)). 

3.2.4. ECL for Love-Kirchhoff Plates 

Let us consider a thin elastic plate in the classical framework of the Love­
Kirchhoff plate theory occupying in the reference configuration a regular 
domain n with boundary an. nand twill denote the normal and tangent 
unit vector on the an. 

Let w, k , M stand respectively for the deflection field of the plate, the 
second-order tensor of generalized strain, corresponding to curvature, and the 
second-order tensor of generalized stress, corresponding to bending moments. 
Considering a stress-free initial state and no body forces, the governing equa­
tions on n are: 

k= '\1'\lw, M=Dk, divdiv M = 0, (3.71) 

where D is the fourth-rank tensor of the bending rigidities, related to the 
Hooke elasticity tensor in the classical way. D is positive definite and for 
which the classical symmetry relations: 

a:, {3, ,, 4> = 1, 2. (3.72) 

Dis supposed to be inhomogeneous, i.e. D = D(x), X En, unless specified 
otherwise. 

The above equations and the prescription of two of the following quanti­
ties on the boundary: 

• deflection: w = 4>, 

• normal derivative of the deflection: : = 1/J, 
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3. 64E+l0 

5 .03E+l0 

6.26E+l0 

:2. 75E+ll 

1. 55E+l2 

2.83E+l2 

3 . 47E+l2 

4 .75E+l2 

5.39E+l2 

6.03E+l2 

7.31E+l2 

9.86E+l2 

1 .11E+l3 

1. 31E+l3 

FIGURE 3.9. Inclusion (top) and spatial distribution (bottom) of the error on 
constitutive law obtained for a parabolic pressure distribution on the boundary 
located on the lower side of the square. 
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• moment: nMn = cp, 

• forces: ! (nMt) + (divM) n = \11, 

describe completely the classical direct problem for elastic plates. For this 
problem uniqueness of the solution as well as continuous dependence of the 
boundary values and elastic moduli are assured. 

The mathematical inverse problem for plates (see (21, 22]), supposes that 
the tensor of the bending rigidities D is not known and that it has to be 
recovered from the knowledge of the Dirichlet-to-Neumann data map: 

nM : ( w ) ~ ( nMn ) . 
~ ft (nMt) + (div M) n 

(3.73) 

This idealized problem of non-destructive testing and its electrical analogue 
have extensively been discussed in the mathematical literature. One of the 
important addressed questions is uniqueness, stated in the context of plates 
as follows: If two two plates having bending rigidities D and D' give the same 

response to measurements, are necessary D and D' equal ?. This problem is 
more difficult than the global elastic one as explained in [22]. 

For the isotropic elastic plates a uniqueness result for the linearized prob­
lem has been given by Ikehata [11]. He has showed that the Young modulus 
and the Poisson ratio can be identified from the Dirichlet-to-Neumann data 
map if their boundary values and their derivatives are known and if they are 
close enough to a constant. 

For anisotropic elastic plates general uniqueness can not be expected as in 
the case of three dimensional elasticity [10], as explained by Ikehata in (22). 
The uniqueness of the linearized problem is related to two classes of ho­
mogeneous elasticity tensors which coincide with the ones defined by Lehnit­
skii [23] for the study of the general solution of the plate equation. The global 
uniqueness questions remains to our knowledge still an open problem. 

From an engineering point of view, one can remark that problems are 
stated in a slightly different manner. One has to recover the bending rigidities 
D from a series of simultaneous displacement and force measurements and 
generally a series of additional information is given. In a certain number of 
cases one can accept that bending rigidities are homogeneous or deflection can 
be measured on a portion of the surface of the plate. A series of experiments 
and and different methods for determining homogeneous bending rigidities 
have already been described in a series of papers (24, 25, 26). However, as it 
will be shown in the sequel, these information are sufficient under a certain 
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number of assumptions to obtain some informations about a inhomogeneous 
distribution of bending rigidities. The measured data will be represented by 

a series of simultaneous measured boundary fields { ¢i, 1/Ji, ~i, \lli}i=l, ... ,N and 
eventually the corresponding series of measured deflections and concentrated 

forces {Vi, fih=I, ... ,N on a certain number of interior points. 
Considering the constitutive equation apart, it is natural to form the space 

of kinematically and statically admissible fields, KA( ¢, 1/J, v) and respectively 
SA(~, \11, f). This permits to uncoupling the general laws of dynamics and 

kinematics from the general problem and to state the inverse problem as a 
constrained minimization problem: 

Find the distribution of bending rigidities D and deflections 

Wi E KA(¢i, 1/Ji, Vi), (i = 1, ... 'N), 

and the bending moments 

Mi E SA(~, \11, f), (i = 1, ... , N), 

minimizing the error on the constitutive law (ECL}: 

I(D, {w;h=I, ... ,N, {M;h=I, ... ,N) =. 2: j ID-112M;-D112k;l2dv. 
t.=l, ... ,N 0 

The numerical results present the identification of an inclusion in case of 
an isotropic elastic plate. The tensor of bending rigidities has in this case the 
form in the Cartesian coordinate system presented in Fig. 3.10. 

3.2.5. Notes 

A series of other identification problems have equally been studied using 

the error on constitutive law, we shall just briefly cite next some of main 
directions of research: 

Elastodynamics. A complete definition of the error on constitutive law 
in the case of elastodynamics as well as a short discussion in terms of the 
Tonti's diagram is presented in Bui [27). A more applied discussion involving 

also nonlinear material behaviour is done in [27) (see also the last note). 
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Reconstruction after 5 iterations 

Reconstruction after 20 iterations 

I 10 GP 
I 20 
I ao 

40 
50 
60 

I 10 

FIGURE 3.10. Real and reconstructed values of the Young modulus using d(1) = 
2a + b = Mp +M:n {left column) and d(2) = 2b = Mk 12 (right column) eigenelastic 

ku +k:z:z 12 

moduli. 

71 
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Vibrations. The error on the constitutive law has been defined for vi­
bration problems by M.Reynier in her Ph.D. thesis [28]. The method was 
developed to update stiffness and mass matrices of finite element models 
with respect to measurements. This approach has later been developed in the 
same direction and some recent results can be found in [29, 30]. An overview 
and review of the error on constitutive law with applications to model up­
dating is presented in [31]. This reference is interesting as it also discusses 
the extension of this error functional for nonlinear constitutive behaviour. 

Nonlinear constitutive behaviour. A first attempt to generalize the 
idea of error on constitutive law was proposed by L. Rota in his Ph.D. the­
sis [27]. He showed that using notions of energy, and complementary energy 
in the general framework of standard generalized materials, one can define 
a generalized error on constitutive law. He also tested this theoretical con­
struction in a series of identifications of constitutive parameters from dynamic 
impact experiments obtained on Hopkinsons bars. 
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Chapter 4 

Sensitivity computations: 

linear case 

4.1. Introduction 

In the preceding Chapters we have been studied inverse problems by 
trying to exploit the intimate properties of the problem formulation and we 
have shown that in this way a series of spectacular results can be obtained. 
However, it is not always possible to do this fine analysis and therefore in a 
certain number of cases inverse problems are reformulated as an optimization 
problem, i.e. as the minimization of a certain cost functional. The solution 
obtained by the minimization procedure is in such cases only an approximate 
solution in the sense of the cost functional, sometimes called a quasi-solution. 

If the inverse problem is defined as a minimization problem two main 
questions arise: 

• what is the choice of the cost functional? 

• what is the choice of the minimization algorithm ? 

4.1.1. The choice of cost functional 

In order to exemplify the importance of the choice of the cost functional 
in an inverse problem, let us analyse the identification of a square inclu­
sion in an elastic domain using boundary displacement and force measure­
ment ereal' c/Jreal. 
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The numerical experiment performed cop.sisted in moving a mock inclu­

sion in a similar domain and measuring the distance between the real and 

mock measurements for different positions of the mock inclusion using two 

error (cost) functionals, the error on displacements being defined by: 

EU ( cmock, cp'eal, ~'eal) = ~ J [u [ c mock, cp'eal J _ e ea1]2 ds. ( 4.1) 

n 

Here u[cmock, c.p] is the displacement obtained from the imposed force c.preal 

on the body with the mock inclusion cmock and the error on constitutive 

law, defined in the previous Chapter by: 

E LC ( c mock, c.preal, ~real) 

2 ·108 

1 . 5 ·10 

= ~ J [cmock- 1/2 a[cp'eall- c mock-1/2 e:[eealw dv. (4.2) 

n 

FIGURE 4.1. Comparison between the shapes of the least square distance in dis­
placement (upper row) and the error on constitutive law (lower row) for 2 mea­
surements on the boundary (left column) and 72 measurements on the boundary 

(right column) [1 , 2]. 
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The mock measurements consisted of a series of imposed parabolic distribu­
tions of pressure on the boundary. On each side qf the square body we have 
imposed 18 distribution and as a consequence we have disposed of 72 mea­
surements. 

For comparison, in Fig. 4.1 we have displayed the shapes of the error on 
displacement EU and the error on constitutive law ELC with respect to the 
position of the mock inclusion. In each case we have displayed on the left the 

error functional computed for two measurements and on the right row the 
error functional computed with the complete series of 72 measurements. We 
note that the minimum indicating the correct position of inclusion is found 
in all cases. However, in the case of the error in displacements and for a 
small number of measurements the shape of the error functional is more flat. 
This would probably impose more difficulties in a numerical identification 
method. 

4.1.2. The choice of the minimization algorithm 

They are two large classes of minimization algorithms, the first class uses 
only estimations of the cost functional and the second class uses estimation 
of the cost functional as well the estimations of its derivatives. 

In the no-gradient class, we can cite the dichotomy, the simplex method, 
the Monte-Carlo methods, more generally stochastic minimization tech­
niques, or the modern class of genetic algorithms and refer the reader to 
more specialized literature like [3, 4). We observe that these methods have 
the advantage of exploring in an extensive manner the parameter space, but 
are as such extremely expensive from the computational point of view. 

The class of gradient based algorithms, was extensively studied in the last 
decades and a series of excellent textbook exist on this subject [5, 6, 7, 8). 
Without getting in the heart of these algorithms we shall only explore next 
various methods of computing the gradient of the cost functional. 

Let us specify a certain number of important points that should be taken 
into account when choosing a cost functional and an appropriate minimiza­
tion technique: 

• existence of local and global minima, 

• stability, understood as the "rate" of continuity with respect to param­
eters and the engineering interesting scale of the same parameters, 
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• usage of a priori information about the parameter state and the un­
derlying engineering problem. 

Without giving a precise answer to these questions we shall try to emphasize 
their importance during the discussion of various examples in the sequel. 

Let us nest focus on the techniques for the gradient computation of a cost 
functional and let us start the discussion from a basic idea: the first order 
Taylor series expansion of the cost function: 

:J(c +~c)= :J(c) + \l c:l(c) · ~c + o(l~cl 2 ). (4.3) 

4.2. Linear elliptic systems 

4.2.1. The finite dimensional case 

Let us consider the following simple formulation of the problem: 

Minimize the cost functional :J(c, u(c)) with respect to c, un­

der the constraint that u(c) is a solution of the linear problem 
depending on the pammeter c: 

K(c)u(c) = f(c). (4.4) 

In the case of an elastic discretized problem using the finite element 
method: K, u and f would typically stand for the stiffness matrix, the 
displacement vector, and the force vector. The parameter c could express 
the elastic properties of structures, a control parameter of the load, etc. 

Finite Difference Method. One can simple rewrite the first order Tay­
lor series expansion and obtain a forward difference approximation for the 
gradient: 

\l cF(c) · ~c = F(c +~c)- F(c) + o(l~cl2 ). (4.5) 

As such we can estimate the value of the gradient of the cost functional 
\l c:l in the point :J(c, u) from the values of the cost functional itself for 
given small changes of the parameter ~c, i.e. :J(c + ~c, u(c +~c)), where: 
u( c + ~c) is obtained by solving the equation: 

K(c + ~c)u(c +~c)= f(c +~c). (4.6) 

If the parameter is a n-dimensional vector c = ( C! , c2, ... , Cn), com­
putation of the gradient with the preceding first order formula will then 
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require n + 1 direct computations, corresponding to c and the directions 
~Ci = (0, ... , 0, c;, 0, ... , 0), i = 1, ... , n. In this we use the following for-
mula: 

"il c,.:l(c) · t.c = .:J(c + t.t.~ - .:J(c) + o(lt.c;l2) ( 4. 7) 

for the computation of i-th component of the gradient. Let us note that 
other approximation formulas are equally available. The backward difference 

approximation is given by: 

"il e;.:J(c) · t.c = .:J(c) - ~(c- t.c;) + o(lt.c;l2), (4.8) 
Ci 

whereas the second-order accurate central difference approximation is ex­
pressed as follows: 

"il e;.:J(c) · t.c = .:J(c + t.c;;~:(c- t.c;) + o(lt.c;l2). (4.9) 

The finite difference method is very simple to implement as it depends 
solely on computations of the direct problem but is has two major drawbacks: 

• The truncation error in the gradient estimation is of the order of ~Ci. 
The smaller ~Ci, the smaller the error should be, if we were not to 
approach numerical round off errors in the computations. 
In relation with this phenomenon we could also point out, that more 
generally, numerical differentiation of data is a generally ill-posed prob­
lem [10, 15). 

• The n different additional problems ( 4.6) need to compute and inverse 
the stiffness matrix K ( c + ~c). And these are expensive numerical 
operations. 

Therefore one should, if possible, replace the finite difference technique by 
more precise and efficient method for computing the gradient based on ana­
lytical estimations of the gradient as presented below. 

Direct Differentiation Method. The differentiation of the cost func­
tional :J with respect to cis given by: 

8:1 8:1 du 
V' c:l(c, u(c)) = 8c (c, u(c)) + 8u (c, u(c)) · de, (4.10) 

or for each component c; ( i = 1, ... , n) of c: 

V' Ci:J(c, u(c;)) = ~:1 (c, u(c)) + ~:1 (c, u(c)) · ddu. 
uc; uu Ci 

(4.11) 

http://rcin.org.pl



80 4. SENSITIVITY COMPUTATIONS: LINEAR CASE 

The objective is to compute: 

: = (::.:: •... ,:;J. 
Toward this purpose let us differentiate equation ( 4.4) with respect to c in 
considering each component Ci: 

du dK df 
K(c)-d (c)+ -d (c)u(c) = -d (c). 

