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Preface 

The lecture notes presented in this volume fall within the scope of the course 

given by the first author in April-May 2002 as a part of the programme 

of the Centre of Excellence for Advanced Materials and Structures, Warsaw 

(Poland) under the auspices of the European Union. The lecturer is very 

indebted to the participants - young doctoral students and experienced re­

searchers - for their comments, questions and remarks. Many of them are 

echoed in this text. It is divided into eight chapters attempting to cover sig­

nificant 'modelling challenges' of contemporary nonlinear mechanics of solid 

materials related to progressive deterioration phenomena. The fields of quasi­

brittle, dilatant engineering materials, of ceramic matrix composites and of 

high-strength metallic alloys are of primary focus. The small strain frame­

work as well as the large deformation context are concerned (the second 

one limited to Chapter 8). The dissipative coupling of damage phenomena 

involved ( microcracking, cavity growth and adiabatic shear banding) with 

different forms of plasticity and with some induced effects related to damage 

deactivation, is detailed. However the primary common denominator of the 

course is ANISOTROPIC DAMAGE and, in particular, damage-induced or­

thotropy eventually combined with initial (primary) anisotropy (as shown in 

Chapter 6). 
What is at stake in the venture is a connection with salient mesomechani­

cal deterioration mechanisms on the one hand and computational efficiency of 

the constitutive models and their identifiableness on the other. The method­

ology applied, exploiting the framework of internal variable formalism in a 

sometimes non-classical way (see pseudo-standard modelling, Chapters 3-6), 

is thus striving to keep simultaneously a strong link with micromechani­

cal analyses and to put together the tools like multilinear elasticity, tensor 

functions representation theory and a large strain formulation coping with 

anisotropy effects and objectivity requirements combined. Of course, some 
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6 PREFACE 

simplifying assumptions, regarding notably the damage description limited 
to the second-order tensorial one, have been inevitable. 

The authors would like to express their thanks to the AMAS staff, notably 
to Professor Zenon Mr6z, Scientific Coordinator, to Professors Krzysztof 
Dolinski and Michal Basista and to Ms. Izabella ~;I~czkowska for the kind 
assistance before and during lecture series and for. their patience regarding 
the manuscript preparation. 

Many thanks are due to Brigitte Vigner and Pascale Pouzin from the Me­
chanics & Physics of Materials Laboratory (CNRS and ENSMA) at Poitiers­
Futuroscope for their excellent efforts in the efficient execution of the word 
processing of the manuscript. We express also our gratitude to colleagues 
from the team 'Modelling of Materials & Structures', especially to Carole 
Nadot-Martin and Patrice Longere for their assistance during the prepara­
tion of Chapters 7 and 8. 
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Notations concerning 

tensor algebra 

Let A and B be two second-order tensors and C a fourth-order tensor. The 
Einstein convention (summation over repeated indices) is used. The following 
notations are used: 

(A.B)ij = AikBkj (see the note below), 

tr(A.B) = AikBki =A: B (see the note below), 

(A® B)ijkl = AijBkz, 

- 1 
(A®B)ijkl = 2(AikBjz + AilBjk)· 

Note: 

For simplicity reasons relative to finite strain context and relevant notation 
heaviness in Chapter 8, the dots representing the contraction with respect to 

one and/or two indices are omitted, i.e.: 

(A B)ij = AikBkj (instead of A.B), 

tr(A B) = AikBki =A: B (instead of tr(A.B)). 
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Chapter 1 

Introduction and scope 

The emergence and further development of Continuum Damage Mechan­
ics (CDM) during the last forty years corresponded to evident needs of con­
trolling material response in the presence of evolving micro- and meso-defects 
in order to meet structural reliability requirements in the context of engineer­
ing applications. Within the larger fields of Material Science and Technology 
and of Mechanics of Materials, the CDM itself has evolved, passed through 
different phases, upturns, doubts and some transformations. Its methodol­
ogy- and, in particular, the scope of what is commonly termed 'continuum 
models' - has been gradually precised and its range restricted by scale, de­
fect interaction and correlation, and statistical homogeneity related criteria 
and postulates. The exhaustive treatise by Krajcinovic [1] provides a rigor­
ous, global survey in the matter corresponding to the mid-nineties state of 
the art. It presents the assets as well as the limits and some deficits of re­
search at the time. The more recent article [2) by the same author attempting 
to assess "accomplishments, trends and needs" of Damage Mechanics (DM) 
pursues the deliberation and conclusions of the book [1). It is stated, among 
others, that despite of much progress and the fertility of fields of actual and 
future research, there remains some reticence to employ the DM for purpose­
ful industrial applications (see [2), p. 274). Several reasons and postulates 
are elicited in this regard, related to damage modelling, sometimes focusing 
on "the least eventful and important part" of deformation regime, and to 
experimental research and identification problems related to damage control. 
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10 1. INTRODUCTION AND SCOPE 

Among the issues of importance raised in the latter evaluation, Krajci­

novic puts forward, in Section labelled 'Research needed' ( cf. [2] p. 272), the 

problem of coupled dissipation for compression-dominated loading paths in­

volving damage by microcracking accompanied by frictional sliding over the 

mating microcrack lips. Genuinely, the essential part of the present text is 

devoted to modelling of these phenomena for a broad class of quasi-brittle 

solids like rocks, concrete, ceramics, etc. More specifically, the actual lecture 

notes present a synthesis of the multi-segment model advanced recently by 

the present authors and coworkers, see e.g. [3, 4, 5]. The work at stake is 

attempting a unified, three-dimensional approach of the field concerned. The 

phenomena involved require reliable control of damage growth, handy mas­

tery of opening/ closure (and reverse) transition for any system of microcracks 

and a description of plasticity-like sliding evolution on closed crack set(s). 

These problems are approached here in the framework of rate-type constitu­

tive theory with internal variables. The different model segments are strongly 

micromechanically motivated in their essential elements. Still, they are built 

to provide convenient tools for efficient structural analysis of engineering 

problems and, as such they constitute a continuum damage model coupled 

with a form of frictional sliding related plasticity. In order to deal with the 

complex issues like damage-induced anisotropy and continuity requirement 

for some macroscopic entities (energy, stress) - in spite of discontinuities in­

volved in micro crack opening/ closure phenomena - the methodology involved 

combines divers means of modelling not commonly put together in literature. 

Hence, the tensor functions representation theory, the multilinear functions 

framework applied to piecewise-linear elasticity (for a given damage config­

uration) are employed together with salient micromechanical results. Some 

interpenetration of an operational CD M viewpoint and corresponding capac­

ities with micromechanical analyses and results may constitute a very effi­

cient way of modelling. The recent work by Hild and coworkers [6, 7] provides 

an interesting illustration of such a combined methodology. Some microme­

chanical developments, based on a non-conventional approach starting from 

a specific geometrical and kinematical description of 'bonded aggregate'-like 

microstructures are given in the present text, attention being paid to nonlocal 

damage effects on the microscale. 
A legitimate question arised some years ago concerning full understanding 

of the damage-related, inelastic response of quasi-brittle materials: what are 

the principal obstacles for an efficient control of the dissipative behaviour 
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1. INTRODUCTION AND SCOPE 11 

involved? The question was legitimate with respect to a great number of 
papers focusing on damage by microcracking, and what is more, containing 
a large spectrum of investigations on several scale levels. It seems that three 
principal barriers intervening simultaneously were: (i) anisotropy linked to 
and evolving with multiple cracking, (ii) efficient control of opening/closure 
transition for a microcrack set(s), and (iii) three-dimensional character of 
effects involved. The second point is pivotal in the context of the present 
study. 

The credit for identifying in the early eighties the problem of damage 
deactivation (due to closure of defects) and its consequences, termed some­
times 'unilateral effects', is due to Ladeveze and Lemaitre [8], see also Lade­
veze [9], Lemaitre (10]. These authors attempted also modelling these effects 
starting from energy (thermodynamic potential) expressions. The recovery 
(total or partial) of the Young's modulus in the direction perpendicular to 
that of a closed crack set could be described. Further developments followed 
(Mazars (11], Simo and Ju (12], Yazdani and Schreyer (13]). 

However, when adding anisotropy effects and three-dimensionality men­
tioned above, many difficulties arised and most of the models existing at the 
early nineties appeared unable to assure simultaneously energy and stress 
continuity and unilateral effects of damage deactivation. The stimulating 
critical review by Chaboche (14] has been an important step in thorough 
analysis of multiple aspects involved in and an advance for capturing the full 

extent of the problem to deal with. 
In 1995, an interesting tentative of a global vision of the non-linear me­

chanics of materials has been proposed by Lubarda and Krajcinovic [15], 
including the classical rate theory of elastoplastic deformation of crystalline 
solids as well as .the salient features concerning progressively mesofractur­
ing solids. Indeed, as stated above, the complete dissipative picture for 
quasi-brittle material response comprises the continuum damage approach 
attempting to capture progressive degradation attributable to evolution of 
multiple defects coupled with the plasticity-like approach accounting for fric­
tion resistance and for irreversible frictional sliding over the internal crack 
surfaces. The extended framework of damage-elastoplastic constitutive mod­
elling should allow for study of complex, cyclic and non-proportional load­
ing paths, where coupled mesocrack growth and friction related dissipative 
mechanisms produce strong non-linearity, induced anisotropy, volumetric di­
latancy and intricate hysteretic phenomena. The modelling to be synthesized 
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12 1. INTRODUCTION AND SCOPE 

here may be considered in some respect as a specific constitutive formalism 

relevant to the aforesaid global framework postulated by Lubarda and Kra­

jcinovic. 

Regarding the above mentioned hysteretic behaviour for progressively 

mesofracturing solids, one may recall cyclic tests for some rocks, see for exam­

ple Pecqueur [16]. Considering a compression-dominated loading cycle for mi­

crocracked sample one has some 'favourably' inclined crack-sets constrained 

to closure. The initial unloading process keeping compression-predominance 

- consider e.g. torsion cycles under superposed hydrostatic compression - is 

friction-locked, exhibiting a high apparent rigidity. Further unloading may 

be dissipative if reverse multistage frictional sliding over closed microcracks 

(reverse with respect to a loading branch) becomes active. The inelastic un­

loading is just one characteristic effect generated by microcracking-related 

damage. It is obvious that this effect cannot be managed within the frame­

work of classical plasticity theory. It appeals for a more suitable, enlarged 

constitutive framework. 

In fact, the modelling of friction resistance on cracks and of relative slid­

ing effects with respect to hysteretic behaviour has received much attention 

in the past. An early, strong evidence in this sense, in the context of rock 

behaviour, can be found in Walsh [17]. Further analyses and models are 

due to Kachanov [18), Horii and Nemat-Nasser [19), Andrieux et al. [20], 

Nemat-Nasser and Obata [21], Ju [22], Krajcinovic et al. [23), Gambarotta 

and Lagomarsino [24], Fond and Berthaud [25], Lawn and Marshall [26]. 

This list is probably non-exhaustive. For the most part, the works adduced 

represent pertinent rnicromechanical studies leading, for some of them, to 

models capable to cover a limited range of stress-strain paths (one- and two­

dimensional, axisymmetric, etc.). As stated before, one of the purposes of 

this review is to address, in a synthetic manner, basic hypotheses and is­

sues of the 3D modelling proposed by Halm and Dragon [5, 27], employing a 

coherent internal variable forrnalisrn for the joint process of anisotropic dam­

age by microcracking and frictional sliding at closed microcracks. The aim 

of this model is to provide an efficient, macroscopic - whereas strongly mi­

cromechanically motivated- approach suitable for boundary-value problems 

involving non-linear behaviour of quasi-brittle solids. 

The approach presented is based on an earlier anisotropic damage model, 

the "basic version" proposed by Dragon et al. [3] and extended by Halm 

and Dragon [4] to include the unilateral effect concerning normal stiffness 
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1. INTRODUCTION AND SCOPE 13 

recovery with respect to a mesocrack system constrained to closure. This ex­

tended version, summarized in Chapter 3, is then completed by the damage 

and frictional blocking/sliding model depicted above. This coupled model 
allows to treat simultaneously the both dissipative mechanisms involved for 

complex stress-strain paths including those implying the rotation of loading 

and damage axes. The corresponding developments are given in Chapters 4 

and 5. An overview presented insists here and there on a modular structure of 

the model. The three corresponding segments, namely the basic version, the 

extended version (treated together in Chapter 3) and the coupled damage­

and-friction complete version of Chapter 5 can be employed in order of grow­

ing complexity, according to engineering finality demanded. Further aim to 

set forth here is a more complete survey of a methodology concerning the nu­

merical integration of the constitutive equations proposed and that relative 

to the identification of material constants involved. These issues are therefore 

developed in the second part of Chapter 5 where are furthermore presented 

selected examples illustrating damage and friction induced non-linear stress­

strain behaviour incorporating hysteretic effect mentioned in the foregoing. 

A brief account is given of applications of the model for structural analyses. 

The problem of initial (primary) material anisotropy interfering eventually 

with a damage-induced (secondary) anisotropy is raised in Chapter 6. 

The chapter is turned towards an enlarged class of quasi-brittle solids (for 

instance, ceramic matrix composites) compared to earlier Chapters 3-5 fo­

cusing mostly on rock-like materials. Another crucial problem concerning the 

microcrack interaction effect in relation with eventual nonlocal modelling is 

treated in Chapter 7 where a non-classical homogenization approach is devel­

oped including anisotropic damage behaviour for a class of engineering ma­

terials regarded as particulate composites [28]. Finally, in some methodolog­

ical connection with the modelling of anisotropic damage by microcracking 

(Chapters 3-5), the problem of degradation by adiabatic shear banding (ASB) 

for a broad class of ductile metals under dynamic loading is outlined (Chap­

ter 8). The latter problem involves large plastic deformation (associated with 

high strain rates). The model is presented for the ASB process viewed as an 

anisotropic damage mechanism coupled with thermo-elastic/viscoplastic de­

formation [29]. A structural application related to high velocity impact is 

illustrated. 

The pivotal issue of the control of microcrack closure and opening phe­

nomena is addressed through Chapters 3-5, where the stiffness recovery and 
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14 1. INTRODUCTION AND SCOPE 

friction enter into consideration. The central simplifying hypothesis con­
veyed through the developments ·proposed, consists in reduction of any real 
microcrack-set configuration to an equivalent configuration of three mutu­
ally orthogonal systems of parallel cracks characterized by three eigenvec­
tors vk (k = 1, 2, 3) and three non-negative eigenvalues Dk of the second­
order damage tensor D. In such a manner the damage-induced anisotropy is 
systematically limited to a form of orthotropy, see also [30). 

The problem of transition from volume-distributed damage to surface­
localized failure incipience has been amply debated at the end of the eighties 
and the beginning of the nineties, see for example [31-33). The localization 
bifurcation in the presence of damage by micro cracking inducing net ani­
sotropy effects needs clearly a 3D treatment, two-dimensional projections 
misrepresenting mostly localization mechanisms (orientation and discontinu­
ity mode). The computational procedure relative to 3D localization detection 
is given in [3), where some pertinent results obtained with the basic damage 
model are amply commented. 

Covering the large spectrum of quasi brittle and ductile engineering mate­
rials and related deterioration mechanisms involving damage-induced aniso­
tropy effects, this study attempts to reach a large audience from graduate and 
doctoral students to experienced scientists. In this spirit is proposed, for the 
students and engineers less familiarized with the damage mechanics formal­
ism, an introductory chapter (Chapter 2) treating two fundamental damage 
mechanisms, namely microcracking and ductile cavity growth via two sim­
ple isotropic CDM models: Marigo [34], Rousselier [35). Notwithstanding its 
introductory character, this chapter summarizes important local instability 
questions in particular the localization bifurcation viewed as a macroscopic 
fracture precursor (as mentioned above) and brings in premises of nonlocal 
modelling. In such a manner the present course ranging from the introduc­
tory chapter 2 via the microcracking related CDM modelling and related 
effects (unilateral phenomena and frictional sliding) , further micro mechani­
cal insight, initial and induced anisotropy to specific ductile fracture damage 
modelling coupled with finite elastic viscoplastic deformation, attempts to 
put forward and to deal with some major "modelling challenges" in Dam­
age Mechanics. The message advanced is that the challenges treated and 
other not covered in this book, should be possibly approached in a double 
and convergent way interconnecting efficient and operational CD M tools on 
the one hand together with micromechanical analyses and homogenization 
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1. INTRODUCTION AND SCOPE 15 

methodology on the other. The different models discussed in the following -

for microcracking elastic solids as well as for ductile elastic-plastic materi­

als, both regarding anisotropic effects induced by deterioration mechanisms 

- exhibit some methodological unity in their setting assumptions and simpli­

fications. In addition to their modular character they are three-dimensional 

and micromechanically motivated in most essential ingredients, a going con­

cern consisting unceasingly in providing tools for efficient enhanced structural 

analysis. 
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Chapter 2 

Conceptual preview of damage 

mechanics via two elementary 

isotropic models 

This chapter contains a development of two isotropic, standard Continuum 
Damage Mechanics (CDM) models regarding respectively: 

• deterioration of an elastic solid by progressive, randomly oriented mi­
crocracking, 

• deterioration of an elastic-plastic material by multiple cavity growth. 