Ci Ci Ci 
( 4.12) 

As the unknown is ~ and as u( c) can be considered as known from the initial 
analysis ( 4.4) we can rearrange the preceding equation in the following form: 

du df dK 
K(c)-d (c)= -d (c)- -d (c)u(c), 

Ci Ci Ci 
(4.13) 

which yields the solution: 

d
du (c)= K-l(c) (ddf (c)- ddK (c)u(c)) . 

Ci Ci Ci 
(4.14) 

Substituting now in equation ( 4.11) we obtain the composed expression for 
the gradient 'V c:l: 

'V ci:l( c, u( Ci)) 

= 
8
8
:1 (c, u(c)) + 

8
8
:1 (c, u(c)) · K-1(c) (ddf (c)- ddK (c)u(c)) . (4.15) 

Ci u Ci Ci 

Defining this procedure as the direct differentiation method we can con­
clude that: 

• Exactly as in the finite difference method, the direct differentiation 
method is based on solving n + 1 additional problems. However, the 
direct differentiation method provides a mathematical exact gradient 
and eliminates all truncation problems of the latter. 

• The additional equations (4.13) have the same stiffness matrix K(c) 
as the equation of the initial problem ( 4.4). If the inverse stiffness ma-

trixes K-1(c) have been stored it implies that derivatives ddu (c) can 
Ci 

be efficiently computed by forming the right hand side of the equation 
and a backsubstitution. 

• The additional computational cost is therefore small after solving the 
initial analysis, compared to the additional cost in the case of the direct 
differentiation method. 
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Adjoint State Method. The adjoint state method starts from there­
mark that finding the minimum of a constrained functional is equivalent with 
finding the saddle point of an augmented (Lagrangian) functional. In our case 
we can define the Lagrangian as: 

C(c, u, u*) = :J(c, u)- u*T · (K(c)u- /(c)), (4.16) 

where the field u* acts as a Lagrange multiplier for the constraint. It is 
important to note that in our analysis we shall suppose that the variables 
(c, u, u*) are independent. 

The saddle point of the Lagrangian £ is characterized by a vanishing 
gradient: 

(
8
a£ , v*) = -v* · (K(c)u- f(c) 
u* 

'Vv* = 0, 'Vv~ ( 4.17) 

8£ aJ * 
(au'v) =au (c,u) · v- u · K(c)v = 0 'Vv, (4.18) 

(ac,d) = aJ(c,u)·v-u*· (aK(c)v- 81 (c) =0 
8c ac ac ac 

'Vd. (4.19) 

The notation of the gradient used before, introduces actually the Frechet 
differential of a functional and has been just used in this case in order to 
introduce the notations in the next paragraphs. (d, v, v*) are varying in the 
corresponding vector spaces of different fields which will not be specified here 
for the sake of simplicity. 

The first equations have u as unknown and expresses that the constraint 
should be satisfied: 

K(c)u- f(c=O. (4.20) 

It will also be called the direct problem. 

The next equation has u* as an unknown: 

aJ 
au (c, u)- u*T. K(c) = 0, ( 4.21) 

and is called the adjoint problem. Its solution is: 

* -r( )aJ( ) u = K c au c,u. (4.22) 

Let us note that the solution of the three equations provides the optimal 
solution of the inverse problem. This technique has been implemented in a 
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thermal inverse problem by Delattre, lvaldi and Stolz [9). Usually one will 
only try to estimate the gradient of the cost functional 'V cJ and find the 
complete solution only through a minimization procedure. 

If u is a solution of the direct problem, i.e. it satisfies the constraint, then 
the value of Lagrangian equals the value of the cost functional: 

:J(c, u) = .C(c, u, u*). 

If we differentiate both hand sides with respect to c and take into account 
that u* is a solution of the adjoint problem, we obtain: 

a.c aJ • (aK at ) 
('V CJ, d) = ( ac , d) = ac ( c, U) · V - U · ac ( C )v - ac ( C • (4.23) 

As expected, the last equation corresponds to the solution obtained by the 
direct differentiation method. 

For the adjoint state method we conclude that: 

• The gradient computed through the adjoint state method is exact. 

• The gradient computation requires the solution of a single additional 
equation 

• The adjoint problem is defined by the adjoint stiffness matrix KT. If 
K is symmetric, as in the case of electricity or elasticity, finite element 
problems, and its inverse, can be stored and the computation of the 
adjoint field is very fast. 

• The complete solution of the saddle point of the Lagrangian provides 
directly, i.e. without any minimization procedure, the solution of the 
optimization problem. 

Exercise: {10} Compute the gradient of the following cost functional: 

where the u = (u~, u2) is the displacement solution of the spring system of 
Fig. 4.2, using the direct differentiation and the adjoint state method. C is a 
symmetric 2 x 2 matrix and w is a measured displacement vector. 

Hint: Recall that the stiffness matrix and the force vector are written as: 

f = (/
1

) . 
. !2 
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FIGURE 4.2. A simple system of springs. 

4.2.2. The infinite dimensional case- the continuous problem 

We shall now extend the techniques developed in the preceding subsection 
for the finite dimensional case to the continuous problem which represents 
an infinite dimensional case. 

We shall consider that the following problem formulation of the problem: 

Minimize the cost functional :J(c, u(c)) with respect to c, under 
the constraint that u( c) is a solution of the linear elastic problem 
depending on the parameter c: 

div C(c)V'u(c) + f(c) = 0 

u(c) · n = (C(c)V'u(c)) · n = cp 

Va; En, 

Va; E 00, 

(4.24) 

(4.25) 

where C is the fourth-order tensor of the elastic moduli, u is the 
second-order tensor of stresses, n the outward unit normal on the 
boundary and cp is the measured traction vector on the boundary. 

In the case of the identification of distributed elastic moduli, we have: 
c = C. A classical "least square" cost functional would take in this case the 
following form: 

.:J(c, u(c)) = ~ j le- u(c)l2 ds, (4.26) 

an 

where the norm is to be chosen either as a £ 2-norm or a higher order norm 
like H 2, ••• including also the derivatives of functions. We recall that e is the 
measured boundary value of the displacement which we would like to attain 
in the solution of the minimization problem. 

A more general expression for the cost functional could be: 

.:J(c, u) = j in(c, u) dv + j ioo(c, u) ds. ( 4.27) 

n an 
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The functions In and lan express similarly to the earlier example a distance 
between measurements and predictions: 

jn(c, u) = 0, ( 4.28) 

Moreover, they can also include regularisation terms, imposing a minimal 
norm of parameters to be identified, i.e., 

As in the finite dimensional case, we can define a Finite Difference Method 
to solve this optimization problem. Its details and subsequent advantages and 
inconveniences are similar in both cases and we shall not develop this method 
again in the continuous case. 

Let us however discuss in more detail the Direct Differentiation and the 
Adjoint Method. 

Direct Differentiation Method. We had previously started this 
method by differentiation of the cost functional for each component Ci 
( i = 1, ... , n) of c: 

a:T a:T du 
V ci:T(c, u(Ci)) =-a (c, u(c)) +-a (c, u(c)) · -d , 

Ci u Ci 
(4.29) 

and the objective was to compute: 

( 4.30) 

Exactly as in the discrete case, one can differentiate the direct problem, and 

obtain a series of n problems defining the displacement fields ddu (c): 
Ci 

div (c(c) : Vddu (c)) + div ddC (c)Vu(c) + dd/ (c)= 0 
Ci Ci Ci 

Vx E 0, (4.31) 

du ( du ) dcp -d (c) · n = C(c): V-d (c) · n = -d (c) 
Ci Ci Ci 

Vx E an, ( 4.32) 

where u( c) is still the solution of the direct problem with parameters c 
which are supposed to be known in the differentiated problems. Therefore 
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div ddC (c)\7u(c) 
Ci 

as a given additional force term, acting as another force. 

85 

We conclude about the Direct Differentiation Method in the infinite di­
mensional case by noting that: 

• The method is based on solving n + 1 additional problems and yields 
a mathematical exact gradient of all the fields. 

• One of the additional equations ( 4.31) is defined by the same elastic 
moduli as the direct problem and will conduct after discretization to 
equations with the same stiffness matrix, confirming the results ob­
tained before. 

Exercise: Derive the variational formulation for the differentiated equa­

tions first by: 

• direct integration of equations (4.31) and (4.32), 

• differentiation of the variational formulation of the direct problem. 

Adjoint State Method. We stated in the finite dimensional case that 
the adjoint state method starts from the remark that finding the minimum 
of constrained functional is equivalent to finding the saddle point of an aug­
mented (Lagrangian) functional. In the continuous case the Lagrangian is 
given by: 

.C(c, u, u*) = :J(c, u) 

+ j 'ilu: C(c)'ii'u* dv- j f(c) · u* dv- j <p(c) · u* ds. (4.33) 

n n n 

The Lagrangian is actually formed by adding to the cost functional the ex­
pression of the variational formulation of direct problem. The field u* acts 
therefore as a Lagrange multiplier for the constraint and is actually a test 
function associated with the variational formulation of the direct problem. 
Similarly to the finite dimensional case we assume that the variables (c, u, u*) 
are independent. 
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If we use the general integral form of the cost functional we obtain the 
following expression: 

.C(c, u, u*) = j io(c, u) dv + j iao(c, u) ds 

n an 

+ j 'Vu : C(c)Vu* dv- j f(c) · u• dv- j cp(c) · u• ds. (4.34) 

n n n 
The saddle point of the Lagrangian C is characterized by vanishing of the 
gradient: 

(:.c ,v*) = 0 
u* 

Vv*, (4.35) 

ac 
(au'v}=O Vv, (4.36) 

(ac,d} = o ac Vd. (4.37) 

Computing the derivatives of the Lagrangian we obtain consequently the 
following problems. 

For the derivation with respect to u*: 

ac j (au•, v*} = Vu: C(c)Vv* dv 

n 

- j f(c) · v• dv- j cp(c) · v• ds Vv*, (4.38) 

n n 
which is actually the variational formulation of the direct problem having v* 
as a test function. 

For the derivation with respect to u: 

ac a:~ j (au, v} = ( au , v} + V v : C( c) : Vu* dv = 0 Vv. ( 4.39) 

n 
Using the general form of the cost functional we obtain the following varia-
tional equation: 

J Ojn j ()jan au ( c, u) . v dv + au ( c, u) . v ds 

n an 

+ j 'Vv : C(c) : Vu* dv = 0 

n 

Vv. (4.40) 
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After integration by parts of the last expression we obtain the following 
problem for the adjoint field u*, denoted as the adjoint problem: 

divC(c)Vu*- C:::: (c,u) = 0, (4.41) 

Ojan ) u* ·n = (C(c): Vu*) ·n = au (c,u. (4.42) 

We observe that the adjoint field is defined by body forces and surface trac­
tions equal to the derivatives of the cost functional. In the case of least 
square cost functional, these terms represent actually the distance between 
the measurement and the solution of th~ direct problem. 

The derivation of the Lagrangian with respect to the parameters c gives: 

ac a:r j ac • ( ac , d) = ( ac , d) + Vu : [ ac (c) · d] : Vu dv 
n 

- j [a I (c) . d] . u* dv - j [ acp (c) · d] · u* ds = o ac ac 'Vd. (4.43) 

n n 

Using the general form of the cost functional :J we get 

ac j a; j a; j ac ( ac, d)= a~ (c, u)·ddv+ aa: (c, u)·dds+ Vu: [ ac (c)·d]: Vu* dv 
n an n 

-j1~! (c)· dJ · u*dv- j1~~ (c)· dJ · u• ds = 0 'Vd. (4.44) 

n n 

If u is the solution of the direct problem and u* is the solution of the adjoint 

problem, the last equation expresses the total variation of the cost functional 
:J in the direction d, i.e., 

ac 
(V c.:J(c), d)= ( ac, d). (4.45) 

We see that it provides the explicit computation of the gradient V c:r( c) from 
u and u*. The practical interest of this formula comes from its complete 
independence of the number of parameters c. 

As in the finite dimensional case we conclude that: 

• The gradient computed through the adjoint state method is exact. 

• The gradient computation requires the solution of a single additional 

equation. 
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• The adjoint problem is defined by the same elastic moduli. This means 
that for solving the adjoint problem we consider the same system as in 
the direct problem with only different loading parameters. 

• The complete solution of the saddle point of the Lagrangian provides 
directly, i.e. without any minimization procedure, the solution of the 
optimization problem. A solution of this type in the case of the steady 
state heat equation is presented in [9]. 

Exercise: Compute the Lagrangian and the corresponding adjoint prob­
lem for the a steady state heat equation for: 

• an = anm u anu and anm nanu = 0, 
• overdetermined (measured) boundary conditions on anm: 

Olanm =om qianm = -k: = qm, 

• unknown boundary conditions on anu, 
• consider the following cost functional including a regulatisation term 

.7(0) = ~ J IO- oml2 
dv + ~ J 1012 dv. 

80m anu 
Exercise: Generalize the preceding problem to the case of an transient 

heat equation. 
Remark: The terms of the cost functional and of variational formulation will 
also contain a time integration. 
Hint: The resulting adjoint problem is a backward heat equation ! 

4.2.3. Contact boundary conditions 

In a series of practical problems, like the indentation problem, one has to 
consider contact boundary conditions. In such a case the variational formu­
lation of the direct problem does not conduct to a variational equality, but 
to a variational inequality and therefore the direct differentiation and the 
adjoint state method cannot be applied directly similarly to the preceding 
Section in solving various inverse problems. 

Now we present the indentation of an elastic body with a rigid indentor 
and discuss the identification of elastic parameters from the measured inden­
tation depth and force. The solution method used is the adjoint state method 
and we shall present the main steps and results, indicating that a complete 
presentation is given in [11, 12]. 
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The direct contact problem. Let us consider an axisymmetric body, 
with its section occupying in its reference configuration an open subset n c 
JR2 with smooth boundary r (see Fig. 4.3). The boundary is partitioned into 
three parts: r = rD U rF U rc; on rD displacements are imposed, rF is the 
free surface, and rc is the surface of potential contact. rcff c rc denotes 
the effective contact area for a given indentation depth. 

FIGURE 4.3. Indentation test (direct problem (1')). 

The problem considered in the sequel is the frictionless indentation of n 
by a rigid punch with a profile characterized by the gap g (i.e. the distance 
between the punch and the surface r c). The difficulties of the contact prob­
lem are given by the fact that the effective contact region r~ is not known in 
advance. For a complete mathematical presentation of the contact problems 
see [13]. 

We shall consider the real and the virtual displacement fields u, v in the 
following functional space: 

(4.46) 

Under the assumptions of small strains and of an elastic constitutive law, 
the displacement vector, the second-order strain and stress tensors satisfy 
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the following set of equations: 

1 
e(u) = 2(Vu + VT u), 

u(u) = A(c) : e(u), 

(4.47) 

(4.48) 

where C(c) is the fourth-order tensor of elastic moduli depending on a vector 
of material parameters c E L, a closed subset of Rn ( n 2 1). The stress tensor 
u satisfies the equilibrium equation: 

div u(u) = 0. (4.49) 

In the direct Problem (P) one will determine the complete solution (u, e, u) 
from a given indentation depth U or the corresponding resultant indentation 
force F. The resultant indentation force can be directly calculated as the 
sum of the contact pressure: 

F = j n · u(u) · ndi'. 

rc 

(4.50) 

The inverse problem. The inverse problem, corresponds to the identi­
fication of the material properties c from a displacement-force measurement 
curve (UexP(t), _FexP(t)) pertaining to the indenter. 

The identification problem will be considered in the form: 

Find c minimising the cost functional :1 (c), (4.51) 

where :1 represents the cost functional involving measured and calculated 
quantities. Different cost functionals can be imagined: 

• difference between measured and calculated forces pexP, F for given 
material parameter c and prescribed indentation depth uexp: 

(4.52) 

• difference between measured and calculated displacements uexp' u for 
imposed indentation force pexP: 

(4.53) 
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• reciprocity gap, i.e, crossed difference between calculated and measured 
forces and displacements: 

(4.54) 

If the preceding cost functionals have been defined for a single definite inden­
tation depth, one can imagine also cost functionals as sums or time integrals 
of these quantities. Next we shall consider simple cost functionals based on 
the least square difference between calculated and experimental forces (4.52). 

In order to apply the adjoint state method to solve the constrained min­
imization problem associated with the identification problem defined before 
we recall three classical variational formulations of the frictionless contact 
problem between a rigid punch of arbitrary shape and an elastic foundation. 
This mathematical problem is known as the Signorini problem and for a de­
tailed presentation the reader is referred to the monography by Kikuchi and 
Oden (13]). 

Primal formulation (1'). This problem is driven by the indentation 
depth uexp and is written as follows: 

Find u E K such that j u(u) : e(v- u) dO ;::: 0 

n 
Vv E K = {v E v I V2::;; g + uexp on rc}. (4.55) 

The resultant force F on the indenter is calculated from the solution u 
of the contact problem by: 

F = j <122(u) dl'. 

rc 
(4.56) 

Within this formulation, the contact conditions are directly imposed on the 
solution u by searching it in the closed convex set K. This causes a certain 
number of difficulties from a numerical point of view and therefore equivalent 
formulations on vector spaces are preferred. 
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Penalized formulation (Pf). For an arbitrary small i > 0, we consider 
the problem: 

Find uf E V such that 

J u(u,): e(v) dQ + ;, J (u,2- g- Uexp)~v2 dr = 0 '<tv E V, (4.57) 

n rc 

where ( . )+ denotes the positive part. 
The reaction force Ff on the punch is determined by: 

F, =-;, j (u,2- [f""P- g)~ di'. (4.58) 

rc 

In this case one can consider, in a rough interpretation, that the contact con­
ditions are replaced by a nonlinear contact force proportional to the allowed 
interpenetration and inverse proportional to i. Some convergence properties 
are proven: uf converges strongly to u in V and Ff converges to F in JR. For­
mally, this means that, as i --+ 0, the solution to the penalized problem (1' f) 
converges to the solution to the primal problem (1'). 

Mixed formulation (Pm)· This formulation has the following form: 

Find (u,p) E V x N such that: 

j u(u): e(v) dQ- j p · v2 di' = 0 VvEV, 

n rc 

j (q- p) · (u2- U- g) di' 2:: 0 
(4.59) 

VqEN. 

rc 

In this case the contact condition have been relaxed by the introduction 
of the Lagrange multiplier p. The displacement field u is now supposed to 
belong to the vector space V and the Lagrange multipliers p to the convex 
cone N = {q E (H112(rc))' I q ~ 0}, where (.)'denotes the dual space. 

The Lagrange multiplier pEN shows up to be the pressure distribution 
under the punch. Therefore, the resultant force F is determined by: 

F :d J pdi'. (4.60) 

rc 
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The adjoint state method based on the penalized formula­

tion (1'-;1 
). For a small E > 0, the inverse problem is expressed by: 

Minimize :If. = ~(Ff.- pexp)2 with respect to c E L, where Ff. is 

calculated from the solution of (1'€). 

As we handle a constrained minimization problem, it is natural to intro­
duce a Lagrangian £f., by adjoining to the penalized cost functional :If. the 
variational equality of the penalized direct problem (1'€): 

L,(u., v, c) = ~(F, - pexP)2 + j u( u,) : e( v,) dO 

n 

+ ;, J (u,2- g- uexp)!v,2 di', (4.61} 

rc 

where Ff. is given by (4.58) and (uf.,vf.,c) E V 2 x L. 

All variables are assumed to be mutually independent, the virtual dis­
placement field vf. plays the role of a Lagrange multiplier. The construction 
of the Lagrangian ensures that the saddle point of [,f. gives the minimum of 

:If. and that £f. = .:h if uf. is a solution to the direct problem (1'€). 
The necessary conditions of stationarity of £, can be formally written as: 

{)£f. J 1 J 2 ( fJvf., w) = u(uf.) : e(w) df). + 
2

f (uf.2- 9- uexp)+W2 df' = 0 

n rc 

(~>w) = j u(v,): e(w) dO 

n 

+ ~ j (u,2- g- Cf""P)+w2(v,2- (F,- Ji'""P)) di' = 0 

rc 

Vw E V, (4.62) 

Vw E V, (4.63) 

Vd E L, (4.64) 

where (., .) and [., .] are, respectively, the duality pairing on V' x V and 
L' XL. 
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94 4. SENSITIVITY COMPUTATIONS: LINEAR CASE 

As expected, the derivation of the Lagrangian with respect to the adjoint 
variable vE ( 4.62) yields the variational formulation of the penalized direct 
problem. The derivation of the Lagrangian with respect to the direct variable 
uE ( 4.63) yields the weak formulation of elastic problem, called the penalized 
adjoint problem (P~j). 

Let us choose a point (uE, vE, c). If uE is solution of (PE), by definition of 
£E, we have {,E = Jt· Moreover, if vE is solution of (P~j) it follows that: 

8£E J 8A "\1 CJE = ac = e(uE) : ac : e(vE) dn. ( 4.65) 

n 

Thus the explicit expression of the gradient of .:lt has been obtained using 
the solution to the direct and the adjoint penalized problems. 

The previous result has been established by applying the penalized for­
mulation. It is interesting to know how it evolves as f ~ 0. Without giving 
a precise mathematical proof, the following results can be conjectured: 

• The solution vE to the penalized adjoint problem (P~j) converges to 
the solution v to the adjoint problem (Padj) driven by the imposed 
displacements (F- pexP) on the effective contact surfacer~: 

Find v E yadi such that j u(v) : e(w) dl1 = 0 

n 
Vw E yadj ={wE v I W2 = (F- pe>'P) on r~}. (4.66) 

Here F, r ceff are, respectively, the force on the indenter and the effec­
tive contact surface, found in the direct contact problem (P). 

• The limits and the gradient operations are commutative, i.e., 

(4.67) 

Consequently the gradient of the cost functional can be calculated using 
the following formula: 

J 8A 
"\1 c.:J = e( u) : ac : e( v) dn, (4.68) 

n 

where u and v are the solutions to the direct problem (P) and the adjoint 
problem ( padj), respectively. 
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FIGURE 4.4. Adjoint problem ('Padj). 

The adjoint state method based on the mixed formulation (P-;;.,1). 

This problem reads: 

Minimize :1 = ~(F- pexp)2 with respect to c E L, where F is 
calculated from the solution to (Pm). 

The corresponding Lagrangian is expressed by: 

f.(u,v,p,q,c) = ~(F- F"'P)2 - j u(u): e(v) dfl 

n 

+ J p · V2 di' + J q · (fl2- U- g) df', (4.69) 
rc rc 

where F is given by (4.60), (u,v,p,q,c) E V 2 x Q2 x Land Q = {q E 

(H112 (rc))' I q = 0 on rc;rgr}. 
Let us note that, in contrast to the classical application of the adjoint 

state method, q has not been sought in the closed convex N. If q was in N, 
the stationarity conditions would turn out to be a set of coupled variational 
inequalities, which are ineffective for practical search of the adjoint state. 

With q E Q, the necessary conditions of stationarity of £ can be formally 
written as follows: 

(~,w)= j u(u):e(w)d!l- Jp·w2di'=O VwEV, (4.70) 

n rc 

(~,w) = j u(v): e(w) dfl- j q · w2 di' = 0 VwEV, (4.71) 

n rc 
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8£ J { aq , S} = S · ( U2 - U - g) df' = 0 Vs E Q, (4.72) 

rc 

8£ J { ap , S} = S • ( V2 - pexp + F) df' = 0 Vs E Q, (4.73) 

rc 
8£ j 8A 
[8c'd-c]= e(u): 8c :e(v)·(d-c)dn~o VdE L, (4.74) 

n 

where { . , . } denotes the duality pairing on Q' x Q. 
In this case, the derivation of the Lagrangian with respect to the adjoint 

variables v ( 4. 70) and q ( 4. 72) does not yield the mixed formulation ('P m) 
of the direct problem. Nevertheless, the solutions to ('P m) are also solutions 
to (4.70) and (4.72). 

The derivation of the Lagrangian with respect to the direct variables u 
(4.71) and p (4.73) yields an equivalent formulation of the adjoint problem 
( padj) ( 4. 66) . 

Therefore if (u,p) is solution to the direct problem ('P) and (v,q) is 
a solution to the adjoint problem ('Padj), then (4.70)-(4.73) are satisfied. 
Consequently in the penalized case the gradient can be expressed by: 

8£ j 8A 
V'c:l = 8c = e(u): 8c : e(v) dn. (4.75) 

n 

Remarks on the adjoint problem ('Padj). For problems with Dirich­
let or Neumann boundary conditions described by variational equalities, the 
application of the adjoint state method leads to a linear adjoint problem 
described by variational equalities [14, 15]. 

It is important to point out that, for problems described by variational 
inequalities, the obtained adjoint problem ('Padj) is linear with Dirichlet 
boundary conditions (see Fig. 4.4), and therefore described by a variational 
equality ( 4.66). 

From a practical point of view, this implies that the overburden of com­
puting the adjoint problem, and implicitly the gradient of the cost functional, 
is very small. 

Numerical results. In order to asses the presented adjoint state 
method we shall present briefly some numerical results: 
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• A comparison of gradient evaluations of the cost functional :1 using the 
adjoint state method (ASM) and the finite difference method (FDM) 
is presented in Table 4.1. 

TABLE 4.1. Comparison of gradients between finite difference method {FDM) 
and adjoint state method ( ASM). 

Ecxp E 'V ..1(E) 'V ..1(E) 
GPa GPa ASM FDM 

200 100 -34.609 -34.607 
200 170 -10.383 -10.380 
200 300 34.609 34.614 
200 230 10.383 10.387 
20 10 -3.461 -3.461 
20 30 3.461 3.461 

• Identifications have been performed in the case of a cylinder composed 
of two perfectly bonded elastic coatings. The thickness of the coating 
has been considered as a priori known and only the values of the two 
Young's moduli, i.e. c = (Et, E2), have been identified from simulated 
measurements. Two cost functionals were defined as follows: 

and the minimization has been done by alternating the minimization 
between the two cost functionals. As such, we have directly used the 
different sensitivities of the cost functionals with respect to the two 
parameters (see Fig. 4.5). 
The real, starting and final identified values of the parameters are pre­
sented in Table 4.2. 

TABLE 4.2. Identification results for the bimaterial. 

Starting 

{105 MPa) 

{0.4, 0.4) 
(0.4, 4.0) 
(4.0, 0.4) 
(4.0, 4.0) 

Final 

(105 MPa) 

(1.200, 2.801) 
{1.200, 2.801) 
{1.200, 2.799) 
{1.200, 2.799) 

Reference 

{1.200, 2.800) 
( 1.200, 2.800) 
{1.200, 2.800) 
{1.200, 2.800) 
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FIGURE 4.5. Contourplots of :l1 for a deep (uexp = 0.2 mm) and :l2 for a small 
indentation (uexp = 2.0 mm). 
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4.3. Notes 

A list of further references concerning both linear and nonlinear material 
behaviour is given at the end of the next Chapter. 
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Chapter 5 

Sensitivity computations: 

nonlinear case 

In this chapter we shall not get into all details of the sensitivity computations 
for a nonlinear material behaviour. We shall only briefly present the class of 
standard generalized materials [1, 2] of the Perzyna type [3] and then discuss 
the two main types of sensitivity computations: 

• Direct Differentiation Method 
The direct differentiation method will be illustrated in the case of pa­
rameters identification of a rock mass from measuren1ents around a 
tunnel [4]. 

• Adjoint State Method 
The adjoint state method will be illustrated in the case of identification 
of constitutive parameters aluminum from anisothermal traction com­
pression experiments [5] and for parameters of various materials from 
indentation experiments [6, 7, 8]. 

We would also like to emphasize that a series of other research teams have 
been working on these subjects and that the techniques and developments are 
similar even if the application are different . A short list is briefly discussed 
in Sec. 5.2 at the end of the Chapter. 
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102 5. SENSITIVITY COMPUTATIONS: NONLINEAR CASE 

5.1. Standard generalized material behaviour 

We pass now to generalized materials without work hardening [1, 2). This 
constitutive behaviour is completely determined by the elastic compliance 
tensor S(c) and by the pseudo-potential of dissipation <P = <P(u, c). The 
latter is assumed to be twice differentiable with respect to t:T. c is the vector 
of the material parameters characterizing the material behaviour (Young's 
modulus, elasticity limit, etc.). 