Important appended notions related to damage models' licit application 
bounds are also recalled, notably the localization bifurcation. The purpose 
here is to give, via a short presentation of simple (albeit complete) dam­
age models, the basic framework of modelling for engineering students lack­
ing good familiarity and skills with internal variable based constitutive de­
scription of nonlinear (dissipative) material behaviour. Teaching practice has 
shown that such a gradual approach can be an asset to the less experienced 
student before going on to further, more advanced account of anisotropic 
damage and related effects in the following Chapters. Comprehension of es­
sentials of the plasticity framework is only necessary for this introduction. Be­
sides the introductory material, some prerequisites regarding nonlocal dam­
age modelling are outlined at the end of this Chapter. 
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18 2. CONCEPTUAL PREVIEW OF DAMAGE MECHANICS . .. 

2.1. Isotropic 'classroom' damage model and its critical 
evaluation 

Regarding nonlinear behaviour of quasi-brittle solids, the initiation and 

growth of multitude of microcracks is viewed as the predominant dissipative 

mechanism. As far as a scalar density of crack-like defects is considered as 

sufficient measure, i.e. when crack-field orientation is meaningless, the follow­

ing entity is introduced for approxirnately penny-shaped microcracks (see, for 

instance, Walsh [ 17]): 

N 

L:ar 
d = rc = _i __ 

v or 
- N a3 

d=­v· (2.1) 

The summation above is done over microcracks indexed i = 1, 2, 3, ... , N 

of respective radii ai within the volume V; otherwise, in (2.1 )2 an average 

radius a is being introduced. Crack 'saturation' state can be envisioned as 

the one corresponding to d = 1 and constituting a hypothetical maximum 

for d. The admissible interval for d can thus be posed as d E [0, 1]. The 

definition (2.1) stipulates particular geometry of crack-like defects. A more 

general dimensionless density related to any microcrack-induced decohesion 

can be introduced as (Kachanov [36}): 

(2.2) 

where Si is decohesion area related to an i-th crack and TJ is a dimensionless 

crack-form parameter. One can see that for TJ = (ny'7T)- 1 exemplifying the 

penny-like (circular) microcracks, one obtains d = d(s) = rc. 

The density d ( s) can be taken as a (general) micro mechanical interpre­

tation for the microcracking-related damage internal variable d. The latter, 

together with the components of the small strain tensor e (external variable), 

constitutes a set of state variables governing a specific free-energy (thermo­

dynamic potential) expression 7f;(e; d) for elastic-damage isothermal model 

of the material subjected to progressive crack-induced deterioration. If the 

expression 'lj;(e; d) is limited to a homogeneous quadratic one in terms of Eij 

as follows (we denote by p the mass density): 

1 
p'lj;(e; d) = w(e; d) = 2e: C(d) : e, (2.3) 
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2.1. ISOTROPIC 'CLASSROOM' DAMAGE MODEL ... 19 

the model describes degradation of elastic moduli, via the elastic rigidity 
tensor C-dependence on d, with no residual strains which could be eventu­

ally induced by defects (see Chapter 3). Note that an alternative expression 

of the damage dependent strain energy w(e; d) = A( d) + B(d) : e + ~€ : 

C(d) : e leads to the stress u = 8w/8e non-zero for e = 0, and, using a 
dual (·::omplementary) energy u(u;d) = u: €- w(e,d), generating a non­
zero, damage-induced strain for u = 0, see Fig. 2.l(a). The expression (2.3) 

leads to partial energy recovery with non residual, damage-induced strain, 
Fig. 2.1 (b). 

(a) (b) 

cr 
cr 

I 
I 

I 

0 

,' 
I 

I 
I 

I 
I 

I 
I 

I 

I 
I 

I 
I 

/ 

~" B 

1/ 

FIGURE 2.1. Elastic-damage stress-strain response; (a) the case of a non­

honogeneous energy (thermodynamic potential) w(e; d), effect of damage-induced 
resdual strain ere =I= 0; (b) the case of a homogeneous quadratic potential w(e; d) 
acwrding to (2.3). 

The common, classical and phenomenological assumption is 

C(d) = (1 - d)C, d = [0, 1], (2.4) 

thus linearizing the elastic moduli degradation with respect to d, Lemaltre, 

Chabcche [37], Marigo [34). In such a way for a virgin material (absence of 
dama~e) the elastic rigidity is equal C while for a hypothetically 'completely 
degraded' (fractured) solid C(d) = 0. 

Tre constitutive laws ('state' ones) related to (2.3) define respectively 

elastic stress response u and the damage driving force (thermodynamic force) 
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20 2. CONCEPTUAL PREVIEW OF DAMAGE MECHANICS ... 

Fd as follows: 

8w~:;dt = (1- d)C: e, 

_ aw(c:; d) I _ ~ . c. 
ad c- 2 c: · · c:. 

(2.5) 

One can see that for a given damage state the elastic behaviour remains 

linear (see unloading curve, Fig. 2.l(b)) while the damage driving force rep­

resenting the local energy release rate (with respect to d) analogous to global 

(field dependent) crack-driving force in Fracture Mechanics ~ = - ~:, where 

7f is the total potential energy of the body with crack(s) while Os is the in­

finitesimal crack advance (growth of cracked area) which can be reduced in a 

two-dimensional context to a linear crack advance Oa. As the energy is linear 

with respect to d, Fd is merely strain dependent quantity. For a given strain 
(c-( 1), say) Fd is represented by the area Oc-(l)B in Fig. 2.l(b). 

As in classical plasticity, the laws (2.5) are not enough to describe the 

material behaviour. The dissipative evolution needs to be detailed, the only 

dissipative mechanism here being the damage one. The dissipation expression 

¢ = u : e- p 'lj; with 'lj; = 'lj;(c:; d) (2.6) 

is consequently reduced to 

(2.7) 

and ¢ should be non-negative to assure the thermodynamic admissibility of 

the model. The full normality is being postulated here; it is relative to the 

maximum dissipation hypothesis and is known to assure a priori the ther­

modynamic admissibility. As the normal dissipative mechanism (standard 

model) is supposed to govern time-independent (non-viscous) evolution of 

damage, there exists a convex non-transgressable reversibility domain F ~ 0 

in the space of driving force, eventually dependent on d itself (as a parame­

ter), such that 

cd = {Fd 1 F(Fd,d) ~ o}, 

· · 8F 
d = ).. 8Fd' ).. ~ O. 

(2.8) 

One can see here an analogy with the inviscid plasticity, with a notable 

remark that the evolution of plastic strain is governed by a yield function 
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2.1. ISOTROPIC 'CLASSROOM' DAMAGE MODEL ... 21 

dependent on the stress tensor , the latter being the driving force for plas­

tic strain-rate in the framework of plasticity theory. Here, the driving force 

is Fd (damage related energy release rate). However, from (2.5) 2 one can 

express Fd as a function of e and, by inverting further (2.5)1, as a function 

of a. Consequently, the damage 'yield' function F(Fd, d) can be represented 

respectively in the strain space and in the stress-space as well; Marigo [34, 

38) postulated the following, simple form of F: 

1 
k(d) = 2 ko(1 + 2md), ko > 0, m ~ 0. 

(2 .9) 

Thus, one obtains 

. {0 if F < 0 or F = 0, F < 0 (elastic unloading), 
d= 

_\ if F = 0, F = 0. 
(2.10) 

The detailed expression of _\ is obtained from the consistency equation 

F = 0 stating that, while the damage criterion F = 0 is satisfied , the damage 

loading process is pursued (damage loading remains active with respect to 

any monotonous time scale). The kinematically controlled form of the evo­

lution (2.10) can be obtained from the expression ofF (via Fd) as a function 

of strain: 

F [Fd(e); d) = F(e, d), F = o ¢::::::> F = o, 
- 1 -
F ( e; d) = - e : C : e - k (d), F = 0 ==:::;. C : e : € - k0 m .X = 0, 

2 (2.11) 

\ = [ C : e : €] + { 0 if a < 0, 
/\ with [a]+ = a 

kom if a~O. 

Hence: 
d = _\ = [C : e : t:]+ = [C : e : t:]+ 

kom H ' 
H=kom (2.12) 

where the postulate _\ ~ 0 is satisfied by putting the brackets [*]+ on the 

expression C : e : € in the numerator. The symbol H for the denominator 

is chosen by some (formal) analogy with plasticity (hardening modulus) al­

though herein a given finite and positive value of H induces non-linear a-e 

response with the initial pseudo-hardening stage followed by the softening 

one after a stress maximum (stress-peak). In the sequel it will be shown that 
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the softening branch may correspond to a non-unique response in relation to 

bifurcation phenomena occurring near the peak stress. One can see in Fig. 2.2 

that H = ko m > 0 determines genuinely progressive damage evolution with 

m designating the progressivity-related material constant while ko being re­

lated to the damage threshold for the virgin i.e. non-damaged solid material. 

Several significant cases are illustrated in Fig. 2.2 including the two asymp­

totic ones corresponding to m ==} 0 (brutal damage) and m => oo (absence 

of damage evolution). The brutal damage (m ==} 0, H ==} 0) corresponds to 

the indeterminacy of d ( d ==} oo) at the very threshold point. It means that 

instantaneous total degradation of rigidity occurs together with pertaining 

instability depicted by dashed line in Fig. 2.2. The latter case can be viewed 

as having some formal analogy with the perfect plasticity (,\ indeterminate 

==} iP indeterminate) while physically both cases are opposite: infinite de­

formability for perfect plasticity and non-deformability beyond the strain 

attained at the damage limit for the brutal damage. 

m~ 

FIGURE 2.2. Progressive damage (m > 0) and brutal damage (m ::::::> 0) response 
as dependent on the progressivity parameter m. 

The tangent stiffness, designated further by L, corresponding to any non­

linear, time-independent model is an essential input to structural analysis 

by Finite Element Method and a necessary prerequisite for studying local 

instabilities and, in particular, the localization bifurcation. The latter can 

be considered as a local bifurcation allowing two basic incremental solutions 

of the corresponding incremental equilibrium problem. One solution is ex­

hibiting continuous deformation gradients increments (or rates) while the 

other (bifurcation branch) reveals a discontinuity. As such discontinuities in 

the deformation gradient increments are conceivable in some particular di­

rections only - called characteristic directions - the localization incipience 
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corresponds to the loss of ellipticity of the incremental (rate) equations of a 
boundary value problem (Rice (39], Borre and Maier (40]). 

The nowadays classical form of the criterion of localization inside the solid 
reading: 

det(n · L · n) = 0 (2.13) 

involves the local direction of a characteristic surface S (its unit normal n) 
and the tangent stiffness matrix L corresponding to an assumed constitutive 
law, so that u = L : €, i:T and e standing for the stress-rate and the strain­
rate respectively. The associated localization-discontinuity mode is given by 
a vector g collinear to a unit vector m. The pair (n, m) indicates the orienta­
tion and nature of discontinuity, i.e. 'opening' or 'shearing' mode, frequently 
a combination of the both. The influence of the tangential stiffness L in the 
characteristic (acoustic) tensor Q = n.L.n makes it possible to study the 
singularity of Q corresponding to the loss of ellipticity through the spectral 
analysis for a given class of constitutive relations. One can then establish ana­
lytical expressions for the spectral properties of Q allowing explicit relations 
concerning singularity and some features of the bifurcation at stake. This 
way has been exploited by Ottosen and Runesson (41] who treat a class of 
non-associated plasticity laws regarding localization by spectral analysis ap­
proach. In fact the localization is taken up by these authors in a larger sense 
than in the classical approach recalled above: the discontinuity of displace­
ment increment itself (or rate), i.e. strong discontinuity, is being incorpo­
rated in their bifurcation analysis. These authors argue that the classical bi­
furcation conditions linked to localization phenomena (under plastic/ plastic 
and plastic/ elastic response respectively on the characteristics surfaces and 
outside) are still valid under the restriction that the jump of displacement 
rate [ui] remains constant along S. This step is one more argument allowing 
to link the study of localization to local failure, viz. macrocracking incipience. 

The damage concept reflects explicitly deterioration phenomena in the 
framework of continuum modelling of nonlinear solid behaviour. Using this 
concept when studying localization, viz. transition from volume-diffused de­
terioration to surface-like localized one, takes on even more pertaining phys­
ical reference to failure incipience than localization study in the context of 
plasticity. 

The tangent stiffness corresponding to the damage model introduced in 
the foregoing (formulae (2.3) to (2.12)) can be deduced by derivation with 
respect to time of (2.5)1 and by replacing of (2.12) for d. One obtains the 
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following form: 

with 

& = L ( c; d) : e = ( 1 - d) c : e - 8 
( c : c : e) ( c : c) 

H 

e = 0 if ~ = 0 (non damage evolution), 

e = 1 if ~ > 0 (active damage: d > 0). 

(2.14) 

Using the index (component) notation L may be expressed in the form 

e 
Lijkl = (1 - d) cijkl - H ( CijmnEmn) ( cklrsErs) (2.15) 

Following Borre and Maier [40] we can approach the localization prob­
lem concerning the material obeying (2.14) with both loading-loading and 
loading-unloading bifurcations allowed. The first case (loading-loading) con­
cerns dissipative evolution, i.e. active damage inside and outside the local­
ization band (characterized by the surface S) while the second one regards 
the localization bifurcation event with unloading occurring outside the band. 
The criterion 

detQ ~ 0, Q=n·L·n (2.16) 

represents a sufficient and necessary condition for bifurcation. In the same 
time the localization threshold itself is correctly determined from (2.13) for 
a linear comparison material and the loading-loading bifurcation, see Propo­
sition 6, Borre and Maier [40]. 

Desoyer and Cormery [33] have proceeded with the spectral analysis for 
localization bifurcation of the model (2.14). The essential result is the bi­
furcation threshold dmin given in terms of damage d as a function of the 
progressivity constant m; it states 

(2.17) 

It appears in particular that dmin => 0 as m => 1, so that there exists 
positive values of m, namely m ~ 1, leading to local instabilities at the 
very threshold level (!) (in the sense that a bifurcation event is an instability 
precursor). The case m => 0 leading to strong precocious instability (brutal 
damage) as analysed before is only the special and extremal state concern­
ing the 'immediate' bifurcation interval 0 ~ m ~ 1 whereby the localization 
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bifurcation occurs at the very incipience of damage. One can now easily see 
why, at the beginning of this chapter, we have stated that d = 1 constitutes a 
hypothetical maximum for d. In fact, this maximum, corresponding to the ul­
timate degradation of elastic rigidity C(d) = 0, see (2.4) is purely conceptual. 
It is preceded by bifurcation and instability events that may be equivalent 
to local fracture (macrocracking). Indeed, if one tries some reasonable values 
of m, say m = 10 and m = 2 one can see that the corresponding instability 
levels are dmin ~ 0.3 and dmin ~ 0.16 respectively (!), well below d = 1. 

The result (2.17) concerning localization bifurcation is not surprising. 
While the latter bifurcation can be considered as a particular loss of unique­
ness of the velocity field in the local rate problem, another important bi­
furcation event consists in a loss of positiveness of the second-order work 
(Hill (42], Raniecki and Bruhns (43]): 

~ ~ 0, 
c 1 . . 1. L . 
~.,=-u:e=-e: :e. 

2 2 
(2.18) 

Desoyer and Cormery showed that the corresponding bifurcation limit ds 

for the model (2.9) is 

ds = m- 1 = dmin(m). 
3m 

(2.19) 

Both bifurcation phenemena are thus coinciding for the material described 
by the actual isotropic damage model. 