Time continuous expression 

In the time continuous description, the constitutive law is expressed by 
the classical set of equations: 

e(u) = S(c): u + eP, 
·p 8<P(u,c) 
e = au , 

(5.1) 

(5.2) 

where the dot · denotes the time derivative and eP is the viscoplastic strain. 

Time discretized expression 

In a time discretization, the previous equations are expressed as: 

Examples 

(5.3) 

(5.4) 

The following classical constitutive laws can be expressed under this for­
malism: 

• The Maxwell viscoelastic material: the pseudo potential <P is given by 

1 
<P(ui,c) = 2t:Ti : M: t:Ti, 

where M is a fourth-order tensor. The plastic strain increment is de­
termined by 

~er = M: t:Ti ~t. 

• The Norton-Hoff viscoplastic material: the pseudo potential <P is 
given by 
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where aY is the elasticity limit, ( · )+ denotes the positive part of 
function and ( · )eq is the equivalent Mises stress. The plastic strain 
increment is determined by: 

Ll 1? = ~ ( (ai)eq - aY )m Ui Llt 
et 2 K + (ai)eq ' 

where ai is the deviator of t:Ti· 

Equations of the direct problem (P). The governing equations of 
the direct problem consist of the equilibrium and constitutive equations, the 
boundary conditions and a set of initial values for the different fields. In the 
time-discretized formulation the equilibrium and constitutive equation in n 
have the following form: 

div(Llui) = 0, (5.5) 
a~(ui, c) 

e(Llui) = s : Llui + au Llt. (5.6) 

5.1.1. Example: rock mass identification around a tunnel 

In this Section we will briefly revisit the mathematical formulas developed 
in [4) for the direct differentiation approach applied to the identification of 
constitutive parameters of a rock mass around a tunnel. The input measure­
ments pertain to displacement and pressure around the tunnel. The model 
involves all the construction steps of the tunnel: excavation, installation of 
the lining and functioning. 

The direct problem (P). Before excavation, at time t = 0, we as­

sume that the rock mass is in its natural state given by the initial statically 
admissible stress state: 

u = uo (5.7) 

and that all the other mechanical fields are equal to zero. The evolution of 
the rock mass is described by the following system of equations, written in 
rate form as: 

• Balance equation on n X T and imposed tractions on the boundary 
on rt X T: 

{
div& + i = 0, 

·d 
&n = t . 

(5.8) 
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104 5. SENSITIVITY COMPUTATIONS: NONLINEAR CASE 

• Small strain equations on n X T and displacement boundary conditions 
on ru X T: 

(5.9) 

• Elasto-viscoplastic constitutive law of Perzyna type (3) for the rock 
mass on Ox x T: 

{ 
u = c : ( e - e vp) ' 

·vp _ 8¢> (u) 
e - au . 

where¢> is a pseudo-potential functional of the stress tensor (3). 
The expression of¢> for the Norton-Hoff law is given by: 

¢( ) = ~ aeq - ay 
( )

N+l 

u N+1 K ' 

where: 

aeq is the Von Mises equivalent stress, 

ay is the yield limit in MPa, 

N is the viscoplastic exponent, 

K is the viscosity coefficient in MPa · s11N. 

• Elastic behaviour for the lining on Ot x [tl, t f]: 

o- = cl: e. 

(5.10) 

(5.11) 

(5.12) 

The numerical integration of the initial boundary value problem is clas­
sically done by finite elements in space and finite difference in time. An 
extensive presentation of these techniques is given in (9, 10). 

At this point let us recall the weak formulation of the preceding problem 
which will be used in the sequel for the description of the direct differentiation 
method. On the discretized time interval [tn, tn+d, the weak formulation 
at time t = tn+l can be written using a forward Euler (implicit) scheme 
for the time integration and a radial return mapping for the local plastic 
integration (9): 
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Find Un+1 E U, €~~ 1 and O'n+1 satisfying: 

J e(v) : <Tn+ldO- J vf n+ldO- J vt~+1df' = 0 

n n rt 
O"n+1 = C: (e (un+1)- e~~ 1 ) - uo, 

vp _ vp ~ 8¢ (un+d 
en+1 - en + tn+1 au ' 

\:fv E V, 

(5.13) 
where all fields X ( tn+ 1) at time t = tn+ 1 are denoted by Xn+ 1 

and ~tn+l = tn+1 - tn. 

U and V are the classical functional spaces: 

{
u = {u E H 1 (0) I Un+1 = ud(tn+l) on ru}' 
v = { v E H 1 ( n) I v = 0 on r u} . 

(5.14) 

105 

Let us now discuss the computational details imposed by the excava­
tion of tunnel and the installation of lining. The FEM computations will be 
performed on the domain Ox u Ot for all time steps. Before the effective 
installation of the lining, the mechanical influence of Ot has to be neglected 
and therefore the Young moduli of the lining has been such that Et <<Em. 
The different steps can now be described in the following way: 

• For t E [-oo, 0], the non-excavated domain is at equilibrium with an 
initial stress state. The FEM boundary condition should be: u .nlrt = 

uo.n Due to the negligible stiffness in Ot this is practically equivalent 
with the real condition: u.nlrxt = uo.n. 

• For t E [0, it], the tunnel is already excavated but the lining is not 
active. The boundary rxl of the rock mass is free of traction. Using 
the same argument as before, we impose: u.nlrt = 0 Due to the negli­
gible stiffness in Ot this is practically equivalent to the real condition: 

u.nlrxt = 0. 

• FortE [tt, t1], the elastic lining is set. The boundary condition is now 
given by: u.nlrt = 0 However, at this point the stiffness of the lining is 
no longer negligible and therefore the traction between lining and rock 
mass expressed by u.nlrxt is no more zero. 

The inverse problem (P-1 ). In the inverse problem the constitutive 
parameters are unknown. This drawback will be supplemented with a series 
of measurements, for example: 
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• convergence of the tunnel wall; 

• displacement measurements, by extensometers, within the rock mass; 

• pressure cells on the lining or at the interface between the lining and 
the rock mass. 

-0.1 

-().2 

-0.3 Radial stresses sensitivities 

-().4 
-- Location of Viscoplastic radius 
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-().7 
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FIGURE 5.1. Evolution of Urr/uo and fJNUrr/uo function of r unlined tunnel. 

A general formulation of this identification problem is: 

Find c = {E,N,ay,K} from displacement and force measure­
ments performed during the time interval T. 

This problem is now reformulated as the minimization of cost functional 
measuring the distance between measurements and the calculated estima­
tions: 
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where u and tare displacements and tractions calculated by direct computa­
tions, Urnes and tmes are measured quantities, ti, Xj are respectively the time 
instants and the location of the measurements, Wt and Wu are weights. 

The gradient of the preceding cost functional can be written as follows: 

In the sequel we shall use the direct differentiation method to calculate 
the gradient. More precisely, this method allows to calculate exactly not only 

~~ as in the adjoint state method but also the values of the sensitivities of 

all mechanical fields 
8
8
u, 

8
8

u , ... in each point and at each instant. We recall 
Cl Cz 

that this method requires the solution of n additional viscoelastic problems, 
where n is the number of parameters. This method will be described in the 
next paragraph. 

Direct Differentiation Method. Let Ci denote a constitutive param­
eter, c5ci u and c5ci u the related sensitivities of the displacement and stress 
field, respectively. 

The direct differentiation of the classical initial boundary problem in 
elasto-viscoplasticity will lead to a somehow similar system of partial dif­
ferential equations, where the constitutive equation is always similar to a 
viscoelastic law. 

The differentiation of the equilibrium and compatibility equations is 
straightforward since the divergence and gradient are linear operators. The 
boundary and initial conditions are also easily derived. In particular, if the 
boundary conditions do not depend on the constitutive parameters Ci, the 
sensitivity problem has homogeneous boundary conditions. 

Differentiation of the discretized constitutive law. The pseudo­
potential is a function of the parameters Ci and the stress field also depends 
on c;. Therefore we have: </> (u (Ci), Ci). 
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The differentiation of equation (5.11) and (5.10) thus gives: 

(5.15) 

(5.16) 

Combining the last equations we derive the following constitutive law for 
the sensitivity fields: 

8Ciun+1 = En+1 : e ( 8ci Un+1) 

+ 5n+l: [c-l: ~~ : (e (un+l)- e~1)] 

+ ';:' . [c-1 . auo _ ~ vp _ a2¢ (O'n+1 (Ci), Ci) At ] 
-n+1 • · a Uci€n a a L.l. n+l l Ci O'l; 

(5.17) 

where En+1 is the consistent tangent operator [9, 11, 12] defined by: 

..... (c-1 A a2¢ (un+d) -1 

.::.n+ 1 = + L.l.n+ 1 t au2 · (5.18) 

This constitutive relation is of the viscoelastic type, the response of the stress 
sensitivity at time tn+1 depends linearly on the displacement sensitivity at 
time tn+1 and known sensitivities attn. 

Weak form of the sensitivity problem ('P8
). Following a similar 

method as in the direct problem (5.13), the initial boundary value problem 
for the sensitivity can be written in the following weak form: 

Find 8ciUn+1 E W and 8ciO'n+1 satisfying: 

Vv E W. (5.19) 

The constitutive law for the sensitivity is described by Eq. (5.17) mentioned 
above. At time t = 0 the initial conditions have the following form: 

(5.20) 
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W is the space of admissible displacements defined by 

{ 
1 8u~+1 } w = 6ciU E H (0) I 6ciUn+1 =~on ru . (5.21) 

Incremental form of ('P8
). To get insight into the structure of the 

computation which is performed step by step, let us denote: 

(5.22) 

Then, the weak incremental formulation reads: 

j c: (v): En+l: c: (Oc;Au) dO= j v 
8~~+ 1 d0 + j v ~~1 dl' 

n n rr 

J ( ) ..... 82¢ (un+1 (Ci) 'Ci) A dra + e v : .::.n+ 1 : 8 8 L.l. tn+ 1 H. 
0' Ci 

n 

J ..... -1 ac ( 8¢ (un+d) - e (v) : .::.n+1 : C : OCi : e (l:l.u)- !:l.tn+1 ou dO 

n 

-J c: (v) : En+ I : c-1 
: Oc;undO Vv E V, (5.23} 

n 

with the following constitutive law: 

(5.24) 

and the initial conditions specified by Eq. (5.20). 

Identification results. The complete mechanical interpretation of the 
identification results is presented in [4). Let us just notice that this type of 
analysis permits to obtain not only the gradient of the cost functional, but 
also the time and space distribution of the sensibility of different fields, see 
for example Figs. 5.1 and 5.3. 
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Un 

l 

force terms (see Eq. (5.23)) 

l 
b ci Un+l 

bciUn+l 

FIGURE 5.2. Scheme of a time step for the direct and sensitivity problem. 
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8.MPa l.MPa 
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9.MPa 3.MPa 

9. lMPa 4.MPa 

9.l5MPa 5.MPa 

9.18MPa 6.MPa 

FIGURE 5.3. Von Mises of u (Yield Limit 3 MPa) and c5N u . 

5.1.2. Example: anisothermal identification of parameters 

In this Section we shall give the development of the adjoint state method 

used for the identification of temperature dependent material parameters 
from anisothermal traction- compression experiments of specimens [5]. To 
simplify the equations of the problem we assume that the strain and stress 

states are uniaxial. 

The direct Problem (P). If the strain c(t) and temperature B(t) are 

considered as functions of timet E [0, T] then the stress a and the viscoplastic 
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strain evp can be calculated as function of time from the equations of the 
following model: 

{ 

a= ! (E(O) · (e- evp)), 

. = / J2(a, evp) - ay(O) )m(O) (~ - H(O) ) 
evp \ TJ( O) sgn 3 a evp , 

with the the initial conditions: 

a(O) = 0, evp(O) = 0. 

We have denoted by: 

J2(a, <vp) = Ia- ~H(II)cvpl, 
and by (.) the positive part of its argument. 

(5.25) 

(5.26) 

(5.27) 

Therefore the model is determined by 5 temperature-dependent parame-
ters: 

P(O) = (E(O), uy(O), H(O), 17(6), m(O)), 

namely, the Young modulus E, the yield limit ay, the hardening parame­
ter H, the viscosity TJ, and the power coefficient m. These parameters have 
to be recovered from experiments performed under cyclic loading conditions. 
As all parameters are temperature dependent, this leads to the identification 
of some dozens of scalar values. 

The inverse problem ('P-1 ). In experiments and consequently in the 
numerical simulations the temperature and strain histories (O(t), f(t)) were 
imposed and the stress history was measured and respectively calculated. Let 
us denote by Uexp(P) the experimentally measured stress and by Ucomp(P) 
the calculated stress history, depending on the given loading and also on the 
material parameters P. 

Consequently we can now define the identification problem for the pa­
rameters Pas a minimization problem for the following cost functional: 

T 

8(P) = 2~ j iaexp(t)- <Tcomp(P, t)j2dt, 

0 

defined over a complete experiment. 

(5.28) 
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In the case were the identification involves a series of independent ex­
periments, a cost functional defined as a linear cmnbination of functionals 
of the preceding type can be used. These formulations are 'the continuous 
equivalent of the classical nonlinear least square problem. 

The adjoint state method. As stated in the previous discussions, the 
adjoint state method redefines the minimization problem of a as constrained 
minimization problem and replaces the search of the minimum of a by the 
search of the saddle point of well chosen Lagrangian £. 

In order to construct the Lagrangian£, let us introduce two adjoint fields 
c* and a* which will play the role of Lagrange multipliers for our system. 