In the heading of this Section we used the expression" 'classroom' dam­
age model". One of the reasons of such designation is the simplicity of the 
model: only four material constants (E, v; k0 , m) appear in the above con­
stitutive equations and in their condensed form (2.9). Using the notation of 
Kachanov (44] we can resume (2.3) and (2.4) as follows 

w(e; d) = (1- d) w0 (e) (2.20) 

where w0 (E) is the elastic strain energy for linear isotropic elastic solid 

(2.21) 

Consequently, the energy (2.15) and the stress-strain relation (2.5)1 for the 
damaged material are 

(1 - d)E [ v l 
w(e; d) = 2(1 + v) 1 _ 2z; E~k + EijEij , (2.22) 
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8w v ( 1 - d) E ( 1 - d) E 
akl = 8Ekl = (1 + v)(1 - 2v) Emmc5kt + 1 + v Ekt 

v.E .E 
(1 + v)( 1 _ 2v) Emnc5kl + 1 + v Ekl (2.23) 

with E (1 -d) E designating the degraded Young's modulus. One can 
see above that only the Young's modulus is affected by damage while the 
Poisson's ratio is not. This leads to macroscopic interpretation of d: 

E 
d= 1-­

E 
(2.24) 

which can be put in parallel with the micromechanical interpretations em­
bodied respectively by the microcracks densities (2.1), (2.2). Considering 
arbitrary orientation distributions of penny-shaped (circular) noninteracting 
cracks, Kachanov (30, 44] synthesized earlier works in the field and gave 
detailed forms of energy and effective (degraded) moduli. For the case of 
isotropic (random) orientation distribution of cracks in the elastic isotropic 
matrix, the direct micromechanical analysis leads to the following energy and 
moduli estimations ( wJ-L, EJ-L, i)J-L): 

wi-L(e; d)= w0 + D.w, 

8E(1- v)(1- v/5) [ v(v2
- 16v + 19) 2 ] 

D.w =- 9 (1- v/2)(1 + v) d EijEij + 10(1- v/5)(1- 2v)2€kk ' (2.25) 

wi-L =I (1 -d) w0 in general, 

EJ-L = [ 1 + 16(1- v
2
)(1- 3v/10) d] 2 

E 9 (1 - v /2) 

compared with ! = 1- d (model), 

vi-L = EJ-L [1 8 (1 - v
2

) ] ~ EJ-L 
E E + 45 (1 - v /2) d E 

. l/ 
compared w1th - = 1 (model). 

l/ 

(2.26) 

(2.27) 

The above results (2.25)-(2.27) show that the model based on the energy 
expression w = (1 - d) w0 constitutes a crude approximation of microme­
chanical evaluation of effective elastic properties for the microcracked body 
with multiple circular cracks randomly oriented in space. This judgement can 
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be extended to a larger class of models of the type g( d) w0 , where g( d) is any 
decreasing function of d. As concluded by Ju [45] and Kachanov [44], when 
starting from the micro mechanical interpretation (2.1), i.e. the stipulation 
that d = rc, the form (2.20) appears simplistic with respect to micromechan­
ical evaluation involving the 'rigourous' form ~w given by (2.25). Moreover, 
the Poisson's ratio is reduced by the presence of microcracks approximately 
in the same proportion as the Young's modulus (for open microcracks). More­
over, the model's predictions of the effective moduli are not compatible with 
the micromechanical estimations for noninteracting defects whether the lat­
ter are cracks or cavities and d is considered as a measure of their respective 
densities and the internal variable in the thermodynamic potential w = p'lj;. 

However, the simplicity of the phenomenological form (2.20), a limited 
number of constants to be identified and its handy numerical implement, 
see Marigo [38], justify the model's usefulness as a tool for basic structural 
analysis involving damage and as a sort of a reference 'classroom' model in 
a sens parallel to the Prandtl-Reuss isotropic hardening J2-plasticity, viewed 
as the simplest reference plasticity model with respect to more sophisticated 
ones. As for the J2-plasticity, the damage threshold in the above model is 
symmetric with respect to tension vs. compression loadings in accordance 
with (2.9), Fd being a quadratic function of strain, see (2.5). Such a symme­
try may be inaccurate for a number of microcracked (damaged) engineering 
materials, see Chapter 3. Still, the model presented constitutes a sort of 'ref­
erence prototype' in CDM, frequently employed as a starting point for more 
sophisticated developments, see e.g. [46, 47]. 

2.2. Ductile fracture damage. An example of coupled dam­
age-plasticity modelling (Rousselier, 1981 [35]) 

Development of the line lattice (dislocation-like) defects constitutes a set 
of underlying microscale mechanisms of crystalline plasticity. It involves the 
rearrangement of the lattice bonds but not their loss. At the same time, 
due to microstructural heterogeneity of current metal polycrystals, these re­
arrangements are accompanied by emanation of numerous sites where the 
deterioration processes begin, promoted by the piling up of dislocation loops 
at obstacles such as grain boundaries, second phase inclusions, etc. The con­
secutive microdeterioration phenomena consisting in the growth of planar 

and volumetric defects (sharp cracks, voids) provoke the progressive loss 
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of structural bonds. They are relevant to damage analysis as coupled with 
the plasticity. The coupling of the two history-dependent mechanisms and, 
particularly, of their macroscopic consequences ('plastic degradation'), was 
evidently the focus of the plasticity community's attention in view of the 
assessment of the ductility limitations in deformed metals and alloys. The 
growth of voids formed around foreign inclusions and precipitates strongly 
connected to the ambient temperature plastic straining in metallic materials 

is classically termed "ductile fracture damage", see e.g. Dragon [48]. 
The continuum-like modelling of these phenomena was based on some mi­

cromechanical analyses as in the very ~ell known approach by Gurson [49], 
see also Budiansky et al. [50], Leblond et al. [51]. The exponential effect of 
the stress triaxiality on the void growth is the most notable result of numer­
ous works in the field. The first statements of the exponential amplification 
of void growth rates by stress triaxiality go back to McClintock [52] and 
Rice and Tracey [53], respectively for cylindrical and spherical isolated voids 
under remote stresses. Here, attention is focused on coherent continuum-like 
macroscopic modelling incorporating the remarkable aforementioned effect. 
The CDM model by Rousselier [35] is chosen in this respect as it displays a 
clear thermodynamic framework in its very formulation concerning various 
aspects of dissipative coupling. 

The micromechanical motivation of the modelling at stake can be em­
bodied by a 'unit cell' representing a typical cuboid (or other) element of the 
porous solid, i.e. an aggregate of voids around rigid inclusions and of a ductile 
homogeneous matrix. The latter is assumed as elastic-plastic with isotropic 
hardening a. The small strain framework will be considered for simplicity 
with the additivity of elastic and plastic contributions of total strain e. The 
cavity initiation and growth considered as a predominant damage mecha­
nism, the actual microporosity is designated by a dimensionless density p as 
follows 

1-f - v 
P = 1- fo' fv ~ fo (2.28) 

where fo and fv designate respectively the volume fraction of inclusions and 
the current volume fraction of voids assumed to include this of inclusions. 

During void growth the density p diminishes from its initial value Pin = 1. 

The solid is considered as initially isotropic and its isotropy is supposed to 
be preserved under damage process. Damage kinetics consists in producing 
more porosity, it is thus natural to consider a damage internal variable as a 
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porosity-related one: 

D = D(p). (2.29) 

The thermodynamic potential (free energy) is expressed as follows: 

1 
w = p'I/J(e;eP,a,D) = 2 (e- gP): C: (e- gP) + p(a) + m(D) (2.30) 

where p(a) and m(D) represent respectively the strain-hardening and dam­

age contributions to the stored energy, the latter one generally counterbal­

ancing a hardening build-up, see e.g. Rousselier, 2000 [54]. It can be seen that 

the elastic degradation is neglected in (2.30): the model is entirely focused 

on damage vs. plasticity interaction. From (2.30) one deduces classically the 

elasticity response embodied here by a linear stress-strain (Hooke's) law and 

the respective conjugate forces related to a and D: 

8w 1 
a = 8e = C : ( e - gP) = C : ee ' 

ow dp 
A = - 8a = - da (a)' (2.31) 

aw dm 
FD = - 8D = - dD (D). 

The expression of intrinsic dissipation contains the effects of plastic yield­

ing and strain-hardening augmented by damage input: 

¢ = a : eP +A. a+ FD . iJ. (2.32) 

As the generalized normality framework (generalized standard model) is be­

ing postulated for irreversible evolutions of gP, a and D, the non-negativity 

of the dissipation is assured by the existence of a convex pseudo-potential 

n ( 0"' A' F D) defined in the space of thermodynamic forces. Rousselier ad­

vances the following hypothesis: 

(2.33) 

expressing some dissipative coupling of plasticity and damage phenomena. 

For inviscid respective evolutions, the potential n reduces to the indica­

tor pseudo-function supported by the reversibility domain J(a, A, FD) ~ 0, 

f = fi(Ji,A) + f2(a(m),FD) with Ji = (~sijSij) 1 ~2 a(m) = kakb Sij = 
aij - kakkc5ij, where s designates the stress deviator tensor. The form of the 
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yield function j 1 corresponds to the Huber-Mises expression while this for f 2 

is supposed linear in Fv: 

cplast-dam. = { (o-, A, Fv) I f(o-, A, Fv) ~ o}' 

(2.34) 

where k is the initial plasticity limit at simple shear; the actual limit is 

k- A- Fv g(O"(m))· The corresponding evolution equations are: 

Q = )/ ;~ = )./ = J2 ( efje~) l/2
, eij = Eij - E(m)<5ij, 

(2.35) 

. f 8f f 
D =A aFv =A g(O"(m))· 

The effect of damage-induced porosity on the aggregate behaviour is clearly 

shown in (2.35)1 via the volumetric contribution to the inelastic strain pro­

duced by the damage-yield function !2 = Fv g(O"(m))· 
Contrarily to the energy form (2.30) exhibiting no apparent link between 

the respective contributions, the complementary relationships (2.35) indicate 

a strong coupling between the plasticity and damage events. Among other 

features one can see the common multiplier Af governing intensity of plastic­

ity as well as that of damage growth. No supplementary input is necessary to 

quantify further damage growth. In fact, maintaining the foregoing hypothe­

ses of predominant character of damage-plasticity interaction compared to 

the effect of damage on elasticity, it is stated that 

(2.36) 

thus neglecting elastic volume change. The balance of mass equation ex­

pressed in a specific local version employing the dimensionless density p and 

accounting for (2.36) is 

p + 3pi(m) = 0. (2.37) 

It yields 

(2.38) 
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On the other hand, from (2.35)1 one obtains 

·P - ,f 1 F '( ) 
E(m) - A 3 D g O"(m) (2.39) 

where g' ( O"(m)) = __E:fl__d d • 
O"(m) 

This expression allows quantifying ,Xf in a simple form 

(2.40) 

Putting together (2.29) and (2.35)3, the damage evolution can be expressed 
as follows: 

. _db.!._ f 
D- dp g- A g(u(m)) (2.41) 

and further , by use of (2.40) 

dD.!. 3i(m)g(u(m)) 
-g= . 
dp FDg' ( O"(m)) 

(2.42) 

It follows from (2.38) that the above equation can be finally written in the 
form 

1 
(2.43) 

j5 D' (p)FD (p) 

where D' (p) = fg . For given p, the both members represent a (constant) 

quantity say, C*, having the dimension of [u)- 1
. One can pose C* = ::a, 

C = const > 0 and uo is the plasticity limit at uniaxial tension for the solid 
(non-damaged) material. We can thus write (2.43) in the form 

g' (u(m)) C 

g( a(m)) uo 

It easily follows from the above equation that 

- C O"(m) 
g(u(m)) = J-L exp --, jl > 0, 

O"Q 

b = >,f ji exp ( c:~m)) , >,f ;;, 0, 

(2.44) 

(2.45) 

which represents the exponential effect of the stress triaxiality T = a~~) on 

ductile fracture damage by void growth as mentioned at the beginning of 
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this Section and, as shown above, inherently arising from the hypotheses of 
the Rousselier's model, Rousselier (35]. 

The multiplier )./ already quantified in (2.40) can be alternatively 

(and conventionally) determined from the consistency equation j = 0 for 

plasticity-damage loading branch. One obtains the following strain-rate con­
trolled expression: 

(2.46) 

where the last tenn in the denominator represents the specific damage input. 

Particular versions of the aforementioned model are based on specific 
expressions concerning the functions D(p) and m(D), the latter conditioning 

the form of FD(D). The following application is illustrated below, Fig. 2.3: 

( 
1- p) 

D = ln 1 + pfo , p E [1, 0), 

ao 
m(D) =- C ln(1- fo + foexpD), DE [0, +oo). (2.4 7) 

FD(D) = ao foexpD 
C 1 - fo + fo exp D 

Equations (2.47) yield the following special form of the yield function f: 

f(cr,A,Fv(D)) = [~sijSijr/
2 

~ [~~A~;; 1 ~ J~:x~o~xpD{i (exp ~ "(m))] · (2.48) 

I 
ao 

It can be remarked that FD D=O = C fo. 

Two particular features of the form (2.48) can be viewed in Fig. 2.3: 

(i) there is a non-zero slope for a. simple shear (a(m) = 0) thus allowing 
for volumetric dilatancy due to porosity growth for zero hydrostatic stress 
and ( ii) a singular point (corner) exists for pure hydrostatic tension path 

(J~ = 0). These distinguish the Rousselier's model from that of Gurson (49]. 
The first property has some experimental support: tests for small triaxiality 

T including torsion stress-path (zero triaxiality) show clearly ductile frac­

ture preceded by void growth for metallic specimens (55]. In this respect the 
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FIGURE 2.3. Aspect of consecutive yield loci for the Rousselier model in the 
stress-space a<m>fao- J2/ao. 

33 

Rousselier's model is thus closer upon physical phenomena observed than the 
Gurson's one. 

The Gurson model, based on explicit micromechanical considerations, is 
represented by the following yield function (here a special form resulting from 
modifications brought about by Tvergaard and Needleman [56] is given): 

( ) a~ 2 *)2 * (3q2a(m)) f u, R, fv = R 2 - 1- q1 (f + 2 ql f cosh 
2 

R (2.49) 

where aeq = ( ~SijSij) 112
, R is the actual tensile flow stress in the ma­

trix (solid) material while q1, q2 are adjustable phenomenological parame­
ters. A particular, bilinear function f* (fv) was introduced by Tvergaard and 
Needleman to account for the effects of advanced void growth and coalescence 
corresponding to the post-localization stage. 

As in the model based on the potential (2.34) and its particular 
form (2.48), the model G-T-N (Gurson-Tvergaard-Needleman) embodied 
in (2.49) describes dilatational and pressure sensitive plastic flow due to the 
presence of micro-voids. Furthermore, although the matrix material contin­
ues to harden, the aggregate can soften. With continued deformation, the 
stress carrying capacity of the aggregate diminishes and this is linked to the 
creation of new free surface (damage by cavity growth). 

Abundant work has been done to study material instabilities using the 
both models for microporous metallic aggregates in order to predict the onset 
of macroscopic ductile fracture. The occurrence of a localization (shear) band 
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instability viewed as an outcome of particular material response and consid­
ered as a favourite precursor of fracture as introduced in Sec. 2.1, has been 

widely investigated. For much synthetic comments regarding the localization 
bifurcation including progressively cavitating porous plastic solids and the 
Gurson model-based constitutive framework the reader can refer to the re­
view by Needleman and Tvergaard (57). Rousselier himself [54) has proceeded 

with a stability analysis of a linear perturbation employing his constitutive 

model presented above, Eqs. (2.28)-(2.48). As for the bifurcation approach 

leading to the criterion (2.13), the localization studied via a perturbation 
method can start from a relatively simple model problem for a solid subject 

to uniform straining. The hypothesis of instability of the fundamental solu­
tion is examined by postulating the planar perturbation of the displacement 

field u(x, t) in the form: 

~u(x,t) = 6Uexp(iqn.x+wt). (2.50) 

This perturbation being injected into the equilibrium equations leads to the 

expres~ion M(w, n).6U = 0. Non-trivial solutions 6U # 0 exist if det M = 0, 
the latter representing a polynomial equation x(w, e, c.p) = 0 with respect 

tow, the growth factor of the perturbation (2.50). 
The characteristic direction of the perturbation is defined by the Euler an­

gles ( 8, c.p). Localization occurs for the plane corresponding to the maximum 

root w. 

For an axisymmetric problem (axial and radial tensile loading) it is shown 

that with increasing fv, the ratio ifm)li~ (where i~ = (~ efj efj) 112 = \fa) 
increases as well as it can be deduced from Eq. (2.39) combined with (2.47). 

For ifm) I i~ = 0.5 the localization plane becomes perpendicular to the maxi­
mum principal stress direction while w tends to infinity from that point on so 

that a bifurcation occurs. It can be remarked that for an elastic-viscoplastic 

version of the model, the limit value of the ratio ifm/i~ is smaller than 0.5 
and w remains finite. The critical value of ifm/i~ = 0.5 corresponds to the 

uniaxial plastic extension: if1 = 0 except for i~\ = 3i~l2, Rousselier [54]. 
Independent numerical studies involving FE (finite element) approxima­

tions of the field equations for a cell containing a void indicate some perti­

nency of the critical strain-path condition ifm) I i~q = 0.5. For different global 
stress triaxialities a turning point regarding global strain path is observed in 

diagrams representing the ratio i~rli~z vs. i~, see Rousselier (54). This turn­

ing point corresponds to i~r I i~z = 0, i.e. to ifm/ i~ = 0.5. The void growth 
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calculated from the cell-model approximations is exponential up to the turn­
ing point and becomes linear after. The results of cell-model simulations by 
Li et al. (58) are compared with the Rousselier and G-T-N models' predic­
tions for a homogeneous problem near the critical state. It seems that the 
Rousselier's model is more adapted to follow the voided solid behaviour at 
the corresponding near- and post-localization stages of void growth. 

An important issue concerns the ability of finite element approxima­
tions to treat localized shearing and alike bifurcation and post-bifurcation 
problems. The problem becomes ill-posed and mesh design, shape functions, 
etc., ill-adapted to deal with band-like deformation modes, notably for time­
independant damage and/or plasticity models (the strain-rate dependency 
provides some 'regularizing' effect). In particular the numerical predictions 
show an inherent sensitivity corresponding to softening material behaviour 
leading to localization in regions as confined as possible within the mesh 
resolution. The problem can be overcome by incorporating a material length 
scale in the constitutive relations, e.g. by introducing a nonlocal formula­
tion to a constitutive model via some ingredients, for example dissipative 
mechanisms exhibiting genuine nonlocal effects. Such nonlocal plasticity and 
damage models have been proposed by a number of authors (Aifantis (59), 
de Borst (60), Fleck et al [61), Pijaudier and Bazant (62), Leblond et al (63), 
Mroz and Seweryn [64). In a nonlocal generalization of a relevant deformation 
and/ or damage mechanism the corresponding local quantity, say K, (plastic 
strain, damage variable, any other pertinent internal variable, its conjugate 
force, equivalent strain, etc.) is replaced by its spatially averaged form: 

li;(x) = Vr~x) J ,J,(x- s) ~<(s) ds
3

, 

n 

with Vr(x) = J -it(x- s) ds3
, ds3 = dfl 

n 

(2.51) 

where ~(x- s) is the weight function, normalized over R3 , for instance 

(2.52) 

and s is a relative position vector pointing to the infinitesimal volume dO.; 
n denotes the volume of the body studied. The normalization factor Vr(x) 
can be considered as the representative volume at point x. It is not necessarily 
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unity since the integral defining it above is taken over n instead of R 3 . As ~ 
is normalized we have J R 3 ~ ( s) ds3 = 1 [ 63]. 

The representation (2.51) can be used as a starting point for gradient 
models, called sometimes 'differential nonlocal' models, supposed more con­
venient to manage computationally in the context of incremental algorithms. 

A way to transform the above nonlocal representation to a gradient one 
is to expand x into Taylor series truncated (for instance) to the second order: 

8K(x) 82 K(x) s2 
K(x+s) = K(x) + ~s+ &x2 2

! + ... (2.53) 

Substitution of the latter in Eq. (2.51) and integration with respect to s yields 

(2.54) 

where cis parameter of the dimension [Lj2; it depends on the type of weight 
function. Under some restrictions (see de Borst et al. [65]) it can be related 
to the internal length of the material: JC ex lc reflecting thus the length scale 
for the deformation/ damage process at stake. 

Other ways to devise gradient damage models have been advanced, see 
e.g. Pijaudier and de Borst [47]. 

In the way outlined above by (2.51), (2.52) Leblond et al. [63] and Tver­
gaard and Needleman [66] have developed a nonlocal version of the Gurson 
model to study the influence of nonlocality on bifurcation by shear banding. 
These authors considered a nonlocal modification of damage evolution, the 
damage variable identified with the void volume fraction fv· It is thus stip­
ulated that the ductile damage mechanism in porous metals depends on a 
characteristic length as follows [66]: 

j.(x) = Vr~x) j W(x- s) j.(s) ds
3

, 

n 

with W(z) = [ 1+ ~t)P r lc > 0, 

(2.55) 

and z = (zizi) 112 . The local formulation corresponds to the limit lc---+ 0. 
The authors cited above [63, 66] showed that the nonlocal damage ap­

proach removes the inherent mesh sensitivity in the predictions of failure 
by shear localization. It has been shown also that the values of the post­
localization slopes for stress-strain curves predicted by the nonlocal contin­
uum model depend significantly on the value chosen for lc. A tentative to 
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provide a micromechanical basis for specifying the material characteristic 

length has been proposed in [66]. 

It is to be emphasized that the above anlyses regarding the localization 

bifurcation governed by the condition (2.13), Rice [39], involving discontinu­

ities, are facilitated by the fact that in spite of the nonlocal character of the 

constitutive equations, the jumps of the stress and strain rates through any 

surface are connected by a local relation, see [63] for details. From the early 

nineties on, a new class of damage models has emerged allowing for singular 

effects (strain-rate and/or velocity discontinuities) being incorporated in the 

very corpus of the constitutive model, see for instance Oliver [67]. 
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Chapter 3 

Anisotropic damage 

and normal unilateral effect: 

eigenvector approach for 

mesocracking damage 

This chapter outlines the salient features of the anisotropic damage model 
by Dragon et al. [3], Halm and Dragon [4], which forms the framework for 
further developments presented in Chapters 4 and 5. An objective of the 
damage model summarized below is to describe - in a realistic manner appli­
cable to structural calculus - the process of mesocrack-induced anisotropic 
degradation and relative inelastic behaviour of a rock-like 'quasi-brittle' solid. 
It stipulates evaluation of effective elastic moduli of a material with microc­
racks and an adequate description of the evolution of damage. The emphasis 
has been put on an "open" formulation of the model to allow further exten­
sions and couplings. It is based on the hypotheses and developments ordered 
below in the items from (i) to (vi): 

(i) A single damage internal variable is constituted by a symmetric, 
second-order tensor D indicating orientation of microcrack set(s) as 
well as the dissipative mechanism under consideration, namely genera­
tion and growth of decohesion microsurfaces: 

(3.1) 

The scalar density di(s) is proportional to the extent s of decohesion 
surface and the unit normal vector ni describes orientation of the i-th 
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set of parallel crack-like defects. The form (3.1) is motivated by mi­

cromechanical considerations (see e.g. [30]) but in the context further 

on here the density d(s) is reckoned as a macroscopic quantity. The 

expression (3.1) is in itself a guiding microstructural interpretation of 

damage-related internal variable D. Since D is a symmetric second­

order tensor it has three positive eigenvalues Dk, (k = 1, 2, 3) and 
three orthogonal eigenvectors vk. This means that any system of mi­

crocracks (3.1), decomposed into 1, ... , i, ... n of subsystems of parallel 

mesocracks can be reduced to three equivalent orthogonal sets of cracks 

characterized by densities Dk and normal vectors vk. 

3 

D=LDkvk®vk. 
k=l 

(3.2) 

(ii) The damage-dependent strain energy (free energy per unit volume) 

w( e, D) generates a form of elastic orthotropy - in connection to the 

three eigensystems (3.2) - for D =/= 0; w is assumed as linear func­

tion of D and in this way corresponding to non-interacting cracks hy­

pothesis. On the other hand, it contains linear and quadratic terms 

in e. A particular invariant form given below (formula (3.4)) comprises 

a single linear term reading g tr (e. D); g is a constant, corresponding 

to damage-induced residual phenomena. The damage induced macro­

scopic residual stress fore = 0 is thus explicitly obtained equal to gD. 
Inversely, for a- = 0, non-zero residual strain is induced. 

(iii) Under predominantly compressive loading, favourably oriented cracks 

close leading to an elastic moduli recovery phenomenon in the direction 

normal to the closed cracks. It is called here normal unilateral effect -

in the absence of frictional sliding (the latter, when accounted for later, 

will induce a shear recovery effect as well) -and requires more involved 

damage characterization. In fact, for a set of cracks constrained against 

opening a fourth-order tensorial density is necessary for a rigorous, 

micromechanically n1otivated description. A compromise solution has 

been advanced in [4] between micromechanical considerations imposing 

an additional fourth-order damage variable and macroscopic modelling 

efficiency. The formulation maintains the orthotropy of the effective, 

elastic properties, instead of eventual more general anisotropy induced 

by a new fourth-order damage tensor. The complementary fourth-order 

entity D, necessary to account for the normal unilateral effect, is di-
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rectly assembled with the eigenvalues and eigenvectors of D and cannot 
therefore be considered as a new damage internal variable: 

3 

D = L Dk vk ® vk ® vk ® vk. 

k=l 
(3.3) 

( iv) A single scalar simultaneous invariant of D and e, namely e: D : e, com­
pletes the expression of the free energy w [e, D, D(D)) (thermodynamic 
potential), with no additional material constant with respect to the ba­
sic form w(e, D) postulated in (ii). Rigorous continuity analysis in the 
framework of multilinear elasticity (for a given damage state), recast 
in [4] and summarized under the item (v) below, leads to a simple mi­
crocrack closure condition for an equivalent set, namely: vk .e.vk ~ 0. 
The detailed expression of w( e, D) including the supplementary term 
allowing for normal unilateral effect is: 

1 
w(e, D) = 2.x(tr e) 2 +J.L tr(e.e)+g tr(e.D)+a tr e tr(e.D)+2,B tr(e.e.D) 

3 

-(a+ 2,13) e: [ ~ H( -vk .e.vk) Dk vk ® vk ® vk ® vk] :e, (3.4) 

where H is the classical Heaviside function; a, ,Bare material constants 
related to modified elastic moduli for a given damage state . .X and Jl 

are the conventional Lame constants for elastic (non damaged) solid 
matrix. 
The corresponding damage-induced orthotropic elasticity representa­
tion u(e, D) and the damage driving (thermodynamic) force FD are 
determined by corresponding partial derivation: 

aw 
u = ae = .X(tr e)l + 2J.Le + gD 

+a[ tr(e.D) 1 + (tre) D] + 2,8 (e.D + D.e) 
3 

- 2 (a+ 2,8) L H( -vk.e.vk) Dk (vk.e.vk) vk ® vk, (3.5) 
k=l 

D 8w 
F = -aD = -ge- a(tr e)e- 2,B(e.e) 

3 

+(a+ 2,8) L H( -vk.e.vk)(vk.e.vk)2vk ® vk. (3.6) 
k=l 
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In spite of the presence of the Heaviside function H( -vk .::.vk), w, u 

and FD remain continuous when passing from the open mesocracks 
configuration to the closed mesocracks configuration and vice versa. 
This is possible because the discontinuity of H takes place when the 
multiplier vk .e.vk entering Eqs. (3.6) , (3.5), (3.6) becomes itself zero. 

( v) In the introduction of this text, the emphasis has been put on the dif­
ficulties in ensuring continuity of stress-strain response w~en damage 
deactivation takes place and corresponding unilateral conditions should 
be respected. Whereas some authors rectify a posteriori the disconti­
nuity generated by the deactivation, see e.g. [68), the model given here 
satisfies continuity of the energy w and of the stress-strain response 
during crack opening/ closure transition. Consider the free energy w 

written in two different forms, respectively w 1 ( e, D) for open microc­
racks and w 2 (e, D, D) for closed ones: 

1 
w 1 = 2A(tr e) 2 + p, tr(e.e) + g tr(e.D) 

+ a1 tretr(e.D) + 2{31 tr(e.e.D) + o(e:D:e) , 

1 
w 2 = 2A(tre) 2 + p,tr(e.e) + gtr(e.D) 

+ a2 tr e tr(e.D) + 2{32 tr(e .e.D) + 1 e: D :e. 
~ 

~w' ~w" 

(3.7a) 

(3.7b) 

The model postulates a pnon the continuity of stress between the 
states 1 and 2, i.e. o- 1 = o-2 at opening/ closure (and reverse) transi­
tion. Considering the current, damage influenced stiffness discontinuity 
(jump) [C) = (82w2 /8e 8e)- (82w1 /8e 8e), the condition stated can 
be written as an equation representing a surface Y in the strain space 
delimiting (for a given damage state) two linear elastic subdomains. 
This equation is of the form h(e) = [C) : e = 0. The above condition of 
stress continuity is sufficient to impose the continuity of the energy w. 
Indeed, w is continuous if the stress jump is normal to the surface Y 
separating states 1 and 2, Wesolowski [69]. The condition on the stress 
discontinuity here is stronger: no jump was admitted. 
Since Y separates the six-dimensional strain space I} into two six­
dimensional subspaces, Y itself is five-dimensional (i.e., dirn Ker[C) = 

5) and [C) is of rank one: rank[C) = dim Im[C) = dim I}- dim Ker[C) = 
6-5 = 1, cf. Curnier et al. [70]. It is then sufficient that all second order 
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determinants of [C] be equal to zero [69) . The relevant calculations give 
rise to the following sufficient conditions: a1 = a2 = a, fJ1 = /32 = /3, 
and thus [C] = 2 rD. Each equivalent set of cracks of the normal vk, 

k = 1, 2, 3 can be considered independent. Let us examine for instance 
a single set ( k = 1). The aforesaid equation determining the surface :/ 

leads for the present model to the particular form: h( e) = v .e .v = 0, 
which represents the opening/ closure criterion for the crack-set of nor­
mal v. This criterion has been obtained by Halm and Dragon [4) and is 
based on the rigorous argument summed up hereby. The similar crite­
rion was earlier postulated by Chaboche [71] on different grounds but 
in accordance with some micromechanical considerations, cf. Andrieux 
et al. (20]. 
The relation cited can be extended to each equivalent set: hk(e) = 

vk.e.vk = 0, k = 1,2,3. An equivalent set (of normal vk) becomes 

inactive (resp. active) when the corresponding normal strain becomes 
negative (resp. positive). At this threshold, when passing from positive 
to negative hk (e), the term e : D : e with the constant r appears 
in the expression of w2 allowing for the recovery of stiffness in the 
direction normal to that of the closed crack-set. In a convenient lo­
cal reference system related to the crack orientation (axis 1 normal 
to cracks, axes 2 and 3 in the crack plane), the corresponding stiff-

d . . d f:Pl::l.w' EP!::l.w" 0 Th" h ness recovery con 1tlon rea s &u&u + acu&u = . IS means t at 
the damage-induced loss of normal stiffness obtained by derivation of 
the ~w'- term in Eq. (3. 7a) is recovered through the supplementary 
term ~ w". After calculation the condition above leads to the simple 
relation: r = -a - 2/3. This result constitutes a major advantage: r is 
not a new constant to be identified, it is calculated from the parame­
ters a and f3 of the basic model. The form (3.4) of the energy was well 
as the expressions (3.5), (3.6) account for the issues discussed in this 
paragraph. 

(vi) The evolution of D, corresponding to the brittle, splitting-like crack 
kinetics, has been found to follow the normality rule with respect 
to a criterion in the space of components of the proper thermody­
namic force (affinity) FD. The damage evolution is thus apparently 

following the principle of maximum (damage) dissipation, and is re­
lated here to tensile (positive) straining g+ and to actual damage pat­
tern. It should be stressed however that the particular damage criterion 

http://rcin.org.pl



44 3. ANISOTROPIC DAMAGE AND NORMAL UNILATERAL EFFECT ... 

f(FD, D) ~ 0 is explicitly dependent only on the part FDl+ = -gg+ = 
FD- FD2 - FDl- of the driving force FD .FD1 is the strain energy re­

lease rate term related to residual 'locked' effects: FD1 = -ge, FD2 

represents the remaining recoverable energy release rate. The former 
term is decomposed into the splitting part FDl+ = -gg+, g+ = p+ : e, 
with p+ a positive fourth-order projection operator selecting positive 
eigenvalues from strain, and the non-splitting part FDl- = -g(g-g+). 