The Lagrangian£(~, cvp, a, c*, a*) is defined by the sum of the cost func­
tional a and of variational formulation of the equations of the direct problem 

described by (5.25) and (5.26): 

£,(8, 'J'(Ii), Cvpo a, c*, a*) = 3(8, a) - j [Evp- g('J'(Ii), a, Cvp)] ·a* dt 

s 

-J [&- : iJ · (c- cvp)- E(li) · (E- Evp)] · c*dt, (5.29) 
s . 

where g(~(O), a, cvp) is the viscoplastic flow function represented by the right 
hand side of equation (5.25). S defines the time interval on which the pa­
rameters will be identified. Its is obvious that the identification process also 
depends on this parameter, however for the sake of simplicity we shall assume 
that this interval is specified at the beginning of the process and considered 
as fixed. The saddle point of the Lagrangian is given by the optimality con­
ditions: 

a£ ~ * -a * · Ucvp = 0, 
cvp 

aL -a ·8cvp =0, 
cvp 

a£ · 8a* = 0 
aa• ' 

(5.30) 

aL 
aa. 8a = 0. (5.31) 

The derivation of the first two conditions, with respect to the adjoint vari­
ables, defines the solution of the direct problem (5.25) and (5.26). 
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The derivatives of the last two conditions, with respect to the direct 

variables are: 

!~ · <lcvp = - j c* · (: 8 · <lcvp + E( 8)6ivp )dt- j a* · ( <lf:vp - 8~~P • <lcvp )dt 
s s 

= - (<lcvp · (E(O)c* +a*)]~+ j (E(O)E:* + &*) · <lcvpdt 
s . 

- ~ j * H((}). m(e) I J2- ay((}) )m(0)-1 . 8 d (5.32) 
2 a TJ((}) \ TJ((}) cvp t, 

s 

~~ ·<Ia = ~! ·<Ia- j 6&-c*dt+ j ~! ·a*dt = J(aexp-a)6adt- (<la·c*]~ 
s s s 

J ·• 3 J .m((}) I J2- ay((}) )m(0)-1 
+ c 8adt + 2 a TJ((}) \ TJ((}) 8adt, (5.33) 

s s 

and define the adjoint problem. 

Therefore the adjoint problem is given by the following system of ordinary 

differential equations: 

d•- ~H(8) · ~~:~ ( J 2 ~(;)(O)) m(O)~~· + E(8) · t;• = 0, 

3m((}) I J2 - ay((}) )m(0)-1 * ·• -
2 TJ((}) \ 1J((}) ·a + (aexp- a)+ c - 0, 

(5.34) 

with the final conditions: 

a*(tr) = 0, c-*(tr) = 0. (5.35) 

The adjoint problem is therefore a linear system of ordinary differential equa­

tions in a*, c-* to be integrated backward in time. This may seem awkward, 
but it expresses actually just the integration by parts made during the pro­

cess. 
For a given set of material parameters P let us choose a solution pair 

of the direct problem ( c, a) and the corresponding solution ( c-*, a*) of the 

adjoint problem. For these functions, we obtain by definition of the La-
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grangian ~ = 8. Moreover, writing the first order variation of the Lagrangian 
at this point we obtain: 

(5.36) 

The derivatives of the cost functional with respect to the material parameters 
are expressed by the following series of equations: 

tmax 

aa - J ( •c •vp) *dt --- e-e ·e 8E ' 
(5.37) 

to 

(5.38) 

aa tjmax I J )m-1 (2 ) 
Ouy = \ 

2 ~ Uy sgn 3u- Hcvp · u*dt, 

to 

(5.39) 

a a 
= lJm 

t/max (I J2 - · U )) I J2 - U )m (2 ) log \ 'TJ Y \ 'TJ Y sgn 3u- Hevp · u*dt, 

to 

(5.40) 

tmax 1 aa J J2- Uy \J2- Uy)m- (2 H vp) *dt - = m · sgn -u - e · u . 
~ ~ 'TJ 3 

(5.41) 

to 

In order to simplify the preceding equations, we have not denoted explicitly 
the evolution of the parameters as a function of temperature. 

This evolution was considered in the sequel as multi-linear and expressed 
under the following form: 

(5.42) 

where 1!(8, 8i, 8i+1) = 1 if and only if 8 E (8i, 8i+1)· During the identification 
process the values 8i were predefined and only the values of the parameters 

{Pih=1, ... ,N were determined. 
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5.1.3. Example: indentation problem 

We proceed to the presentation of the equations corresponding to the 
application of the adjoint state method for identification of material param­
eters from indentation experiments. For more details the reader is referred 
to a series of papers [6, 7, 8, 13). 

The inverse problem ('P-1 ). In the present inverse problem, one wants 
to identify the parameters of the material behaviour c from the knowledge 
of the indentation curve (Uexp, pexp). c is assumed to belong to in a closed 
convex set Q of lRn (n ~ 2). 

This inverse problem can be expressed as a minimization problem of a 
well-defined cost functional and is the nonlinear . equivalent of the one pre­
sented in the preceding chapter for an elastic material behaviour. 

Since the direct problem is driven by the imposed displacement of the 
punch U, it is natural to express the cost functional as a function of the 
resultant force F. A possible formulation of the inverse problem ('P-1) is: 

Find c E Q minimizing: 

where pcomp is the calculated resultant force from the direct prob­
lem driven by uexp. 

Equations of the direct problem ('P). The governing equations of 
the direct problem consist of the equilibrium and constitutive equations, the 
boundary and contact conditions and a set of initial values. The contact 
conditions on r c are expressed using the Lagrange multipliers Pi E N, where 
N = {q E (H112(rc))' I q ~ 0} is a closed convex set and (H112(rc))' 
denotes the dual of H 112(rc) (see [14)). 

The punch is driven by its vertical displacement Ui at time ti. At the 
same moment, the gap 9i between the surface r c and the punch is expressed 

by 9i = g + ui - uf. 
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Equilibrium and constitutive equation in !1: 

div(~ui) = 0, 

8<P(ui, c) 
e(~ui) = s : ~O'i + au ~t. 

Boundary conditions: 

Contact conditions: 

~U i · n = 0 on f F, 

~Ui = 0 Oll fv. 

~ain = ~Ui • n · n = ~Pi, 

~a it = ( ~u i · n - ~a in · n) · t = 0. 

Initial conditions: 

uo =0 Ill n, 
uo =0 on n, 

eg · n = 0 on n. 

(5.43) 

(5.44) 

(5.45) 

(5.46) 

(5.47) 

(5.48) 

(5.49) 

(5.50) 

(5.51) 

(5.52) 

The adjoint state method. Let us recall again that the resolution 
of a constrained minimization problem is equivalent, under some regularity 
conditions, to finding the saddle point of a Lagrangian functional £. In the 
case of the inverse problem (P-1 ), the Lagrangian£ is introduced as a sum of 
the cost functional and a variational formulation of the direct problem (P). In 
this case we will adjoin the Lagrangian technique used in the elastic contact 
problem in the preceding chapter to a Lagrangian technique developed in the 
case of nonlinear behaviour as the one presented in the preceding section. 

For each variable of the direct problem, an adjoint variable, denoted by 
the star (*) as the superscript, is introduced. These adjoint variables are the 
Lagrange multipliers of the constraints, the equations of the direct problem. 

According to the optimal control theory, all direct and adjoint variables 
will be considered as mutually independent. The relationships- between them 
will be recovered from the stationarity conditions of the Lagrangi~ £, char­
acterizing the saddle point. 
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The Lagrangian functional has the following form: 

where 

I 

.C(u, u,p, u*, u*,p*, c)= L .Ci(ui, ui,Pi, ui, ui,pi, c), 
i=O 

.C;(tt;, <T;,p;, uj, uj,p;) = ~ ( J p;dl'- FfP r + J div(b.u;) · ujdfl 

rc n 

117 

(5.53) 

- j b.u; · n · ujdl' + j b.u; ·ui · ndl' + j (b.uf- b.U;- g;) · pjdl' 

rF rv rc 

J ( ( A ) A 8<1> ( U i l C) A ) * n - e UUi - 8: UUi- au ut : Ui dH 

n 

- j (bop;- b.ufn) · uf*dl'- j b.af1 
• ul*dl', 

rc rc 

and 

• Ui, ui E (H1(0))2
, 

• Ui, ui E (£2 (0))4
, 

• Pi,Pi E Ni = {q E (H112)'(rc) I q = 0 on rc/rcJ. Here rei is the 
effective contact surface at time ti. 

The complex form of this Lagrangian does not permit to draw any conclusions 
with regard to the existence and uniqueness of its saddle point. Neverthe­
less, necessary conditions of stationarity can be formally written in order to 
characterize this eventual saddle point. 

The stationarity conditions of £ are given by the following expressions: 

I ( Q.C; ) ~ au,dw; =0 Vdwi E (H1(0))2
, (5.54) 

I ( Q.C; ) \ldTi E (£2 (0))4
, (5.55) ?= au'dTi =0 

't=O 

I ( a.c ) L -",dqi =o 
i=O · ap 

\ldqi E Ni, (5.56) 

I ( a.c; ) L a *,dwi = o 
i=O U 

Vdwi E (Hi(n})2 , (5.57) 
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I ( 8£; ) t; 8u*'dT; = 0 YdTi E (£2(0))4
, (5.58) 

I ( 8£; ) (5.59) L ~,dqi =o Ydqi E Ni, 
i=O p 

I \8£ ) L -",d-e ~0 
i=O 8c 

"'dE Q, (5.60) 

where ( · , · ) represents in each equation the duality pairing for the corre­
sponding functional spaces. 

Calculating the derivatives with respect to the adjoint variables 
(Eqs. (5.57), (5.58) and (5.59)) leads to the set of equations: 

div(~u.i) = 0 in n, (5.61) 

e(Au;)- S: Au;- M~,c) At= 0 in 0, (5.62) 

~0' i · n = 0 on r F, 

~Ui = 0 on rv, 
(5.63) 

(5.64) 

(5.65) 

The preceding calculation leads in the classical Lagrangian theory to the 
equations of the direct problem. In the present case, in contrast to the clas­
sical frame, the equations do not represent exactly the direct problem. How­
ever, if ( u, u, p) are the solutions to (1'), they obviously verify the above 
relations. 

The derivation of C with respect to the direct variables (Eqs. (5.54), (5.55) 
and (5.56)) and a series of calculations: spatial integration by parts and use 
of the first order approximation /i · ~9i ~ Ji+l · gi+I- Ji · gi- ~/i · gi, gives 
the following set of equations: 

div(~ui) = 0 in n, 

(~ *) s ~ * 8
2

<I>(ui, c)~ * . n e ui = : ui - 8u2 t : ui In ' 

~ui·n=O on rF, 

~ui=O on rv, 

(5.66) 

(5.67) 

(5.68) 

(5.69) 
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Auf*= (~c(c)- f7xp),} 
Auin* = Api, 

Auft* = 0, 

and the following final conditions at time T 

div(uj) = 0 in n 
e(Auj) = S : Auj in 

uj = 0 on rv 
uj · n = 0 on rF 

n 

uf* = 0, } 

pj = u1n*, 
on rc. 
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(5.70) 

(5.71) 

(5.72) 

(5.73) 

(5.74) 

(5.75) 

This set of equations and the final conditions define a well-posed incremental 
problem with Dirichlet conditions on a part of the boundary and will be 
called the adjoint problem ('P*). 

The preceding calculations can be summarized as: 

Stationarity result: If (u, u, p) and (u*, u*, p*) are, respectively, the 
solutions to the incremental direct and adjoint problem ('P) and ('P*), then 
the conditions (5.54}, (5.55}, (5.56}, (5.57}, (5.58} and (5.59} of stationarity 
of the Lagmngian £ are verified. 

Moreover, if (u, u,p) is the solution to ('P), then the Lagrangian £ is 
reduced to the cost functional:!. Together with the expression of stationarity 
conditions (5.60) this implies that: 

Gradient computation: If (u, u, p) and (u*, u*, p*) are, respectively, 
the solutions to the incremental direct problem ('P) and to the incremental 
adjoint problem ('P* }, then the gmdient of the cost functional:! is given by: 

\1 c.7 = to ( j fur; : ~~ : uj + :;:/:.t : uj df!). 
,_ n 

(5.76) 

Some remarks can be done about the preceding results: 

• The adjoint problem is not a contact problem. Its loading is a Dirichlet 
condition (imposed displacement) on r ci, the effective contact surface 
of the direct problem. 
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• The adjoint problem is a time dependent system of partial differential 
equations on [0, T] and a final condition given by a well-posed elasticity 
problem. Therefore the adjoint problem will be integrated from T to 0 
in the reversed time. 

• The adjoint constitutive law is viscoelastic considered in the reversed 
time i' ~I- i: 

e(Llu:,) = S : Llu:, + R : u;, Llt, 

where R is the fourth-order tensor: 

The pseudo-potential <J.> has to be twice differentiable to ensure the exis­
tence of the adjoint state (for example, in the Norton-Hoff constitutive 
law, m > 1 is needed). From a numerical point of view, this leads to a 
linear problem at each time step and therefore a rapid integration. 

• The parameters of the adjoint constitutive law depend on the param­
eters of the direct constitutiye law, but also on the solution of the 
direct problem. Hence the solution to the adjoint problem is implicitly 
dependent on the solution of the direct problem. 

• The equations of the adjoint problem in the reversed time describe 
a linear viscoelastic problem with Dirichlet boundary conditions and 
initial conditions, and is therefore well-posed. 

• This method allows to compute of the gradient of the cost functional :1 
using the solutions to the direct and adjoint problems, independently of 
the number of parameters involved. A rapid evaluation of the compu­
tational problem shows that gradient calculation takes ~ 1.5 the time 
for solving the direct problem due to the simplicity of the adjoint be­
haviour and the elimination of the contact condition. This is extremely 
interesting for problems with a large number of parameters. However, 
the intervention of the solution to the direct problem in the resolution 
of the adjoint problem, demands large memory space for keeping track 
of all the fields. 
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Direct Problem Adjoint Problem 
U up Fcom 

t 
Uup Fcom 

[ J 
Uup Fcom 

T 
c=J 

t 

FIGURE 5.4. Evolution of the contact are in the direct indentation problem and 
definition of corresponding adjoint problem at each time step. 

Norton-Hoff material behaviour. We recall that the viscoplastic 
Norton-Hoff constitutive law is expressed by: 

where: 

e(~ui) = S: ~CTi + ~ef, where ~ef = M: CTi~t, 

1 
Siikl = E ( (1 + v )8ik8il - v8kl8ii), 

~ ~ = ~( (ai)eq- aY )m Ui ~t 
e, 2 K + (ai)eq ' 

e(~ui) = S: ~cri + M: cr;, 

M = -~((ai)eq- aY )~-1-J 
2 K (cri)eq 

(5.77) 

(5.78) 

(5.79) 

(5.80) 

Ui ® Ui 9 [( (ai)eq- aY )m_1 __ m ( (ai)eq- aY )m-1] 
+ (cri)~ 4 K + (cri)~ K K + ' 

1 
Jijkl = (8ik8jl- 38kl8ij)· 

This formula already expresses a forward Euler integration scheme which has 
been programmed as such in the code. 
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One notes that the adjoint constitutive law is viscoelastic, nevertheless 
anisotropic and nonhomogenous. 