The damage criterion and rate-independent damage evolution law are 
thus as follows: 

f (FD- FD2- FDl-; D) 

= J~ tr [ (FD _ FD2 _ FDI-).(FD _ FD2 _ FDI-) l 
+ Btr [ (FD- FD2 - FD1-).D]- (Co+ C1 trD) ~ 0, (3.8) 

. 8f 
D = Av8FD 

if f < 0 or f = 0, j < 0; 

if f = 0 and j = 0; Av ~ 0. 
(3.9) 

Remarks 

The hypotheses posed above lead to the normality rule (3.9) which does 
not correspond to the fully (generalized) standard schema in the sense codi­
fied by Halphen and Nguyen [72] requiring, among others, the yield function f 
(and the corresponding potential, namely the indicator function of f = 0 for 
an inviscid dissipative process) being defined in the non-truncated space of 
conjugate forces (here FD). The hypothesis herein is that the evolution of 
damage is governed by a criterion involving the particular ingredient FDl+ 
of the conjugate force FD. This is equivalent to stating 

f(FDI+, D)= f(e+, D)= IYIJ~e+: e+- Bg tr(e+.D)- Co- Ct trD, 

and postulating- as asserted above- the determinant role of positive strain­
ing in damage evolution. The complementary part of the actual damage 
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model (3.8), (3.9) - and of any dissipative model defined in the truncated 

space of a conjugate force preserving simultaneously the relative normality 

form - will be called in the sequel a pseudo-standard model. For this as­

pect and further analysis of the present model the reader can consult the 
dissertation of Badel (73]. 

The damage criterion (3.8) transferred to stress-space (see (3, 4]) rep­
resents a strongly pressure-sensitive surface with a marked dissymmetry of 

traction vs. compression limits. 
The fourth-order tensor D depends entirely on D (see definition (3.3)); 

it does not require a separate evolution law. 
In numerical calculations any loading path is considered as a collection of 

D-proportional segments. The form of Eq. (3.6) is valid for such a segment, 

i.e. for a given configuration of principal directions of D. Otherwise it should 

be completed to account for a novel configuration of the tensor D. 
The model, non-linear as it is , contains eight material constants only: >., 

J.L, a, /3, g, B, Co and C 1 , which can be relatively easily determined (see 
Sec. 5.3). 

In order to illustrate the predictive capacities of the model, the curves 
in Fig. 3.1 show the stress-strain behaviour according to the basic damage 

model and experiment (Pecqueur et al. (7 4]) for Vosges sandstone submitted 
to axisymmetric triaxial compression with a confining pressure Pc = 15 MPa. 

The set of material constants, namely >. = 3 250 MPa, J1 = 4 875 MPa, 

a = 9 925 MPa, f3 = -11180 MPa, g = -32 MPa, Co = 0.02 MPa, 
C1 = 0.27 MPa, B = 0, was determined according to the procedure de­
scribed in Sec. 5.3. The dilatancy effect resulting from pronounced damage is 
well evidenced in Fig. 3.1 (b)). The numerical simulations conform to exper­
imental programme correspond to homogeneous stress-strain paths realized 

at a single Gauss point. For the location of bifurcation point with respect to 
stress-strain peak for a large spectrum of axisymmetric stress-strain paths, 
see Dragon et al. (3]. 

While the curves in Fig. 3.1 correspond to a routine experimental test 

for rock-like solids, the lateral overloading sequence following the foregoing 

compression test is much less common and needs somewhat sophisticated 
equipment. Three simulations of lateral overloading for previously damaged 
solid are shown in Fig. 3.2. The reference strain c:~· B, c corresponds to the 

lateral strain value at the beginning of step c. The stiffness recovery occur­

ing during overloading (step c) has been calculated following the extended 
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FIGURE 3.1. Comparison simulation (solid line) vs. experiment (dashed line) for 
a triaxial axisymmetric compression (confining pressure Pc = 15 MPa) on Vosges 
sandstone; (a) deviatoric stress -(a3 - a1) vs. axial -£3 and transversal -£1 

strain; (b) deviatoric stress -(a3 - a!) vs. volumetric strain -cv. 
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-a3 - Pc [l\-!Pa] 

FIGURE 3.2. Triaxial axisymmetric compression with lateral overloading: loading 
paths and simulated lateral stress -a3 - Pc vs. lateral strain -(EI - c~' 8 ' c) for 
Fontainebleau sandstone. 

model presented above accounting for the unilateral, crack-closure related 

behaviour, see [4] for further details. Three successive simulations were per­

formed for different values of the axial peak stress la31max' i.e. for different 
damage values corresponding to reduced moduli represented by initial seg­

ments in Fig. 3.2(c)). 

An operational, structural analysis approach employing the concept of 

damage should combine an efficient damage model implemented in robust 
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computer algorithm associated with proper tools for detection and control 
of bifurcation phenomena. The latter indicate eventual transition from dis­
tributed damage to surface-like localization considered as a precursor of 
macroscopic fracture. In any case bifurcation events point out an ill-posedness 
of the problem and necessity of remaking a computational scheme. Actu­
ally, the basic model presented, i.e. the one summarized above except the 
last, unilateral effect related term in w(c; D), see Eq. (3.4) and counterparts 
in (3.5), (3.6), was extensively tested for its capacities to generate physically 
sound localized failure mechanisms, see e.g. [3]. Essential structure of the 
numerical scheme employed for the 3D localization detection and some no­
table results obtained with the basic damage model are summarized in the 
latter paper. The very fair predictions concerning the localization bifurca­
tion obtained for homogeneous stress-strain paths as well as for boundary­
value problems related to rock engineering applications have prompted fur­
ther developments of the model itself including its coupling with a form 
of mesocrack-friction-induced plasticity as put forward in the next Chapter. 
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Chapter 4 

Mesocrack friction 
induced plasticity 

The unilateral normal effect included in the model summarized in Chap­
ter 3 allows a moduli recovery in the direction normal to the closed mesoc­
racks. It fails to capture a shear moduli recovery in the direction parallel 
to the crack plane, resulting from the blocking of mesocrack lips displace­
ment due to roughness and corresponding friction phenomena. Experimental 
data involving loading-unloading cycles for specimens subjected for instance 
to torsion and hydrostatic compression show hysteretic effects generated by 
such a blocking and subsequent frictional sliding on closed mesocrack lips. 
The beginning of unloading is characterized by a quasi-vertical curve while 
further decreasing slope is linked to progressive sliding, see for instance Pec­
queur [16) . Some attempts of micromechanical modelling of the phenomena 
deserve attention, [18-26) . However, they are not directly operational for an 
efficient structural analysis . Some of earlier attempts (Kachanov [18), Horii 
and Nemat-Nasser [19)) consider the influence of friction on effective mod­
uli but do not provide satisfactory thermodynamic interpretation of sliding 
evolution. Most of existing approaches are limited to two-dimensional anal­
yses, as e.g. [20], with the notable exception of the work by Gambarotta and 

Lagomarsino [24). 
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4.1. Energy expression and affinities related to damage­
and-friction response 

The global strain expression for a representative vo.ume of elastic solid 

of stiffness C containing microcracks (assumed planf and quasi-circular for 
simplicity) can be written as a sum of the solid matrix contribution e 0 and 
the crack contribution ec: 

e=C-1 :u+ 2~ L ((b) ® n+n ® (b))isi=e<+Leci (4.1) 
i i 

with the crack displacement discontinuity bi being tva-aged ( (bi)) for the 

microcrack set i. For closed sliding cracks, as long c.s the orientation ni is 
preserved, (bi) is orthogonal to ni: 

(4.2) 

with ~i representing the amount of sliding in the dire~tion gi. One can write 

furthermore: 

(4.3) 

Hence, for the microcrack system i, the sliding variahe is chosen in the form: 

. 8 i ~i . 
, .. ,/ = V sym (n Q9 g)t ( 4.4a) 

the symmetrisation being operated for the expressi·m in parentheses. The 

similarity with (3.1) is striking: as for D, the form o' 1 is motivated by mi­
cromechanics; as for d( s) the quantity si ~i /V cannot be explicitly calculated 
in the framework of a macroscopic model. Moreover, tS any system of micro­

cracks represented by D reduces to three equivalent 3et3 according to (3.2), 

the sliding tensor 1 can be written in the analogous manner: 

3 k ~k 3 

I= L s V sym(v ® g)k = Llk, 
k=l k=1 

( 4.4b) 

where vk, k = 1, 2, 3, are D-eigenvectors. 

Let us consider, for a while, a single system of mes<cracks characterized by 

the only principal non zero component D 3 and the rurmal (eigenvector) v 3 . 

The objective here is to argue for an enlarged form >f the free-energy func­

tion w ( e, D, 1) accounting for the frictional blockin1 and sliding effects for 

closed crack sets. 
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From (3.4), (3.5) one can infer that the anisotropic damage-induced 
shear moduli are entirely determined by f-L (solid matrix shear modulus) 
and the term 2,8tr(c.c.D). Hence, for the damage configuration at stake 

(D1 = D2 = 0, D3 -=/= 0) one obtains: a13 = 2pcl3 + 2{3D3E13, a23 = 
2pE23 + 2,8D3t23· 

The degradation of n1od uli in the normal direction to the open crack set 
is described in the conjugate manner by the a-terrn as well as the ,8-one. 

The expression of the Young's modulus E3 for the damage configuration as 
above is 

2 (-\ + aD3) 
E3 =-\ + 2p + 2aD3 + 4,8D3- , 

/\+f-L 

Let us consider the transition from open cracks to closed ones, assum­
ing friction resistant lips when in contact. The crack-open form of (3.4), 
with H( -v3 .c.v3) = 0 applies for the former case. When the cracks are 
closed and blocked by friction resistance at a given { , the shear modulus p 

is momentarily recovered and this should be properly reflected in the new 
modified expression w(c, D, 1). The ,8-term should be counterbalanced in 
this expression. The a-term, having no influence on shear moduli, enters as 
before. Additional invariants including 1 can be only simultaneous ( 1, D)­
invariants as there is no sliding on crack lips in the absence of damage. As 
from (4.3) one infers tr1 = 0 and tr(1.D) = 0 (for conservative damage 
axes), only two simultaneous invariants of c, 1 and D convey useful infor­
nlation. They are: tr(c.1.D) and tr(I·I·D). The argument for the quantity 
including ,8 in the last term of ( 3.4) was to restitute the norrnal stiffness re­
duced by the term 2,8tr(c.c.D) in the first line of (3.4), but since this latter 
term is going to be counterbalanced, the former quantity has to disappear 
from w. Doing so allows one to write tentatively the expression w(c, D, 1) 
for closed friction-resistant crack lips in the form (for a single crack system): 

1 
w (c, D, 1) = 2-\(tr c) 2 + p tr(c.c) + g tr(c.D) +a tr c tr(c.D) 

-a (c: D: c)+ "71 tr(c.1.D) + 2"72 tr(1.1.D) (4.5) 

where 'T/1 and "72 are material constants to be identified. 
From the micromechanical viewpoint there are infinity of crack-closure 

paths possible (straight, slantwise, mixed, ... ). The macroscopic model con­
tinuity requires continuity for expressions of w(c, D, 1) and u for crack 
opening-to-closure (and reverse) transition. The analysis analogous to that 
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summarized in Chapter 3 under the item ( v) is to be applied again here in the 
enlarged damage-and-friction context. This leads to the following condition 
at the closure-point: 

{
c.D={.D ~ 

T--7" lij = sym(Eikvkvj) at closure-point. 
D.c =D.{ 

(4.6) 

The latter formula constitutes an initialization for the sliding variable 1 

and can be explained as follows: at closure point, the sliding quantity 1 is 
equal to the strain c in the crack plane, the matrix transmits its deformation 
to the crack. 

According to the continuity conditions for multilinear elasticity (Weso­
lowski (69], Curnier et al. [70]) already employed in [4] in the context of 
unilateral normal effect, see Eqs. (3.4)-(3.6) in Chapter 3, the jump of ef­
fective elastic stiffness [C] between open crack and closed crack respective 
configurations should be a singular operator. The corresponding energy ex­
pressions are designated respectively w1 and w2 , as in ( v) in Chapter 3. It is 
sufficient that all second-order determinants of [C) be equal to zero. 

In the present context - Eq. ( 4.5) at the very closure point, taking into 
account ( 4.6) - [C] is given as follows: 

a2w21 82wll [C]=- --
8c8c -y,D 8c8c D ' 

[CiJkd = ( ~'11 + '72- (3) ( OikDJl + 011Dik + OilDJk + 01kDil) - 2o:biJkl· 

The above-mentioned singularity requirement and the additional stronger 
condition allowing no stress jump in the strain space across the surface 
v.c.v = 0, applied by Halm and Dragon [5] (in the way similar to [4]) lead 
respectively to: 

{ 
~ 'TJI + 'TJ2 - (3 = 0, 

'TJI = 4(3. 
(4.7) 

The free-energy w(c, D, 1) can now be written as follows (for either open or 
closed cracks): 

1 
w(c;D,{) = 2.x(trc) 2 + J.Ltr(c.c) + gtr(c.D) + atrctr(c.D) 

+ 2(Jtr(c.c.D) + H(-v.c.v)[- ac: D: c- 2{3tr(c.c.D) 

+ 4(Jtr(c.{.D)- 2(Jtr(l'·l'·D)]. (4.8) 
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The expression ( 4.8) can be generalized to three non-interactive equivalent 
crack sets represented by eigenvectors vk associated with the principal com­

ponents Dk, k = 1, 2, 3. One can select the k-th set using the following 
projection operator Lk: 

Dk = Dk vk Q9 vk = Lk : D. 
(4.9) 

This allows to write counterpart equations of (3.4)-(3.6) independently for 
each equivalent set, all possible configurations being included (open or closed, 
sliding or non sliding sets): 

1 
w(c, D , 1) = 2A(tr c) 2 + J.L tr(c.c) + g tr(c.D) +a tr c tr(c.D) + 2{3 tr(c.c.D) 

3 

+ LH(-vk.c.vk)[- ac: (DkLk): c- 2{3tr(c.c.Dk) 
k=l 

aw 
u= Be =A(trc)1+2J.Lc+gD+a [tr(c.D)l+(trc)D]+2{3(c.D+D.c) 

3 

+ L H( -vk.c.vk) [- 2aDk (vk.c.vk) vk Q9 vk- 2{3 (c.Dk + Dk.c) 
k=l 

D OW 
F =- BD = -gc- a(trc)c- 2{3 (c.c) 

3 

+ LH(-vk.c.vk)[a(vk.c.vk)2vk®vk+2{3Lk: (c.c) 
k=l 

- 4{3 Lk : (c.{k) + 2{3 Lk : ( lk ·l'k)]. ( 4.12) 

As each equivalent set of the normal vk is to be considered independently, 
the corresponding affinity (thermodynamic force) is: 

F~k =-:.; = H( -vk.e.vk) [- 2,6 (e.Dk + Dk .e) 

+ 2{3 (l'k.Dk + Dk.f'k)]. (4.13) 
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The remark concerning Eq. (3.6) stating its validity for a D-proportional 

segment, i.e. for a given configuration of principal directions of D, is still 

valid for Eq. (4.12). 

4.2. Sliding criterion and evolution 

The model herein considers frictional non-sliding/ sliding phenomena on 

mesocrack lips on a macroscopic scale, by an approach similar to that to dam­

age, notwithstanding the micromechanical background and interpretations 

of D and r· So, the Coulomb criterion form, function of the correspond­

ing shear and normal tractions on a crack lip, employed in micromechani­

cal models (Horii and Nemat-Nasser [19], Andrieux et al. [20], Gambarotta 

and Lagomarsino [24]), is methodologically less suitable in the present con­

text. The pertinent thermodynamic affinity governing frictional sliding on an 

equivalent system k, (k = 1, 2, 3) is the entity F'k defined above as the strain 

energy release-rate with respect to rk. 
The frictional non sliding/ sliding complementary law is based on the hy­

potheses as follows: 

(i) The sliding criterion depends explicitly on the norm of the tangential 
part FrTk of the "force" F'k and on the normal strain vk .e .vk con­

secutively to the strain-related representation of the energy w and the 
crack-closure criterion at stake (vk.e.vk ~ 0). 