Numerical results. Some numerical results will briefly be discussed 
next. The results correspond to simulated (see Table 5.1) and real indentation 
experiments (see Figs. 5.5, 5.7 and 5.6). 

TABLE 5.1. Identification results with exact measurements for the Norton-Hoff 
material for the reference values Ercf = 100000 MPa, Krcf = 1500 MPa · s115 , 

mref = 5 and o.Yref = 500 MPa. 

Test Eini Kini mini UYini Efinal Kfinal mftnal UYfinal 

(MPa) f (MPa · s) -:.1 (MPa) (MPa) f<MPn·s)f..l (MPa) 

1 130000 800 2 1000 99664.3 1533.36 5.38417 446.414 
2 150000 1000 3 1000 100228.0 1524.64 5.00296 491.795 
3 150000 2000 3 200 99429.3 1598.24 6.18529 343.533 
4 150000 2000 8 1000 99288.9 1657.20 6.98908 246.959 
5 70000 2000 8 200 99126.5 1682.47 6.94556 238.366 

6 70000 3000 8 250 100598.0 1451.36 4.24316 602.651 
7 70000 1000 3 250 99630.1 1521.18 4.94161 497.229 
8 150000 1000 3 250 99778.0 1516.32 5.28676 464.255 

We observe that the parameters have been identified within~ 5% of the 
real values for tests 1, 2, 7 and 8. In other cases, only the Young modulus 
E and the viscosity K have been reasonably identified (1% error forE and 
1-10% for K). The power coefficient m and the yield limit aY are in these 
cases still far away from the real values. 

However, the final calculated indentation curves are always superposed 
with the experimental curve, meaning that the minimization of the geometri­
cal distance between them has been achieved. This was also obtained for ex­
perimental indentation curves for different materials like nylon (see Fig. 5.5), 
aluminum (see Fig. 5.7) or polyethylene (see Fig. 5.6). 

The previous results are a direct consequence of the poor sensitivity of 
the cost functional in this region of the parameter space. In order to illustrate 
this property we have plotted the values of the cost functional :J on a plane 
of the parameter space determined by the following points: 

• the reference point: c = (100000, 1500,5, 500), 

• the initial point in test 5: c = (70000, 2000,8, 200), 

• the final point in test 5: c = (99126, 1682, 6.95, 238). 
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2 

--- Experimental curve 
----- Identified curve 

0.01 0.02 
Penetration depth (mm) 

0.03 

FIGURE 5.5. Experimental and identified indentation curve for nylon. 

2 .-------~-----.------~------~------~----~ 

--- Experimental curve 
-·- Identified curve 

1.5 

0.5 

0.02 0.04 0.06 
Enfoncement (mm) 

FIGURE 5.6. Experimental and identified indentation curve for polyethylene. 
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--- Experimental curve 
-- - - - Identified curve 

0.002 0.004 
Penetration depth (mm) 

0.006 

I 
I 
I 
i 
{ 

__j 
0.008 

FIGURE 5.i. Experimental and identified indentation curve for a duraluminum. 

Using a coordinate parametrization given by two orthogonal vectors, the 
parameter sets in this plane can be generated using the following formula: 

E = 100000- 1315.4a- 80362.7b, 

K = 1500 + 273.917a + 714.075b, 

m = 5 + 2.93482a + 1.08013b, 

aY = 500 - 394.32a + 142.208b, 

where a and bare two real parameters. 

(5.81) 

In Fig. 5.8 we represented the values of the cost functional for the pa­
rameter sets generated with (a, b) E (-1, 1) x (-0.5, 0.5). 'I\vo extreme values 
(141200, 923, 2.11, 744), i.e (a, b) = ( -1, -0.5) and (58500, 2131, 8.47, 176), 
i.e (a, b) = (1, 0.5) show how spanned are the values covered in this region. 
The cost functional presents a deep and long valley where it is very difficult 
to converge to the minimum. A close inspection of the obtained values shows 
however, that there is a unique minimum in this region. 
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FIG URE 5.8. Shape of the cost functional .:1 in the (a , b) plane. 

5.2. Notes 

FUrther reading on sensitivity analysis. Some of the topics related 

to sensitivity analysis and nonlinear material behaviour can be found in the 
following list of papers and books: 

• an excellent introduction to sensitivity analysis is the paper of Tortorelli 
and Michaleris [15), 

• an introduction on the subject can be found in the articles and 

books [16, 17, 18, 19, 20), 

• discussion of tangent operators in plasticity and their impact on sensi­
tivity computations [21, 11 , 12) , 

• applications are to be found for example in [22 , 23, 24, 25, 26, 27, 28). 

Programming. Programming sensitivity analysis for nonlinear mate­
rial behaviour is a tricky subject. This is not necessarily due to complexity 
of the subject, but merely because of the difficulties of programming in given 
commercial finite element computer programmes. 

As shown in the examples presented in the preceding Sections, choosing 

the direct differentiation method of the adjoint state method requires the 
integration of some general viscoelastic problems with data coming from the 

direct analysis. The manipulation of data and involved constitutive laws is 
not always straightforward in this context. 

The examples presented before were programmed using the finite element 

language gibiane of the CAST3M computer code. The gibiane language has 
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all the programming possibilities of classical languages like Fortran and its 
operation act directly on the finite element fields. (Some general information 
about programming in CAST3M is given in (29]). Moreover, the integration 
of nonlinear material behaviour, i.e. the operator pasapas has a possibility of 
executing a series of commands given by the user, which made programming 
of the direct differentiation technique very elegant and permitted the usage 
of the already calculated decomposed tangent stiffness matrix. 
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Preface 

Fatigue failure is the final result of complex microscopic phenomena which 
occur under cyclic loading. Traditionally this phenomenon is studied differ­
ent ways depending on the fatigue regime and on the field of interest: fatigue 
limit analysis, life prediction in high or in low cycle fatigue, thermal fatigue, 
etc. The diversity of the proposed approaches is so great that design engineers 
meet many difficulties to have a clear idea of the fatigue calculations which 
have to be done. The purpose of this paper is to present a unified approach 

to both high and low cycle fatigue based on shakedown theories and dissipated 

energy. The discussion starts with a recalling of fatigue phenomena at dif­
ferent scales (microscopic, mesoscopic, and macroscopic). Then some useful 
aspects of shakedown theory in relation with fatigue are presented. Applica­
tions to modelling of high cycle fatigue is then introduced: for instance, some 
multiaxial fatigue criteria (Dang Van, Papadopoulos) are essentially based on 
the hypothesis of elastic shakedown at the mesoscopic scale and therefore on 
a bounded cumulated dissipated energy. Discussion of some aspects of high 
cycle fatigue in presence of notches or stress concentration locus is done. In 
the low cycle fatigue regime, some recent results show that we can speak of 
a plastic shakedown at both mesoscopic and macroscopic scale and a cumu­
lated energy bounded by the failure energy. These ideas are also justified by 
some infrared thermography test results permitting a direct determination 
of the fatigue limit. 
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Chapter 1 

Introduction to fatigue analysis 
of structures 

Current industrial design is highly concerned by fatigue because this phe­
nomenon is the main failure mode of mechanical structures undergoing vari­
able loads. This type of failure occurs after the repetition of several load 
cycles (from a few to millions) to the specimen or the mechanicai compo­
nent. Because of the very important implications of fatigue failures in the 
economy and on the security, many research efforts (in academic as well as 
industrial laboratories) are devoted to the development of design methods 
against fatigue. 

During a long period, starting with the pioneering work of Wohler (1860) 
and ending in the late fifties, high-cycle fatigue (HCF) was one the most 
significant topic for engineers and researchers. Mechanical engineers were 
mainly interested in establishing S-N curves and in determining fatigue limits 
for metallic materials because they are concerned with the effect on lifetime of 
external loadings. During this period only simple methods like beam theory 
were available for engineering computations. The stress evaluated in that 
way is most of the time uniaxial and simple so that S-N curves approach is 
in adequation with these computational tools. However, scientists are aware 
of the need of more general criteria and the first multiaxial criteria were 
proposed quite early in the beginning of the last century. 

In the sixties two new approaches for studying fatigue were introduced. 
First, a special interest occurred in studying low-cycle fatigue (LCF). In­

stead of developing stress approaches, Manson and Coffin proposed fatigue 
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models based on the strain amplitude or the plastic strain amplitude. Their 
models were derived from uniaxial tests in tension-compression where the 
longitudinal strain amplitude was imposed. Application of Manson-Coffin 
approach to structure necessitates inelastic analysis. This is at the origin of 
important development of inelastic constitutive equa~ions which are neces­
sary to perform this type of fatigue analysis on structures using this theory 
(Mr6z, Chaboche, Lemaitre, ... ) . 

Nearly at the same time Paris proposed to use linear fracture mechanics 
approach for studying fatigue crack propagation. He had first to overcome 
the doubts of the reviewers of the fatigue journals who ignore at that time 
this new subject. This new way for studying this old science has rapidly a 
great audience. With the help of new experimental devices the development 
of research on fatigue crack propagation became "a la mode" and increases 
exponentially. Nowadays some authors (see for instance K. Miller [])consider 
that, in fact, fatigue is only a crack propagation phenomenon and fatigue 
limit corresponds to a fatigue crack propagation threshold. 

These two new trends for studying fatigue are favoured by new experimen­
tal devices and more and more precise observations. The two cited approaches 
showed their effectiveness in some cases for structures in the aeronautical and 
nuclear industry. However, these successes were obtained when the stress or 
the strain cycle were uniaxial and simple. As stresses and strain are often 
multiaxial and present a complex path during a loading cycle, application of 
these models is then difficult and the predicted results are often not in reason­
able agreement with test results. Nevertheless these new fatigue approaches 
has so much success that the more classical domain of high cycle was more or 
less neglected: few new ideas concerning this field of application was proposed 
despite the great number of existing fatigue criteria. Surprisingly, the only 
theoretical tools mostly used by the mechanical industries are always those 
developed during the 19th or at the beginning of the 20th century. Nowadays 
S-N curve, Goodman-Haigh diagram or Gerber diagram approach are still 
used as design tools to predict fatigue resistance of mechanical structures, 
even if they are only applicable in uniaxial situations. The computational 
methods like FEM or integral equations methods are much more efficient 
in comparison with beam theory so that the stress and the strain states on 
structures are defined not only by nominal stress or strain value but by fields 
of tensorial components. The S-N curve method is then clearly not sufficient 
and more sophisticated methods are needed. This is particularly true when 
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the fatigue resistance of mechanical structures which have to resist to complex 
cyclic loadings is evaluated, which necessitates the use of multiaxial fatigue 
criteria. In the high cycle regime, many proposals exist. They are mostly 
based on stress or stress amplitude parameters, corresponding for instance 
to adaptation of plasticity criteria to fatigue applications. For instance, many 
fatigue criteria are obtained by replacing Tresca or Mises equivalent stress 
by similar quantities formulated by using amplitude of stress. Predictions 
are often poor and not in reasonable agreement with experiments so that 
the design of structures which have to resist to fatigue (and particularly to 
high cycle fatigue) is still a problem: engineers have to perform difficult and 
time consuming experiments to find fatigue limit of mechanical structures. 
This is done generally on the structure itself, which necessitates iterative 
experiments on one to one scale test models. 

The need of more efficient design methods, the generalization of finite 
elements calculations favor the development of researches. Therefore, a sig­
nificant effort has been put into for deriving reliable fatigue computational 
methods applicable to the previous situations. Beside the fatigue crack prop­
agation methods (which are not studied hereafter), the actual prediction 
techniques are generally based on multiaxial fatigue criteria using a stress 
approach in the H CF regime and on strain or inelastic strain approaches in 
the LCF domain. The materials fail in both domains in similar ways, how­
ever, nowadays the approaches for modelling these two types of fatigue are 
different. 

In the present paper a unified approach is proposed in order to overcome 
this difficulty. It is derived from a HCF multiaxial fatigue theory based on 
a multiscale approach [1), from some recent results in LCF and shakedown 
theories [2, 3, 4). 

http://rcin.org.pl



Chapter 2 

Short description of fatigue 
mechanisms: the necessity 
of a multiscale approach 

Phenomena which cause fatigue failure differ from those which can be ob­
served in static failures. It can be caused by a preexisting crack or defect 
which lead to stress concentration; in that case, it is traditional to consider 
that it is mainly a problem of propagation after a short period of incubation. 
However, in the absence of such defects, an initiation period is necessary for 
the formation of the first detectable cracks which will lead to the final break­
age. This period can take a great part of the fatigue life, particularly in the 
high cycle fatigue regime. In this regime, even if no plastic strain is detected 
at the engineering scale, one can observe plastic slip bands localized in some 
grains. Since the first observations by Gough, many other scientists have 
studied the microstructural changes in fatigue, and particularly the mecha­
nisms of the formation of persistent slip bands and the associated intrusion 
extrusion phenomena. As noted by J. Polak, the characteristic feature of the 
cyclic deformation is an inhomogeneous distribution of the cyclic strain in the 
material. This is particularly true when the applied load is low corresponding 
to the high cycle fatigue. It is then difficult to derive computational meth­
ods which can be employed by engineers for quantitative prediction of the 
fatigue resistance of mechanical structures. By studies based only on macro­
scopic approaches: before crack initiation, the observable behavior of the 
material does not show any deviation from elasticity. Though not detectable 
at the macroscopic scale, it is precisely the evolution of irreversible processes 
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(broadening of the persistent slip bands) which take place at the level of the 
metallic grains which leads to the initiation of first cracks. The introduction 
of the grain scale is thus suitable to model correctly and to capture the main 
features of mechanisms of plastic deformation which are not detectable at 
the macroscopic scale when the specimen is subjected to low or moderate 
cyclic loads. 

In discussing fatigue phenomena we shall distinguish three scales: 

• the microscopic scale of dislocations, 

• the mesoscopic scale of grains, 

• the macroscopic scale representing phenomena at the scale of engineers. 

In a simplified analysis one can say that fatigue phenomena start generally 
with appearance of slip bands in grains which broaden progressively during 
first cycles. The proportion of grains in which slip bands develop increases 
with the applied load. 

In the high-cycle fatigue regime (HCF), as the material behaviour seems 
to be purely elastic; no inelastic behaviour (plastic or viscous) is detected in 
general and consequently the use of stress or strain at this engineering scale 
is equivalent. In practice stress is often preferred to strain. However, at a 
mesoscopic level, plasticity occurs in certain number of grains and generates 
a heterogenous plastic strain. Only misoriented crystals undergo plastic slip 
corresponding to a heterogeneous distribution of micro cracks. The initiation 
of first visible crack, at the macroscopic scale, represents a large part of the 
fatigue life. 

The low-cycle fatigue regime (LCF) implies significant macroscopic defor­
mations leading to irreversible deformations detectable at this level. At the 
mesoscopic level, the metal grains are subjected to plastic deformation in a 
more homogeneous manner than in the H CF regime. The first micro cracks 
in the persistent slip bands appear quite early in the life of the structure. 
The strain and the plastic strain are no more related to the stress through 
a simple relations but depend strongly on the loading path. For instance, 
it is well-known that two similar stress state may correspond to completely 
different plastic strain history. Thus the use of stress parameter or strain is 
not equivalent. 

In both LCF and HCF damage phenomena occur in the groins, and there­
fore the use of mesoscopic fields seem to be relevant for studying fatigue 
phenomena. Let us recall, that the macroscopic fields (stress E, strain E, 
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plastic strain P, etc.) are in a certain sense approximately the mean value 
of the mesoscopic fields (stress a, strain c, plastic strain p, etc.). The macro­
scopic fields are therefore supposed constant in a small volume, surrounding 
the point under consideration. In the theories of polycrystalline aggregates, 
this volume is called "representative volume element" or RVE. For instance, 
the mesoscopic stress a and the macroscopic stress E are related by the 
following forn1ula: 

a= A.E+p, (2.1) 

where pis the local residual stress and A is the elastic stress localization ten­
sor. A is the identity tensor if local and macroscopic elastic moduli are similar. 
This relation shows that it is incorrect to use E for characterizing phenomena 
which occur at the grain scale since the local stress a is not proportional to E 
and does not include information about p. More precisely, fatigue criteria 
using maximum stress (or some combination of maximum stress) are only 
valid for loading paths for which they are derived by correlating experimen­
tal results; therefore they cannot be extended to take account of multiaxial 
loadings, and as consequently they cannot be used practically for mechanical 
design. However, this way to proceed is very often used even if it is not valid. 

As fatigue is caused by irreversible phenomena let us compare the dis­
sipated energy at both mesoscopic and macroscopic ficales. It is well-known 
(see for instance [1]) that the total macroscopic work rate is the mean value 
in the RVE of the local total work rate. However, the equality between the 
mesoscopic and macroscopic energy does not hold for plastic dissipation as 
proven by H. D. Bui and recalled also in [1]. The difference between macro­
scopic plastic dissipation and mean value of mesoscopic plastic dissipation 
decreases with increasing plastic strain, as the plastic heterogeneity from 
grain to grain decreases. This also justifies why macroscopic plastic deforma­
tion is a reasonable approximation in LCF. 

The evaluation of the local mesoscopic fields from the macroscopic ones is 
in general a difficult task since the material is locally heterogeneous and has 

to be considered as a structure when submitted to complex loading histories. 
Depending on the loading characteristics one can accept different simplify­
ing assumptions which will permit to find a solution to the problem. The 
multiscale approaches in fatigue that we promote are precisely based on the 
use of mesoscopic parameters instead of engineering macroscopic quantities. 
In order to derive a unified theory of fatigue, we shall assume that the elastic 
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shakedown occurs at the level of the microstructure as well as at the macro­
scopic one. 

Before studying the application of the shakedown theory to the mi­
crostructure, let us examine some physical models which were at the origin 
of the proposed approach. 
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Chapter 3 

On some physical modellings 
of fatigue 

The first multiscale fatigue model was proposed by Orowan (5). In fact, this 
model is only qualitative. Orowan wants to give a plausible explanation of 
fatigue fracture near the fatigue limit. In this regime, the stress could be well 
below the macroscopic yield limit. To derive his model, this author observes 
that fatigue is generally due to stress concentrations, heterogeneity, etc., and 
that the first fatigue phenomena are microscopic and local i.e. they appear in 
some grains which have undergone plastic deformations. These deformations 
are localized in intra-crystalline shear bands, the rest of the matrix behaves 
elastically because the macroscopic plastic strain is negligible. The first cracks 
initiate precisely in these shear bands. 

Using such an approach, Orowan proposed the following model depicted in 
Fig. 3.1. 

A weak plastic element is embedded between two elastic springs, which 
impose their deformation to the whole system. The weak element undergoes 
plastic strains r and hardens. If the plastic behaviour of this element is 
governed by pure isotropic hardening, as shown in Fig. 3.1, then its response 
tends towards an elastic shakedown state precluding fatigue. The limit state 
in that case oscillates between A (the corresponding shear is r) and B (the 
corresponding shear is -r). The local shear loading is symmetric even if 
the prescribed external loading is not symmetric. Then, if the limit range is 
smaller than some definite value, there is no fatigue. On the contrary, fatigue 
occurs if this condition is not satisfied. 

http://rcin.org.pl



142 

T 

-.... 

3. ON SOME PHYSICAL MODELLINGS OF FATIGUE 

...... 

' I 
I 

I 
I 

' 
' ' ' ' ' I 

' \ -.... 
\ 

' ' ' ' ' ' 
I 

I 
I 

I 
I 

' I 
I .. _ 

,- .............. 
\ II 

I I 

B \1 

T 

+ 

t 
T 

FIGURE 3.1. Schematic representation of fatigue crack initiation after Orowan [5). 

Orowan's model is interesting, however it contains an error, because it 
does not take into account the generation of residual stress arising from 

incompatibility between the weak plastic element and the elastic matrix. 
A very simple generalization of Orowan's model can be proposed based 

on the use of Lin-Taylor model [1). 
Let us consider an inclusion submitted to a uniform plastic strain p and 

embedded in an elastic matrix. Let L and l be respectively the elastic com­
pliance of the matrix and the inclusion. Suppose that under external loading, 

the total strain of the matrix and of the inclusion are the same (Lin-Taylor 
model): 

E =ee+p. (3.1) 

Multiplying both sides of the previous relation by l and taking into account 
the elastic stress-strain relations: 

E=L-1 :E, 

one obtains: 
a= l: L-1 : E -l: p. 

(3.2) 

(3.3) 

(3.4) 

This relation is similar to Eq. (2.1), where l : L - 1 is a localization tensor 

that concentrates the stress (tensor A of Eq. (2.1)) and l : p corresponds 
to the local residual stress induced by the mesoplasticity (plasticity in the 
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grain). Then similarly to Orowan's model, the fatigue crack initiation crite­
rion in high cycle regime can be formulated using local stress tensor a in the 
stabilized state. The proposed criterion will be detailed later in Sec. 5.1. 

If one assumes that elastic shakedown occurs before fatigue, then local 
plastic deformation p and residual stress field p become independent of time 
after a certain number of loading cycles, whereas the local stress as well as the 
macroscopic stress varies cyclically. If the possibility of shakedown coincide 
with fatigue limit, then it is possible to characterize limit state by the asso­
ciated hardening parameter, as it was proposed by Y. V. Papadopoulos [6). 

Let us notice that if macroscopic plastic deformation occurs, then 
Eq. (3.4) must be modified: 

a = l : L -I : E - l : (p - EP), (3.5) 

which is similar to the famous Kroner-Eshelby equation which is very popular 
among specialists of polycristalline theories. 

The local residual stress is now related to the difference between plastic 
deformation of the matrix and of the grain. In the high cycle regime, it is 
natural to suppose that near the fatigue limit, both plastic deformations are 
stabilized (elastic shakedown at both scale of material description). 

However, if the loading is such that stabilization is not possible, the num­
ber of cycle for fatigue failure is low. This regime corresponds to low cycle 
(plastic) fatigue. 

Formulae (3.4)-(3.5) show that the residual stress is a function of the 
plastic deformation and of the elastic modulus of the material. More gen­
erally, the residual stress is a functional of the plastic deformation and is 
proportional to the elastic moduli. 
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Chapter 4 

Elastic shakedown 
of an elastoplastic structure 

Under cyclic loadings, an elastoplastic mechanical structure may have three 
possible asymptotic responses after a certain numbers of cycles (which could 
be infinite): 

• elastic shakedown which corresponds to stabilization on a pure elastic 
response, 

• elastoplastic shakedown when this response is stabilized on an elasto­
plastic cycle, 

• ratcheting when their is no possible stabilization. 

The static theorem of Melan gives a sufficient condition for elastic shake­
down for a structure made of elastic perfectly plastic material. It can be 
stated as follows: 

If there exist a time 8 and a fixed (i.e. independent of tirne t) 

self-equilibrated stress field R( x) and a safety coefficient m such 

that V point x of the structure and t > 8 

g(m(Eei(x, t) + R(x))) < k2
, 

the structure will shakedown elastically. 

Eel is the stress response of the structure under the same external loading, 
but under the assumption that the constitutive material has a pure elastic 
behaviour. 
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(This formulation, due to W. Koiter, differs slightly from the original 
formulation of Melan). 

Demonstration and discussions of this theorem was given in a famous 
paper of Professor W. Koiter [2). In his paper, Koiter draws attention to the 
fact that this theorem and its proof do not say anything about the mag­
nitude of plastic deformation which may occur before the structure reaches 
its shakedown state. It is clear that too large plastic deformation gives a 
solution, which has no physical meaning. But, Professor Koiter addoo that 
if "the total amount of plastic work performed in the loading is accepted as 
suitable criterion for assessing the overall deformation, boundedness of the 

overall deformation may be proved if the structure has a safety factor m > 1 

with respect to shakedown." 

We do not reproduce more detail of this discussion; we shall retain the 
condition that total plastic work must be bounded to ensure acceptable bounds 
on plastic deformation. 

Melan's theorem was extended by different authors to account for more 
realistic material behaviour. In particular, generalization to elastoplastic ma­
terial combining linear kinematic and isotropic hardening by Mandel et al. [3) 
(and Q. S. Nguyen but with an other formalism which will be recall hereafter) 
is particularly interesting. However, these theorems are difficult to apply, be­
cause the fixed stress field R( x) must be self-equilibrated, a condition which 
is not easy to fulfil. 

That's why Mandel et al. give another proposal, which is a necessary 

condition of elastic shakedown. This last condition can be summarized as 
followed (J. Mandel, B. Halphen, J. Zarka [3]): 

Shakedown occurs if it exists a fixed stress tensor E* (not neces­
sarily self-equilibrated} such that 

The isotropic hardening parameter K is supposed to be an increas­

ing function of equivalent plastic strain P eq beyond some limit K*. 

K*2(Peq) is the maximum acceptable value of the yield radius. 

Thus, at the shakedown limit, E* is the centre of the of the smallest 
hypersphere surrounding the local loading path Eei(x, t), the radius of which 
is K*(Peq)· 

This theorem is very useful in fatigue. 
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At that point of the presentation, it is interesting to recall a proposal of 
J. Zarka [6] for studying asymptotic responses of structures made of elasto­
plastic linear kinematic hardening material submitted to cyclic loadings. For 
such material, the yield function can be written as follows: 

Vt > 8 g(E(x, t)- cP(x, t)) - K*2 ~ 0, (4.1) 

where c is the linear kinematic hardening parameter, which is of the order of 
magnitude smaller than the elastic modulus. Since E = Eel+ R, the previous 
inequality can be rewritten as follows: 

Vt > 8 g(Eet(x, t) + R(x, t)- cP(x, t)) - K 2 ~ 0. (4.2) 

R must be self-equilibrated, but no such condition is required forE* = -(R­
eP). At the shakedown state R and P and consequently E* are independent 
of time. 

Let us return to the Melan-Koiter sufficient shakedown condition. Koiter's 
reasoning can be also extended to strain hardening material in the framework 
of the generalized standard material theory as introduced by Q. S. Nguyen 
et al. and recalled in [7]. (Most of the classical metallic material belong 
to this class). The boundedness of the dissipation (which corresponds to 
plastic work plus work induced by generalized strain hardening parameters) 
assures that the plastic deformation as well as strain hardening parameters 
are bounded (see [4]). Since these results are not familiar to fatigue specialists, 
it is necessary to recall some important points of these theories: 

Let us begin first with the classical case of a perfectly elastic plastic 
material. The elastic domain is defined by 

g(E)- k2 ~ 0, (4.3) 

and the associated plastic flow rule can be written as follows as follows: 

. 8g 
P = J.t aE = Nc(E), g ~ 0, J.t ~ 0, J.£9 = 0. (4.4) 

Here J.t is the plastic multiplier which is non-negative. One can see easily that 
the plastic flow direction is normal to the plasticity convex at the point E, 
which can be denoted by 

p = Nc(E). (4.5) 

The dissipation rate is: 
D(p) = EP. (4.6) 
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The proof of the classical Melan-Koiter theorem for elastic perfectly plastic 
material can be performed in two steps: 

1. in the first step, it is proved that under the previous assumptions, the 
dissipated energy is bounded, 

2. in the second step, one demonstrates that the distance between :E(x, t) 
and Eel(x,t) tends toward a constant value. 