(i) Contrarily to inconsistencies relative to the normality rule in the clas­

sical Coulomb framework affected by appearance of a normal sepa­

rating velocity ( cf. for example [751) a pseudo-standard scheme in the 

space of forces conjugate to rk keeps physical pertinence. The appar­

ent normality rule appears to relate the frictional sliding rate to the 
tangential force FrTk indicating its leaning to the crack plane (for a 

Dk-proportional loading segment). 

Consequently, the corresponding convex reversibility domain hk ~ 0 can be 

written as: 

hk ( F'k- F'Nk' vk.e.vk) 

= Jr-~-t-r -[ (_F_r_k ___ F_r_N k-)-. -(F_r_k ___ F_,N_k_)_] + p vk .e .vk ~ 0, 

if vk.e.vk ~ 0, (4.14) 
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where jJ is a material constant, a strain-related friction coefficient m the 

space ( F~'k, e) and 

Fl'k = FI'Tk + FI'Nk' 

F~'Tk = F~'k- (vk.FI'k.vk) vk 0 vk, 

F~'Nk = (vk .F~'k .vk) vk 0 vk. 

The normality rule for ~k is then 

. k - A k 8hk (F~'k - F~'Nk' vk .e.vk) 
r - 1 8F~'k 

lo, if hk < o 
= FJ'Tk 

Ak if hk = 0 
1 .j2 tr (F!'Tk .FI'Tk)' 

or hk = 0 h,k < 0 
' ' 

and h,k = 0, A~ ~ 0. 

(4.15) 

( 4.16) 

Detailed comments on salient aspects of the criterion hk = 0 in the strain 

space are given by Halm and Dragon [5). Figure 4.1 shows the corresponding 

form together with a hardening-like phenomenon (for rk # 0) in reduced 

013 (MPa) 
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-- closed cracks ____ _.. ------------
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-20 0 
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FIGURE 4.1. Frictional sliding criterion and the relative sliding-induced hardening 
mechanism in the reduced stress-space (a33 , a 13 ) for "Yk = 0 (solid line) and 

"'/ =I= 0 (dashed line). 
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stress space (a33, a13). The similitude between the actual yield surface and 
the Coulomb one can be clearly noticed. In connection with the crack open­

ing/ closure condition (a single crack system D 3 i= 0 is considered for illustra­
tion) the cone hk = 0 is shifted to the left: it corresponds to negative value 

of a33 at the closure point. 

By examining the complete set ( 4.10)-( 4.16) of the equations of the model, 

one can see that the frictional sliding does not sweep away the relative sim­

plicity of the enlarged model (see the end of Chapter 3). Only one additional 

constant p adds to eight material constants (.A, J.L, a, {3, Co, C1 , g, B). It can 

be stressed that p governs the slope of the cone in Fig. 4.1. 

It can also be proved that the slope is inversely proportional to the amount 

of damage, thus implying that a higher crack density is favouring sliding. 
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Chapter 5 

Damage and frictional sliding 
interaction. Fully coupled model, 
its numerical implementation and 

applications (rock-like solids) 

The model completed in Chapter 4 incorporating friction-induced block­
ing and sliding on equivalent mesocrack-sets is valid for a given ('frozen') 
damage state or for conservative damage evolution (Dk-proportional load­

ing paths). It has proved conclusive in representing multistage loading­
and-unloading dissipative cycles due to blocking-and-sliding sequences, see 
Halm and Dragon [5] for illustrations . In particular a dissipative unloading 
blocking-and-sliding sequence could be obtained while for the same stress­
strain cycle the frictionless model of Chapter 3 gave purely elastic unloading, 
see Fig. 5.1 for a shear-loading cycle for pre-damaged material. 

5.1. Generalized coupled model 

The splitting-like damage kinetics considered in Chapter 3 is regarded as 
approximately valid for closed sliding mesocracks even when some branching 
occurs, see for example Horii and Nemat-Nasser (76], Barquins et al. [77] 
for some experimental insight. This type of splitting kinetics will be still 
considered as the predominant mechanism furthest for Dk-non-proportional 
loading. This means the complementary damage law (3.8)-(3.9) being recon­
ducted for more complex stress-strain paths involving varying Dk orienta­

tions. However, as the frictional blocking-and-sliding is inevitably affecting 
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58 5. DAMAGE AND FRICTIONAL SLIDING INTERACTION .... 

the stress-strain response, so for instance the stress threshold corresponding 
to damage criterion f = 0 is subsequently affected. For example, in the stress 
subspace analogous to that of Fig. 4.1, the frontier f = 0 corresponding to 
closed cracks under frictional blocking/ sliding is farther beyond the limit for 
frictionless cracks, see e.g. Fig. 9 in [5). 

This is mostly the sliding complementary rule (4.15)-(4.16) which needs to 
be perfected to describe fairly the Dk-non-proportionalloading paths. If the 
principal axes of Dk rotate the orthogonality lk : Dk = 0 is no longer true 
and discontinuities may arise, especially for crack closure-opening transition. 
So, an enhanced form of hk ~ 0 needs to account for the Dk-axes rotation. 
The form (4.14), depending on F-yTk, produced - via normality rule (4.14) 

- sliding ,;-/ in the mesocrack plane. A judicious modification of this basic 
assumption should be compatible with sliding and damage departure from 
the actual mesocrack equivalent plane. This is achieved by means of the 
following partition of F"Yk, given below for a single crack set of normal vk: 

a13 [MPa] 

30 

20 

10 

P= 0 MPa 

P= 5000 MPa 

0 . 0004 0 . 0006 0 . 0008 0 . 001 0 . 0012 0 . 0014 

c13 

FIGURE 5.1. Influence of frictional resistance and sliding on stress-strain response 
for a shear loading under constant damage (single crack system perpendicular to 
torsion axis). 
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Fk is the appropriate part of F'k to enter the more general expression of 
hk ~ 0 suitable for the model including Dk-axes rotation. First, one obtains 
that for Dk-proportionalloading Fk reduces to F'Tk (as 1k : Dk = 0) and the 
new representation hk(Fk, vk.c.vk) reduces to (4.14). Secondly, the above­

mentioned, crucial stress continuity problem is effectively dealt with. In fact, 
comparing (4.6), (4.13), (4.15), (5.1), one can see that the closure-opening 
transition point for sliding crack-set can be alternatively defined as: 

Despite the fact that the above equation represents weaker condition 
than (4.6), it allows to verify the singularity requirement for [C) (cf. Sec. 4.1) 
leading to the stress continuity. 

It can be remarked that though 1k : Dk =J 0 as equivalent crack-axes 
rotate no additional invariants are necessary in the strain energy expres­
sion (4.10). They are not required by the continuity considerations (see 
above) and bring neither significant information. For exarnple, introducing 
tr c tr( 1k .Dk), tr 1k tr( 1k .Dk) and 1k : DkLk : 1k contributes to no more 

record on shear moduli degradation than existing invariants tr(c.,k.Dk) and 
tr(rk .,k.Dk). 

The above considerations lead to the following improved expression for 
the sliding complementary rule: 

1 (Fk Fk) A k k 2 tr . + p v .c .v ~ 0, (5.3) 

if hk < 0 or hk = 0 hk < 0 
' ' (5.4) 

if hk = 0 and hk = 0, A~ ~ 0. 

The direction of ~k is thus allowed to leave the equivalent crack-set plane con­
secutively to the rotation of the latter. In such a manner Dk-non-proportional 
loading can be followed by the model which takes into account the interac­
tion of the two dissipative mechanisms: damage and frictional sliding. The 
corresponding combined dissipation is: 

3 

D = FD : D + L F'k : ~k ~ 0. (5.5) 
k=l 
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Despite of the corresponding normality rules, i.e. the formulae (3.9) and (5.4) 
respectively for damage growth and frictional sliding, and the convexity char­

acterizing the domains f ~ 0 and h ~ 0 one should check the non-negativity 
of D in the process of numerical integration. This is because of the partition 
of the respective thermodynamic forces, i.e. the sole parts FD- FD2 - FD1-

and F'Yk- [-4,6(c : Dk)vk ® vk] entering respectively into the corresponding 

damage and sliding-yield functions (pseudo-standard modelling). The convex 

domains at stake should contain their origin respectively in the FD -space and 
in the F'Yk_space to ensure thermodynamically admissible evolutions (one can 

note in this point some analogy with the kinematic hardening rule in classi­
cal plasticity). In this respect the algorithmic approxi1nation of the coupled 

TABLE 5.1. Rate-independent anisotropic damage-friction coupled model. 

Free energy: 
(per unit volume) 

Stress-strain and 
Internal variable 

relations: 

Damage 
complementary 

rule: 

D-consistency: 

Frictional sliding 
related plasticity: 

1k-consistency: 

w(c,D ,1) = ~ -\(trc) 2 + J.Ltr(c.c) + gtr(c.D) + atrctr(c.D) 
3 

+2{3 tr(c.c.D) + L H( -vk .c.vk) [- ac : (DkLk) : c 
k = l 

- 2{3 tr( c .c .Dk) + 4{3 tr( c ·lk .Dk) - 2{3 tr(Tk ·lk .Dk)) 

u = ~~ , see ( 4.11), F o = - ifj , see ( 4.12), 

F -rk - - 8 "' see (4 .13) for details - fFil', 

F(F0 
- FD 2 

- F 01
-, D) ~ 0, see (3.8) for details , 

· a 1 [ c+ ] D = Ao"§'iirfF = Ao J + BD , 
2 tr(c+ .c+) Ao ~ 0 

jAo = 0 

hk(Fk , vk.c.vk) = J~ tr(Fk.Fk) + pvk.c .vk ~ 0, 

see (4.15), (5.1) for detailed form of Fk , 

http://rcin.org.pl



5.2. NUMERICAL INTEGRATION OF DAMAGE ... 61 

model should control the dissipation issue for each step and integration point. 

The incremental procedure leading to numerical integration of the equations 

of the model is summarized further in this chapter. 

For completeness, the coupled rate-independent anisotropic damage­

frictional sliding constitutive equations are summarized in Table 5.1. 

5.2. Numerical integration of damage and sliding constitu­
tive relations 

This section provides an outline of several computational aspects involved 

in the finite-element implementation of the coupled model presented above. 

The incremental weak form of the equilibrium equation is formulated for a 

body 0 c R3 with boundary 80 in the time interval t E I= [0, T]. Let fd be 

the given body forces per unit volume, ud the displacements imposed on the 

part 810 of an and F d the traction vectors prescribed on the complementary 

part 820. With the time partition: I = u{:'=1 [tr, tr+1], the weak problem is 
formulated as follows: for each time increment [tr, t1'+ 1], find the displacement 

field u such as, at time tr+ 1, 

j u ('i7 5 u): 'ils Oud!l - j fd(tr+I).Oud!l - j Fd (tr+J).OudS = 0, 

n n a2n 

with u E Uad, uad = { u I u = ud(tr+1) on a1n }, and v c5u E Uo, Uo = 

{ u 1 u = o on a1 n}. 
The highly non-linear character of the constitutive laws, brought together 

in Chapters 3-4, requires that a time integration algorithm for the evolution 

of the damage variable D and that of the sliding variable 1 be accurate and 

stable. Such an algorithm forms, together with a spatial finite-element dis­

cretization, the finite-element implementation of the problem outlined above. 

The incremental procedure leading to numerical integration of the equa­

tions of the model consists in the standard strain discretization for the loading 

path under consideration. At time tr the strain er, the internal variables Dr 
and ~~ as well as the stress u r are known. The stress u r+ 1 and the internal 

variables Dr+l and ~~+l at time tr+l are looked for. Since each dissipative 
mechanism (damage and sliding) may occur independently and since each 

of them offers some particularities, the two corresponding integration algo­

rithms are commented separately. The coupling is discussed afterwards. 
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(i) Local integration for the damage model. The damage evolution 

Eq. (3.9) is integrated point-wise (at each quadrature point of a finite­

element in the spatial discretization) in the strain-driven setting. The 

set of state variables Qr is assumed to be known at the end of the 

step r: Qr = (e7", Dr, 1~). Since only damage evolution is concerned 

in this paragraph, 1k is considered constant, i.e. T'~+l = 1~. The in­
tegration problem amounts to updating the mechanical state, i.e. to 

determine Qr+l and D"7·+l, from Qr and prescribed strain increment !:::i.e 

(such as er+l = er +!:::i.e): 

Qr+l = (er+l,Dr+l,T'~+l), 

with e 7·+1 = e7" +!:::i.e, DT+l = DT + l:::i.D, 

where the symbol Ga summarizes relation (4.11). 

(5.6) 

The following scheme furnishes a well-grounded, stable algorithm for 

the damage model: 

(a) Calculation of the components of e;+l 

Given er+l, Q;+l and then P;+l are directly determined from the 
3 

expression PSkl = QJ. Qjz, where Q+ = 2::: H(en)rn ® rn; en, rn 
n=l 

being the eigenvalues and eigenvectors of e, H the Heaviside function. 

P;+l extracts the positive con1ponents of er+l: 

.:-+ - p + . C" 
~r+l - r+l · ~;.r+l· 

(b) Elastic predictor 

The increment is first assumed to be purely elastic: 

l:::i.D=O, 

The value of f(e7·+1, D 7.) is then checked: 

2 

f(er+l, Dr) = ~ tr(e;+ 1.e;+1)- Bg tr(e;+ 1.Dr) 

-(Co+ C1 tr Dr)· (5.7) 

If f (eT+b Dr) :S; 0, the elastic prediction is confirmed and qr+l is 

updated with Dr+l = Dr. Otherwise, Dr+l has to be corrected and 
~D is calculated as follows. 
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(c) Damage correction 

The damage increment is given by the evolution Eq. (3.9) in its dis­
cretized form: 

(5.8) 

where one writes: 

The choice of e = 1 corresponds to a purely implicit integration scheme; 

in this framework, Cormery (78] showed that the damage condition 

j(cr+(h Dr+e) = 0 with 0 = 1 reduces to a simple linear equation 
in ~AD. The solution of this equation is: 

~AD_ Ar+1 
- BAr+1 + C1 Cr+1 + Bg Fr+1' 

(5.9) 

with 

2 9
2 

tr(c:+1.c:+1)- Bgtr(c:+1.Dr)- (Co+ C1 trDr), Ar+1 = 

1 + +) (+ ) 2 tr(cr+l.cr+1 + B tr cr+ 1.Dr , 

~D is then known as well as the mechanical state Qr+ 1. 

Remark: A purely implicit integration scheme has been chosen. Indeed, 

Ortiz and Popov (79] showed for a general formulation of elastoplastic­

ity that this scheme ensures unconditional stability properties of rele­

vant integration algorithms, whatever the strain increment ~cis, even 

for strongly non linear behaviour. Moreover, this scheme is well adapted 

to the above damage model: the value of ~AD is the solution of a linear 

equation enforcing incremental damage consistency condition and does 

not require iterative procedure, unlike for most of elastoplastic models. 
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(ii) Local integration for the sliding model. Damage is tentatively as­
sumed to be constant (Dr+l =Dr). The key aspect in the formulation 
of the discrete time stepping procedure for the frictional sliding related 
plasticity concerns the integration of the evolution equation for the slid­
ing variable lk, Eq. (4.16) or (5.4), the latter for general, damage axes 
rotation accompanied loading. The elastic predictor /plastic corrector 
scheme is employed here in a way parallel to damage integration. 

(a) Elastic predictor 

One assumes fj.lk = 0 (i.e. ~~+l = ~~). The damage eigenvalues D~+l 
and eigenvectors v~+l are known, the part F~+l of the thermodynamic 
force related to lk entering the expression of hk is given by (see (5.1)): 

(5.10) 

The value of hk is checked: 

(5.11) 

If hk ~ 0, the set of variables qr+l = (e:r+b Dr+l,l~+ 1 ) as well as 
O'r+l is then determined as confined to reversible domain. If hk > 0, 
the mechanical state has to be corrected, i.e. frictional sliding evolution 
accounted for through the plastic correction below. 

(b) Plastic correction 

The aim is to solve the following system: 

fj.lk = f'j.A~ G,(F~t-0 ), 

h~+l = 0, 

(5.12a) 

(5.12b) 

(5.12c) 

(5.12d) 

where (5.12a), (5.12b) and (5.12c) respectively stand for Eqs. (4.11), 
(4.13) and (4.16) or (5.4) for general loading. 
Unlike the case of damage integration, the implicit scheme applied to 
sliding does not lead to the resolution of a linear equation for /j.A~: 
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Eqs. (5.12a)-(5.12d) are a set of non-linear algebraic equations to be 

solved for the unknowns u r+ 1, 1~+ 1 , F;~ 1 and ~A~. The solution is 
approximated by a Newton-Raphson algorithm. 

(iii) Coupling. Both above dissipative mechanisms (damage and frictional 
sliding) may occur along particular loading paths. The problem is then 
to determine the increments ~D and ~T'k simultaneously. The inte­
gration is here facilitated by the low degree of interference between f 
on one hand and hk on the other: whereas hk is a function of D and 

"'·/, f depends only on D and Eq. (5.8) can be solved without explicit 
reference to sliding. The general algorithm is as follows: 

1. The value vk .£ .vk of the normal strain for each equivalent micro­

crack system is checked. 

2. If vk .E.vk > 0, the corresponding system is open; sliding does not 

occur and ~D is calculated as described in paragraph (i) above. 

3. If vk .£ .vk ~ 0, the corresponding system is closed and may slide. 

Both criteria f ~ 0, hk ~ 0 are checked; ~D and ~T'k are cal­
culated by solving successively Eqs. (5.8) and (5.12c). The rela­

tion ( 5 .12a) generalized to coupled process yields 0' r+ 1· 

5.3. Identification of the material parameters 

The model presented in the foregoing has been conceived for engineer­
ing applications. The emphasis has been put on the accessibility of a small 
number of material constants: only nine parameters are required for fully 
coupled model (>., J-L, a, {3, g, Co, C1, B, p). Seven of them can be rela­
tively easily determined by conventional axisymn1etric "triaxial" compression 
tests (Fig. 5.2). The friction coefficient p is identified by torsional tests in­
volving frictional sliding. To determine B, a less common off-axis loading 
for pre-damaged specimen has to be exploited. The identification procedure 
has been described in details by Pham (80] and Cormery [78]. Some guiding 
indications are summarized below. 

Consider a triaxial compression test on a cylindrical sample assumed as 
approximately initially undamaged and isotropic. One can determine the con­

ventional elastic constants ,.\ and J-L from Eo and vo (initial Young's modulus 
and Poisson ratio) relevant to the stress-strain relationships ( a3 - a1) vs. 
c3 and ( a3 - a 1) vs. c1 respectively, in the elastic range without damage 

http://rcin.org.pl



66 5. DAMAGE AND FRICTIONAL SLIDING INTERACTION .... 

FIGURE 5.2. Conventional triaxial compression loading path. 

growth (J < 0). To determine the values of a, {3 and g, the non-linear, i.e. 

damage affected portion and the subsequent unloading are exploited. The 

point at which unloading is performed should correspond to pronounced ori­

ented damage but has to be reasonably far from the localization bifurcation­

onset point to avoid interference. The unloading portion corresponding to 

D-modified degraded moduli is being linearized according to the friction­

less damage-elastic model (Chapter 3). By inverting (3.5) and specifying to 

axisymmetric stress-strain-damage path one can establish finally three inde­

pendent equations (Eqs. (5.13)-(5.15) below) with respect to the unknowns 

aD1, {3D1 and gD1. 

Let be Band B' the starting point for the unloading (see Fig. 5.3). The val­

ues of aD1 and {3D1 are related to E3 and v31 (i.e. the unloading slopes) by: 

(5.13) 

(5.14) 

with 

The expression related to damage-induced residual effects can be ex­

pressed as follows: 

(5.15) 
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FIGURE 5.3. Determination of degraded moduli. 

The next stage consists in determining Co and C1. At the initial damage 

threshold on the experimental curves (points A and A'), we have from (3.8): 

191 E~ - Co = 0. (5 .16) 

At the above-mentioned unloading point B, damage has reached a given 

value D1; checking the criterion leads to: 

(5.17) 

According to the actual 'phenomenological' procedure based solely on stress­

strain curves, one needs now to 'disentangle' the expressions aD1, {3D 1 , g D 1, 

C1 D1, i.e. find D1 corresponding to the loading-unloading point B in order 

to obtain the constants involved. This is the purpose of the final stage of the 

identification at stake and is done by an iterative procedure comprising the 

following steps: 

(i) set any admissible value D 1 as (tentative) damage at the point con­

cerned and calculate a, {3, g, C1 and Co from Eqs. (5 .13)-(5.17); 

(ii) calculate -(a3- ai) vs. c1 and E3 respectively; 

(iii) check locally and/ or globally the gap between the trial values (ii) and 

the experimental ones with a norm set in advance; 

(iv) if no convergence, loop backwards to (i) with a new D 1. The choice of 

a loading-unloading point can eventually be reviewed. 

The set (-\ , J-L, a, {3, g, Co, C1 ) may thus be formally determined by means 

of a single loading-unloading test in axisymmetric triaxial apparatus. In fact, 
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it is preferable to cover a reasonable range of confining pressure values, i.e. 
exploit several curves and settle ultimate values of the constants concerned 
through averaging process. The hypothesis of an initially 'virgin' undamaged 
and isotropic solid can be eventually circumvented and an initial microcrack­
damage state may be accounted for. Some initial, non damage-induced aniso­
tropy may be eventually introduced as for example for ceramic-matrix com­
posites. However, it requires additional terms in the energy representation, 

see further, Chapter 6. 
To determine p for friction-induced plasticity, one resorts to torsional 

tests: on experimental curves giving the torque C vs. the angular deformation 
w for pre-damaged material (see Fig. 5.6 at the end of this section), the first 
change of slope is due to the onset of frictional sliding. For this point, the 
sliding yield condition is reached and solving hk = 0 provides the value of p. 

A partial identification, discarding the constant B set to zero has been 
performed for a Vosges sandstone tested by Pecqueur (16) (Table 5.2) and a 
Fontainebleau sandstone (Table 5.3). 

TABLE 5.2. Constitutive parameters (Vosges sandstone). 

..\ J.L Q (3 g Co c1 B p 
[MPaJ [MPaJ [MPaJ [MPaJ [MPaJ [MPaJ [MPaJ - [MPaJ 

3250 4875 9925 -11180 -32 0.02 0.27 0 1565 

TABLE 5.3. Constitutive parameters (Fontainebleau sandstone). 

..\ J.L Q {3 g Co c1 B p 
[MPaJ [MPaJ [MPaJ [MPaJ [MPaJ [MPaJ [MPaJ - [MPaJ 

26250 17500 1900 -20400 -110 0.001 0.55 0 2500 

5.4. Applications: rock-like solids 

To illustrate the pertinency of the coupled model and efficiency of the 
integration algorithms summarized above two selected numerical examples 
are given below. They are concerned with brittle rock behaviour and exam­
ine the effect of loading involving necessarily the closed mesocrack related 
phenomena thus bringing forward the efficiency of the fully coupled model. 
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(a) (b) (c) 

FIGURE 5.4. Steps of the homogeneous torsion-and-compression simulation (the 
corresponding cyclic stress-strain curve is shown in Fig. 5.5) . 
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The first example is the analysis of a homogeneous stress-strain path 

relative to the third step of the complex loading programme as follows (see 

Fig. 5.4): 

Step a: Uniaxial tension, a3 > 0, induces damage D3 > 0 (a set of parallel 
meso cracks of normal 3). 

Step b : Unloading then reloading under compression beyond the crack clo­

sure threshold are considered. The corresponding numerical simulation 

is strain-controlled; E33 < E11 = E22. 

Step c: Upon a given (frozen) configuration (c-33, cu = c22) corresponding 
to mesocracks closure is superposed additional shear strain-controlled 

loading: c-13 = c23 and subsequent unloading. Three loading-unloading 

cycles are simulated. In Fig. 5.5 the corresponding a 13 vs. c13 loading 

and unloading curves are plotted. Damage growth, accompanied with 

principal D-axes rotation is calculated for each loading cycle. Friction 

blocking or sliding effects are accounted for. 

The initial overstiffened portion 0-A in Fig. 5.5 is due to friction-induced 

blocking effect corresponding to recovery of the solid elastic shear modulus p,. 

Beyond A frictional sliding is evolving, the slope of the portion A-B is lower 

than the slope 0-A. Fron1 B to C damage growth accompanied with fric­

tional sliding occurs. The loading path at stake is aD-non-proportional one; 

there is some rotation of equivalent crack-axes and a complex damage state is 

brought about . The unloading portions are here non-linear curves: multiform 

unloading process with successive sliding sequences occurs (blocking on one 

equivalent set, two remaining sets open, followed by closure of a second one 

http://rcin.org.pl



70 5. DAMAGE AND FRICTIONAL SLIDING INTERACTION . . .. 

a13 [MPa] 

FIGURE 5.5. Shear stress a1 3 -shear strain £1 3 loading and unloading cycles cor­
responding to damage and frictional sliding variation. Non-proportional damage 
growth is simulated preceded by an initial tension-induced damage (D3 > 0) and 
subsequent compression-induced crack closure. Complex hysteresis is exhibited. 

and frictional sliding on one then two sets, etc). Here, the simulated curve a 13 

vs. E13 is presented to illustrate the capacity of the model to deal with multi­
ple stage loading/ unloading loops involving, eventually coupled damage-and­
sliding effects and stiffening due to crack closure (for example, at point P, 
for the last unloading). The material under consideration is Fontainebleau 
sandstone (Table 5.3). 

The second example refers to experimental tests by Pecqueur et al. j74), 
Pecqueur [16), consisting in a torsional loading applied to hollow cylinder 
specimens under hydrostatic compression. The cylinder is cut in brittle rock 
(Vosges sandstone, Table 5.2). Pecqueur [16] showed that the stress field is 
homogeneous in the central third of the cylinder . Based on this statement, 
the following homogeneous simulation has been carried out: an hydrostatic 
compression (Pc = 10 MPa) is first applied to a pre-damaged material with a 
set of mesocracks perpendicular to the cylinder axis in compression-induced 
closure range, next a torque C is superimposed. 

Again, an initial stiffened portion is observed corresponding to friction­
related blocking phenomenon. It is followed by a stage where frictional sliding 
evolution is noticed. This explains the reduced slope observed in Fig. 5.6, the 
solid line (1) leaning closely to the experimental dashed one (2) . Finally, for 
the last stage, the simultaneous complex damage growth and sliding take 
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C [NmJ 

-4--
1 

.... 
.... 

............ (2) 

(1) 

(3) 

0 . 0006 0.0007 

w [rad/ cmJ 

FIGURE 5.6. Torque C vs. angular deformation w for hollow cylinder example. 
The solid line (1) gives homogeneous response (for Pc = lOMPa) of the model 
when both damage and frictional blocking/ sliding (for closed mesocracks) are 
active. It appears fairly close to experimental response (dashed line (2)). The 
frictionless model response is given by the dashed line (3). 
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place and the slope becomes even smaller. The same simulation (with the 
same initial damage level and configuration) has been carried out for a prior 
version of the model (dashed line (3)) involving only the anisotropic dam­
age propagation (cracks are allowed to slide, but without friction; the 'basic 
model' according to the terminology of Chapter 3 here, see also Dragon et 

al. [3]). The curves clearly indicate that the hypothesis of perfectly lubricated 
cracks underestimates the torque value whereas friction stiffens the material 
and predicts behaviour closer to experiment. 

The last point to be commented concerns applications of the model on the 
level of structural analysis. This has been done for different modular segments 
of growing complexity. A boundary-value problem involving the fully coupled 
damage-and-friction model for a slab with a symmetrical double edge notch, 
has been recently studied by Halm et al. [81]. The constitutive parameters are 
those of Table 5.3. This has been a part of a larger programme (see also [73]) 
under the auspices of Electricite de France. It shows the capacity of the model 
to follow complex degradation (multiple mesocrack growth in the structure 
and the recovery of effective properties under a cycle of loading. The damage 
localization instabilities prevented frictional sliding from spreading notably. 

Earlier applications employed the basic (frictionless) anisotropic dam­
age model including the localization bifurcation analysis performed with 
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the 3D localization detector settled by the present authors' coworkers 

( Cormery, (78]). Salient algorithrnic features and applications of this detector 

are given in (3). The latter references bring forward structural analyses for a 

set of blocks with a hole, see also Dragon [83]. Numerical simulations were 

carried on in parallel to careful experimental investigations regarding failure 

incipience in the hole area. These investigations were done at the Institut 

Franc;ais du Petrole ( Onaisi, [82]). The numerical localization detector was 

employed for each computation step as a post-processor. 

The computations involving isotropic damage modelling indicated quite 

erroneously the localization onset around the hole (at symmetric poles placed 

perpendicularly to the ones where the macrocracking was effectively starting 

out). By contrast, the computations applying the present 'basic' anisotropic 

damage model indicated the localized failure onset at the poles in accordance 

with the experimental observations by Onaisi. The slope of the localization 

plane was fairly reproduced by the simulations. 

The calculations performed, employing the 'basic' as well as more com­

plete modelling including frictional effects, indicate a rather strong tendency 

to concentrate and/or to localize damage. It seems that there is a somewhat 

inherent model feature to favour brittleness to the detriment of other, ductil­

ity preserving, features (as e.g. frictional resistance). The enriched, e.g. non­

local damage growth description as well as time-dependent damage-kinetics 

variants of the present model would hopefully suppress this tendency to over­

estimate (accelerate) brittleness. Some work in this direction, namely a visco­

damage counterpart of (3.8), (3.9), has been proposed for polymer modified 

concrete, Pascal [84) in view of applications for specific concrete structures. 

As it is indicated at the headline of Chapter 3, the modelling of dam­

age and notably this of damage activation/ deactivation related to the nor­

mal unilateral effect is based herein on the spectral decomposition (3.1) for 

the second-order tensor D and the extrapolation of the latter leading to 

the restrictive fourth-order entity D in (3.3). The corresponding hypothe­

ses involve maintaining of the form of damage-induced orthotropy of the 

effective elastic properties (to the detriment of more general anisotropy) and 

the relevant equivalence postulate stipulating that any system of mesocrack 

can be reduced to three commensurate orthogonal sets. The latter are em­

bodied by eigen-densities Dk of D and its eigenvectors vk. The maintain­

ing of orthotropy was arguably justified on some micromechanical basis by 

Kachanov [36, 44]. The equivalence postulate is an important component of 
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the theory presented in Chapters 3-5 as it concerns not only the damage seg­
ment of the coupled model but is, through (4.4b), (4.9)-(4.13), reconducted 
for the meso crack friction plasticity model (Chapters 4 and 5). 

The damage description including unilateral effect based on the spectral 
decomposition of a second-order damage tensor was earlier postulated by 
Chaboche [71], cited in the foregoing (Chapter 3). 

Recently, Cormery and Welemane (85] and Badel [73] have put forward 
critical analyses regarding the spectral decomposition-based damage models. 
As one could expect, difficulties appear for the damage configurations in­
volving multiple principal bases characterizing purely isotropic spatial dam­
age distribution D = dol and the like subspace, partial symmetries of D 
like transverse planar isotropic distribution, say, D = do(el Q9 e1 + e2 Q9 e2), 

e1 and e2 representing orthogonal unit vectors. For such configurations in­
volving infinity of principal bases (non-uniqueness), the choice of a particular 
set of eigenvectors leads to a form of the energy function w(e; D) different 
from a form obtained for an other licit system. One observes thus in gen­
eral non-uniqueness of the energy w(e; D) and of the resulting response (e.g. 
stiffness C(D)) for specific (sub )spatially uniform damage distributions. It 
has been shown in detail for the present model (Chapter 3) as well for the 
model by Chaboche [71]. Furthermore, such a non-uniqueness may produce 
the loss of continuity of the energy function w(e; D) with respect to D and 
thus brings into question the very definition ofF D (thermodynamic force) 
and corresponding evolution laws. It should be thus stressed that aforesaid 
isotropic and the like damage configurations involving the multiplicity of prin­
cipal bases should be tentatively excluded from the operational domain of 
any spectral decomposition-based damage model. More fundamentally, some 
topological safeguards should be searched for to assure the energy uniqueness 
(i.e. the existence of the thermodynamic potential) in the close neighbour­
hood of such configurations. 