Only demonstration of the first step is recalled in the following. 
Taking account of the property ( 4.5), one has for all plastically admissible 

stress field ::E*: 1 ('E- E*): PdV;;;, 0. 

v 
(4.7) 

Choosing :E* = m(R+ ::Eel(t)), which is plastically admissible by assumption, 
the following inequality is derived: 

{ . m-11 · Jv (::E - R- ::Eel) : PdV ;?! --:;;;:- ::EPdV. (4.8) 

v 

Since (::E - R - ::Eel) is self-equilibrated and the rate of displacement field 
iL - Uel = 0, the application of virtual work principle gives: 

0 = 1 (E - R- Eel) : (E - Eel) dV 

v 

= 1 ((E- R-Eel): P + {E- R-Eel): M: (t- R- Eel))dV, (4.9) 

v 

where M is the elasticity matrix. One concludes that: 

1 . . . m-11 · - (::E - R- ::Eel) : M : (::E- R-Eel) dV ;?! --:;;;:- ::E : P dV. 

v v 

After time integration, one obtains the following inequality 

m-1 
!(to)- I(t);?! --WP, 

m 

where WP is the plastic work and I ( t) is defined by: 

(4.10) 

(4.11) 

J(t) = 1 !{E- R-Eel): M: {E- R-Eel) dv. {4.12) 

v 
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The dissipated energy is thus bounded. 
This result can be extended to more general elastoplastic behaviour, due 

to the general standard material concept introduced first by Q. S. Nguyen et 
al. (7]. Beside the usual strain parameters E and P, these authors introduced 
a set of strain hardening parameters denoted symbolically by {3. It is then 
possible to define a potential energy W(E, P, {3), from which one derives the 
fan1ily of "associated generalised forces" A(E, Ap, A.a). More precisely: 

aw 
E= 8E' 

aw 
Ap =- 8P' (4.13) 

The elastic domain is a convex of the ''generalised forces" space defined by: 

(4.14) 

The constitutive equations can be written in a symbolical way like in 
perfect plasticity: 

a= Nc(A), (4.15) 

where a = (P, {3). The previous equation corresponds to (generalised) nor­
mality rule, like in perfect plasticity (Eq. 4.5). More precisely: 

g ~ 0, J-L ~ 0, J-L9 = 0. (4.16) 

The maximum dissipation principle which can be written for all A* E 

C(a) (A* is said to be plastically admissible): 

A.a ~ A*.a (4.17) 

results from the normality rule and the convexity of C. This expression is an 
extension of Hill's maximum principle (or Drucker's postulate) to generalised 
elastoplastic behaviour. 

The corresponding Melan-Koiter theorem for generalised standard mate­
rial then reads: 

Elastic shakedown occurs, whatever the initial state of the struc­

ture, if there exists a field of internal pammeters a* and a safety 

coefficient m > 1 such that the associated generalised force field 

A* ( t) is plastically admissible Vt > T. 
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Under these assumptions, Q. S. Nguyen [5] demonstrates the following 
inequality: 

t m-111 !(to)- I(t) ~ ~ A.adV, 

where I(t) = J W(E- E*, o:- o:*) dV. 
v 

to V 

(4.18) 

This expression is similar to inequality ( 4.11) corresponding to classical 
Melan-:Koiter theorem for elastic perfectly plastic material. 

The dissipated energy being bounded, the set of parameters o: represent­
ing the plastic strain and the internal hardening parameters are also bounded. 

Let us notice that the only assumption on the inelastic strain P is that 
o: = (P, {3) must fulfil the normality law. Except this requirement P could 
be purely deviatoric or can include a hydrostatic part. 
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Chapter 5 

Application of the shakedown 
theory to fatigue 

We propose to apply the shakedown theory to the microstructure in order 
to derive a unified fatigue model valid for structural applications. The main 
assumptions of this model are the following: 

• Near the fatigue limit but below it, elastic shakedown takes place at 
all scales of material description, at the macroscopic scale as well as at 
the mesoscopic scale. In particular the local plastic dissipation must be 
bounded. 

• If the loading history is such that elastic shakedown is not possible, then 
the local admissible dissipation is bounded. This bound corresponds to 

fatigue initiation energy. The number of cycle necessary to dissipated 
this energy corresponds to the initiation period. 

5.1. Application to fatigue limit criterion 

In the high cycle regime, only few misoriented grains (with respect to 
the loading) undergo plastic deformation in localized slip bands. Under the 
fatigue limit, i.e., the threshold between the infinite and finite lifetime, the 
dissipation at the macroscopic scale is bounded and therefore the dissipated 
energy per cycle decreases to become after a while negligible (see Fig. 5.1). 

In engineering applications, it is therefore not easy to characterize it by 
evaluating directly the accumulated plastic strain, and consequently it is dif-

http://rcin.org.pl



152 5. APPLICATION OF THE SHAKEDOWN THEORY TO FATIGUE 

't 

Schmidt Law 

N 
E elastic Plastic shakedown 

bounded 
dissipated energy 

FIGURE 5.1. Elastic and plastic shakedown at the mesoscopic scale. Two types of 
limit cycles (elastic and plastic shakedown) are shown on the left. Initiation period 
corresponds to the number of cycles separating the elastic and plastic shakedown 
on the right. 

ficult to calculate dissipated energy cycle by cycle as it was done by I. V. Pa­
padopoulos [8). This calculation is in fact only a way to construct a theoretical 
model of fatigue than to derive a proposal for practical applications. 

It is the reason why two different ways were explored: 

1. When the loading characteristics correspond to the fatigue limit, then 
the asymptotic stabilized stress state is contained in a limit yield surface 
defined by the limit radius K*. Papadopoulos in an early work proposes 
a theory in which K* depends (linearly) on the maximum hydrostatic 
tension induced by the loading cycle [9). 

2. In 1973, Dang Van, generalizing the idea of Orowan, proposed to con­
sider the mesoscopic current stress state at the apparent stabilized 
(shakedown) state as the relevant parameters in order to formulate 
a polycyclic multiaxial fatigue resistance criterion. More precisely, the 
proposed criterion is a combination of mesoscopic shear r(t) and the 
concomitant hydrostatic pressure PH(t). 

The formulation of the proposed criterion is the following: 

if r(t) + apH(t) - b > 0, where a and b are material constants, 

then the fatigue will occur. 

The two coefficients a and b can be determined by two simple fatigue exper­
iments; for instance, b corresponds to the fatigue limit in simple shear. 

General application of this criterion requires: 
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• first to evaluate the mesoscopic stress tensor knowing the macroscopic 
stress cycle; this can be done under the assumption of elastic shake­
down near the fatigue limit by constructing the smallest hypersphere 
surrounding the macroscopic loading path as it is suggested the theo­
rem of Mandel et al. Details of this construction is given in [1); 

• second one must consider the plane on which the set (r(t),PH(t)) is a 
"maximum" relative to the criterion. This computation can be done as 
follows: 

The maximum local shear at any time t is given by 

r(t) = Tresca (a(t)) =max lai(t)- aJ(t)l. 
I,J 

(5.1) 

The stresses a1(t), aJ(t) are the principal stresses at timet. 
The quantity that quantifies the danger of fatigue occurrence is defined by 

d =max r(t) . 
t b- apH(t) 

(5.2) 

d is calculated over a period, and the maximum is to be taken over the cycle. 
It is frequent in the applications in high cycle fatigue (elastic regime) to 

use the concept of local equivalent stress for a life duration Ni defined by 

TO,i = T + aiPH· (5.3) 

For the fatigue limit ro,i corresponds to material constant b, but is dif­
ferent from b in general because ro,i and ai depend of Ni. If ai (slope of the 
fatigue line in T- PH diagram) depends weakly on Ni, taking ai ~a, it is 
possible to define the local equivalent stress by 

(5.4) 

Very often T and PH are maximum at the same time, so that is sufficient in 
some applications to plot Tma.x versus PH max (cf. (10]). 

5.2. Comments on notch effect in high cycle fatigue 

The presence of defects like notches, cracks, and inclusions on mechanical 
structures induce an increase of the local stress and strain which is very 
harmful for the fatigue resistance. In order to take account of the notch effect, 
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it is traditional to distinguish the theoretical stress concentration factor Kt 
and the fatigue concentration factor Kr. 

Kt is defined for notched test specimen as the ratio between maximum 
local stress (tension or shear) in the vicinity of the notch and the nominal 
stress (tension or torsion). 

Kr is the ratio between the fatigue resistance (in tension or in torsion) 
of the notched specimen and the fatigue resistance of a smooth specimen 
submitted to the same type of load. It is observed that Kr differs from Kt 
in a complex way. The explanation of this dependence is very simple if we 
accept the validity of the proposed model. Indeed, it is assumed that near 
the fatigue limit, elastic shakedown should occur at both the macro and the 
mesoscale. 

Shakedown at macro scale means that at a point x in the vicinity of the 
notch there exists a macroscopic residual stress field R such that 

E(x, t) = Kt.Eei(x, t) + R(x). (5.5) 

Relation (2.1) can be rewritten: 

a= A[Kt.Eel(x, t) + R(x)] + p(x). (5.6) 

Since mesoscopic stress tensor a intervenes in the fatigue criterion, there is 
no simple relation between Kt and Kr . 

5.3. Application to low cycle fatigue 

Plastic fatigue or low cycle fatigue is very much studied since the pioneer­
ing work of Manson and Coffin. In order to fit experimental results, these 
authors proposed to use the amplitude of plastic strain as a relevant param­
eter. These tests were uniaxial and strain was controlled. In that case it is 
clear that the stress is related to the plastic strain amplitude in the stabilized 
state so that the plastic dissipation is a function of strain amplitude. 

However, in the case of cycles involving more complex stress state there is 
no such relation, since it is well-known that in plasticity the response depends 
closely on the loading path and on the constitutive equations. Generalisation 
to 3D formulation of elastoplastic cyclic curve is a convenient way to do, 
but which is not backed up by any theoretical background. In view of plas­
tic fatigue applications, many elastoplastic or elastoviscoplastic constitutive 
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equations were proposed in the eighties ( cf.: J. L. Chaboche, J. Lemaitre, 

Z. Mr6z, ... ), and summarised for instance in [11]. By numerical computa­
tions, it is then possible to evaluate plastic strain amplitude or plastic dis­

sipated energy; let us notice, however, that for general cyclic loading paths, 
there is (on the contrary to uniaxial loading mentioned previously) no evi­

dent relation between those two quantities. Criteria based on plastic strain 
amplitude are then not equivalent to those based on plastic dissipation. The 

following question arises: what ~s the "good" parameter in plastic fatigue from 

a practical as well as from a theoretical point of view? Basing on the previous 
discussion we prefer to use a criterion based on a limitation of the local dissi­

pation, since this feature ensures that the corresponding deformation is also 
bounded, which is a natural necessary condition for no rupture. Moreover, 

Exhaust Manifold 
cast iron - thermomechanical fatigue 

FIGURE 5.2. Prediction of crack initiation on exhaust manifolds subjected to 
thermomechanical cydic loadings. 
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dissipation is easy to calculate, without any ambiguity, and presents many ad­
vantages particularly in problems involving thermomechnical loadings which 
are very frequent and important in mechanical industries (engines, power 
plants, etc.). Such a typical problem is studied by E. Charkaluk et al. [12). 
The mechanical structure is an exhaust manifold which is submitted to gas 
pressure and temperature varying in a wide range. Since this structure is 
clamped on the engine body, thermomechanical stresses arise inducing in­
elastic deformations and low cycle fatigue and even creep fatigue. For such a 
problem, the approaches deriving from classical LCF are not efficient , since 
the stress varies with the temperature, for a given plastic strain. The use of a 
criterion based on a bound on dissipated energy, first identified in laboratory 
test specimens (isothermal strain controlled LCF tests and thermal fatigue 
tests on clamped specimens), then applied to the industrial structure for the 
prediction of the fatigue life (locus of crack and life duration) give very good 
results. This methodology was already successfully applied to the design of 
structures submitted to thermomechanicalloadings (exhaust manifold shown 
in Fig. 5.2, cylinder head, etc.). 

5.4. Interpretation of the infrared thermographic evalua­
tion of the fatigue limit 

Evaluation of fatigue limit by conventional testing methods (stair case, 
etc.) take a lot of time. In order to shorten the experiments, some researchers 
proposed to use infrared thermography which is a convenient technique for 
producing heat images from the invisible radiant energy emitted by the test 
specimen submitted to cyclic loading at an adequate frequency. The temper­
ature rise can be thus captured by the thermographic camera as it is shown 
in Fig. 5.3. 

When the load is increased, one can observe at the same time an increase 
of the temperature of the specimen. As it was shown by Luong et al. [13, 14), 
the manifestation of the fatigue damage is revealed by a break of the curve 
temperature (or also intrinsic dissipation) versus the intensity of the cyclic 
load as it is shown in Fig. 5.4. Figure 5.4(a) corresponds to determination 
of the fatigue limit of XC 55 steel by rotating bending test. Figure 5.4(b) 
corresponds to test done in order to evaluate the fatigue limit of an automo­
tive connecting rod. In both cases, the results obtained very quickly by the 
method using infrared thermography are similar to those obtained by classical 
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(a) 

FIGURE 5.3. Determination of fatigue limit using thermographic camera. 
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FIGURE 5.4. (a) Fatigue limit in rotating bending. (b) Fatigue limit of a con­
necting rod. 
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fatigue tests. Until now there is no convincing explanation of this coincidence. 
In the proposed theory of fatigue, the reason of this coincidence is very clear: 
the fatigue limit corresponds to a threshold on dissipative energy; below this 
threshold, dissipation is bounded, and as a consequence plastic strain (and 
internal strain hardening parameters) are finite as it was shown by W. Koiter 
for perfectly plastic material and extended by Q. S. Nguyen to generalized 
standard material (most of the metallic strain hardening material belongs to 
this class). The break on the curves of Fig. 5.4(a) and (b) corresponds to two 
different dissipative rate regimes. 
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Chapter 6 

Conclusion 

During more than one and a half century metal fatigue has been the sub­
ject of numerous research studies conducted by scientists of different fields: 
mechanical engineers, material scientists, physicists, chemists, etc. Although 
progress was done in an understanding of physical phenomena, many dif­
ficulties still exist to achieve an interdisciplinary consensus in the way to 
model fatigue crack initiation. Depending on the discipline, points of view 
are often very different. A mechanical approach has been presented which 
seems promising: it is based on shakedown hypothesis. Many applications to 
industrial structures submitted to complex multiaxial loadings are already 
successfully done; some of these applications, in the domain of high cycle 
fatigue as well as in plastic or viscoplastic creep fatigue regime have been 
shown this paper. 

In final conclusion, lets us recall a sentence written in 1963 by Professor 
Daniel Drucker which summarizes very elegantly our proposal [14]: "when 

applied to the microstructure there is a hope that the concepts of endurance 

limit and shakedown are related, and that fatigue failure can be related to 

energy dissipated in idealized material when shakedown does not occur". It 
seems that this sentence was not known by the fatigue scientist community. 
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