Following the critical study [85], a very stimulating work on anisotropic 
damage with unilateral effects due to microcrack closure has been proposed 
in 2002 by Welemane (86] without resorting to spectral decomposition of 
damage. The microcracking is embodied in the microcrack density distri­
bution jj(n, do, d2, d4 , ... , Dp) written in terms of the even-order damage 
tensors Dp, following Onat and Leckie (87], Lubarda and Krajcinovic [88] 
and other authors. A very good approximation of directional moduli recov­
ery due to crack closure is obtained for a truncated representation limited 
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to the order p = 4 when the defects are either all open or all closed. For 
a material containing simultaneously some microcracks systems open and 
other closed, evaluations involving p > 4 are significant, see [86) for details . 
The Welemane's model describes directional variations of Poisson's ratio un­
der the transition opening-closure, contrarily to the ours, less sophisticated 
model given in Chapter 3. 

The evolution laws for the tensors dp in [86) obey the truly standard 
modelling assumptions. A somewhat deceiving feature of the model results 
probably from this fully standard form: for uniaxial and axisymmetric-triaxial 
compression paths the directional distribution of da1nage obtained frmn the 
model corresponds to slight anisotropy only ([86), pp. 103-105) in contra­
diction to most of experimental evidence for rock-like solids. It should be 
remarked that frictional sliding effects at microcracks are not accounted for 
in the Welemane's model. 
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Chapter 6 

Interaction of primary anisotropy 

with the damage-induced one 

(CMC's) 

6.1. Introduction 

The model discussed in Chapters 3-5 concerns materials whose initial 
behaviour (i.e. that of non-damaged solid) is isotropic. This assumption 
is found too restrictive for a number of materials (e.g. sedimentary rocks, 
fiber-reinforced composites, etc.). In this part, the introduction of initial or­
thotropy effects is considered by using a parsimonious optimised method 
consisting in combining three transverse isotropy operators (fabric tensors). 
One obtains a small number of constants to be determined compared to 
other approaches. It is worth noting that multiple matrix-cracking is the 
primary dissipative mechanism considered here. An important issue in this 
framework is the interaction of oriented damage (and respective secondary 
anisotropy) with an initial anisotropy. Some micro mechanical studies (Mauge 
and Kachanov [89]) address this problem and propose some tools to quantify 
the respective coupling. Those tools can be hardly exploited in general 3D 
context. An alternative is thus advanced involving conjunction of damage and 
fabric tensors to deal with coupling effects of primary anisotropy vs. those 
of evolving damage microcracking induced one. This latter phenomenon is 
described by a formalism keeping the wish to propose an efficient alternative 
with respect to some micromechanical results. The capability of the model 
is validated by simulating tension tests on CMC plates. Whereas the model 
presented in Chapters 3-5 puts forward the role played by damage induced 
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residual effects for rock-like solids as, e.g. residual strain exhibited by tension 
vs. compression cycles, this permanent stress/strain is not manifest for a large 
family of brittle matrix composites (e.g. CMC's), at least for matrix-cracking 
stage of degradation. Thus, this chapter also attempts to relax some residual 
damage-induced effects in order to cope with initially anisotropic materials 
without irreversible strain. 

6.2. Initial anisotropy 

6.2.1. Thansverse isotropy 

The mechanical properties of a transversely isotropic material are iden­
tical in planes orthogonal to a given 'axial' direction. Relevant works in the 
literature deal with initial anisotropy by formulating the thermodynamic 
potential related to initial elasticity, w0 (the superscript "0" means initial 
stiffness), within the framework of the tensor function representation theory, 
Boehler [90): the form of w0 must remain invariant with respect to the co­
ordinate transformation expressing the material symmetries and is built by 
use of polynomial invariants (see Talreja [91] for the general formulation and 
a 2D application, or Ladeveze [92) for a 3D example). The present section is 
based on a method employing the same mathematical tools. Its particularity 
lies in the fact that it explicitly uses a second-order orientation tensor A, 
whose principal axes coincide with the material symmetry axes, unlike the 
above cited works that implicitly formulate the thermodynamic potential in 
the orthotropy axes. The way chosen here to model the primary anisotropy 
of the material is to use "fabric tensors", which quantify directional data (see 
e.g. Kanatani [93), for an exhaustive study on these tensors). Let w0 be the 
free energy of the undamaged material. Linear elasticity is assumed for this 
class of materials so that w 0 is a quadratic function of the strain tensor e . 
Classically, w 0 takes the following form in the case of initial isotropy: 

(6.1) 

where ..\ and Jl are the Lame constants . For initially isotropic materials, the 
expression of w 0 (see Eq. (6.1)) only contains the strain tensor. The case of the 
transverse isotropy (and, more generally, anisotropy) requires a directional 
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(fabric) tensor A. The problem is then equivalent to finding w0 such that: 

{ 

w 0 (Q.c.QT, Q.A.QT) = w0 (c, A), 

w0 (Q.c.QT, A)= w0 (c, A), 

VQ E tJ, 

VQ E 5, 
(6.2) 

where tJ is the full proper orthogonal group, i.e. {j = {Q I Q.QT = QT.Q 

=I} and !Y C tJ the symmetry group corresponding to transverse isotropy. 

Relations (6.2) mean that w0 is an isotropic invariant of c and A. The ten­

sor function representation theory, Boehler [90], guides one to obtain the 

expression of w0 . 

As it can be found in the literature, Spencer [94], Matzenmiller and Sack­

man [95], let us define A by: 

A = a 0 a, llall = 1, (6.3) 

where a is the transverse isotropy direction. The tensor A thus contains the 

information on anisotropy, e.g. the direction of the reinforcement in unidi­

rectional fiber-reinforced composites. 

According to Cowin [96], the expression of w0 must include quadratic 

terms in A: transverse isotropic sytnmetry could not be represented by the 

solution of (6.2) if only linear terms in A entered w0 . After some calculation, 

the following expression of w0 has been found to be sufficient to properly 

model the initial transverse isotropy: 

bl 2 + 2[tr(c.A)] + 2c1 tr(c.c) + 2c2 tr(c.c.A). 

(6.4) 

It is worth noting that a rigorous use of the representation theory of tensor 

functions would lead to include in Eq. (6.4) terms of higher degree in A. How­

ever, the purpose here is to reach a compromise between the mathematical 

formulation and the number of parameters to be identified. The five parame­

ters a 1 , a2, b1, c1 , c2 are easily identified from the coefficients of the stiffness 
tensor C 0 (considered as experimentally known). 

6.2.2. Extension to orthotropy 

The previous paragraph showed the transversely isotropic elasticity ex­

pressed with a single fabric tensor in the energy function w0 . This now allows 
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one to model the initial response of a given class of composites, for exam­
ple those that are reinforced by unidirectional fibers. Most composites (e.g. 
woven composites) exhibit orthotropic behaviour. This paragraph aims at 
extending the case of transverse isotropy to orthotropy. 

The modelling of the orthotropic behaviour is based here on the fact 
that orthotropy may be considered as equivalent to a combination of three 
transverse symmetries with respect to three orthogonal directions. Instead 

of a single fabric tensor, three directional operators Ai ( i = 1, 2, 3) enter the 
expression of w0 . The following additive decomposition for orthotropy can be 
proposed by assuming that the Ai are unit and mutually orthogonal tensors: 

3 

w0 (c:; A1, A2, A3) = L [ai tr e tr(Ai.c:) 
i=l 

The values of the nine constants ai, bi, Ci ( i = 1, 2, 3) are determined in the 
same way as for the case of the transverse isotropy, i.e. by identifying the 
stiffness tensor cornponents expressed in the orthotropy directions 1, 2, 3: 

c?l = 2al + 2bl + 2cl, 

cg2 = 2a2 + 2b2 + 2c2, 

C~3 = 2a3 + 2b3 + 2c3, 

CP2 = a1 + a2, 

cP3 = a1 + a3, 

cg3 = a2 + a3, 

Cij = 0 otherwise. (6.6) 

2Cg4 = c2 + c3, 

2C~s = c1 + c3, 

2Cg6 = c1 + c2. 

Remark 6.1. The solution proposed here ( orthotropy modelled by three 
fabric tensors) is highly advantageous and differs from others found in the 
literature. For example, Cowin (96], Biegler and Mehrabadi (97) model or­
thotropy by a single tensor A and, according to the representation theory of 
tensor functions, the most general form of the stiffness tensor involving one 
fabric tensor A is: 

c&kt = a16ij6kl + a2(Aij6kl + Akt6ij) + a3(6ijAkmAml + AimAmj6kt) 
(6.7) 

+ b1AijAkl + b2(AijAkmAml + AinAnjAkt) + ... 
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. · · + b3AimAmj AknAnl + CJ ( 6ik6jl + 6il6jk) 

+ c2(Aik6jl + Ajk6il + Ail6jk + Ajl6ik) 

+ c3(AimAmk6jl + AjmAml6ik + AimAml6jk + AjmAmk6il)· 
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(6.7) 
[cont.! 

Cowin [96], proved that the least material symmetry that can be represented 
by (6.7) is orthotropy and that the material orthotropy axes coincide with 
the principal axes of A. In these axes, A can be written as: 

(6.8) 

There are then 12 parameters to be identified: a 1, a2, a3, a 1, a2, a3, b1, b2, 

b3, c1, c2, c3. Two cases have to be considered: 

1. If A is unknown, Eq. (6.7) leads to a non linear system of 9 equations 
with 12 unknowns. The difficulty encountered to solve this system is 
a good reason to prefer the formulation (6.5). 

2. If A is known a priori, then Eq. (6.7) reduces to a regular system. 
However, the preliminary identification of A may not be simple: not 
only the principal directions of A have to be determined but also the 
eigenvalues a 1, a2, a3, i.e. the respective influence of each orthotropy 
direction. This non trivial identification stage is not necessary in the 
method proposed in this paper. 

Remark 6.2. Equation (6.5) allows one to model different levels of initial 
anisotropy: 

• orthotropy, requiring the identification of the nine parameters iii, bi, <'; 

(i = 1,2,3). 

• tetragonal symmetry ( orthotropic symmetry and equivalence between 
two orthogonal axes, for example 1 and 2), when ii1 = ii2, b1 = b2, 

c1 = c2, 
• cubic symmetry ( orthotropic symmetry and equivalence between the 

three symmetry axes), when ii1 = ii2 = ii3, b1 = b2 = b3, c1 = c2 = c3, 

• transverse isotropy (for example, with respect to axis 1), when a2 = ii3, 

b2 = b3 = 0, c2 = c3, 

• isotropy when ii1 = ii2 = ii3, b1 = b2 = b3=0, c1 = c2 = c3. The free 
energy density w0 then reduces to the classical expression with two 
parameters, ,\and 11 (Eq. (6.1)). 
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However, because of the limited number of invariants entering Eq. (6.5), 

orthotropy is the weakest material symmetry (the strongest anisotropy) that 

can be modelled by the simplified method proposed here, see also Haln1 et 

al. (98]. 

6.3. Anisotropic damage effects 

The previous section was concerned with the initial anisotropic elasticity 

(primary anisotropy). This initial anisotropy may strongly affect the rnatrix­

cracking mechanism. Consequently, the aim of this section is to propose 

a model introduced in (98], accounting for prirnary anisotropy, mesocrack 

growth and interaction between both kinds of anisotropy (initial and in­

duced by the presence of defects). The model is assumed to concern material 

degradation mechanisms not exhibiting notable irreversible stress/strain ef­

fects after loading/ unloading cycles, unlike the case of the materials at stake 

in Chapters 3-5. This is especially valid for brittle matrix composites when 

the matrix alone is damaged. As a contrary mechanism, one can mention 

for example permanent strain caused by fiber debonding and sliding at the 

fiber /matrix interface in fiber-reinforced composites. These mechanisms fol­

low the matrix cracking and intervene at an advanced stage of loading; it is 

not the subject of this section. 

6.3.1. Damage variable and thermodynamic potential 

The version of the model detailed in Chapters 3-5 assumes the initial 

isotropy of the material and postulates that any damage configuration is de­

scribed by the single variable D. For the sake of simplicity, an active damage 

is here considered and the fourth-order term corresponding to crack closure 

effects and detailed in Chapter 3 will not enter the constitutive equations. 

While the above conventional damage parameter D alone is sufficient to 

deal with active damage for initially isotropic materials, Mauge and Ka.cha­

nov (89] prove that it should be accompanied with further insight into crack­

ing when considering anisotropic materials. The enhanced proper crack den­

sity parameter that adjusts "relative weight" of a given crack system 'k' 

according to its orientation with respect to the matrix is, for each crack, 
a four-order tensor proportional to n(k) ® B(k) ® n(k) (see (89]) where n(k) 

is the normal to the k-th crack and B(k) the crack opening displacement 
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second-order tensor related to a system 'k', namely the tensor which links 

the average displacement discontinuity vector to the traction vector. The 

tensor B reflects the fact that, e.g. cracks normal to the stiffer direction of 

the matrix produce a stronger impact on the effective stiffness than the ones 

normal to the softer direction. It depends on the crack orientation with re­

spect to the anisotropy axes of the matrix. Its expression is difficult to find in 

the closed form in the most general case. An alternative approach advanced 

here circumvents this difficulty by keeping a macroscopic while physically 

motivated formulation: no reference is made to the exact micromechanical 

form of n ® B ® n (which is anyway hardly known) while a macroscopic 

fourth-order tensor involving both D (characterizing orientation and extend 

of the crack array) and A (i.e. the orthotropy direction, see previous section) 

enters explicitly the equations of the model. The form of this term is chosen 

by extension of the basic version of the model dealing with initially isotropic 

materials (Chapter 3). Indeed, the stiffness tensor C related to this version is: 

C = C 0 + ex (I ® D + D ® I) + 2;3 (I® D + D ® I) , ( 6. 9) 

where C 0 is the initial elastic stiffness tensor, ex and jJ two material param­

eters and the tensor products ® and ® defined by: 

(a® b)ijkl = aijbkt, ( 6.10a) 

- 1 
( a®b )ijkl = 2 ( aikbjt + ailbjk) . (6.10b) 

The anisotropic enhanced version accounting for the relative weight of equiv­

alent crack (through D) systems with respect to primary anisotropy axes is 

obtained by replacing the identity ("isotropic") tensor I by the orientation 

("anisotropic") tensors Ai: 

3 

C = C 0 + Lni(Ai ® D + D ® Ai) 
i=l (6.11) 

Now, the initial Ai-embodied anisotropy co-exists with the damage-induced 

one: the fourth-order tensors involving Ai and D combine initial orthotropy 

and (evolving) damage effects. The expression of ~C, like that of B, con­

tains information on damage and primary anisotropy. The group of elastic 

symmetry of the properties is an intersection of the group of symmetry of C 0 
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(orthotropy of the matrix without cracks) and the one characterizing D.C. If 
the principal axes of D coincide with the orthotropy axes of C 0 , the material 
remains orthotropic. If they do not effective properties have no elements of 
symmetry. Six parameters (ai, f3i, i = 1, 2, 3) have to be identified compared 
to two in the basic version. Expression ( 6.11) of C leads to the following 
thermodynamic potential (free energy per unit volume): 

3 

w(e,D;Ai) = L [aitretr(Ai.e) + bi [tr(Ai.e)]2 + l;tr(Ai.e.e)] 
i=l 
3 

(6.12) 

+ L [ai tr(e.Ai) tr(e.D) + 2{3i tr(e.Ai.e.D)]. 
i=l 

The second term represents the variation of free energy due to damage and 
the effects of interaction of primary anisotropy with the damage induced one 
leading eventually to further loss of material symmetry. Unlike the expression 

of the energy for the basic version of the reference model, see Chapter 3, the 
term g tr(e.D) giving rise to residual macroscopic stress for g = 0 (and dually 
e =/= 0, for u = 0) is not considered in Eq. (6.12). 

The corresponding elastic stress u and thermodynamic force related to 
damage FD are determined by partial derivation of w: 

3 
(6.13) 

+ L { ai[tr(e.D)Ai + tr(e.Ai)D] 
i=l 

+ 2{3i(Ai.e.D + D.e.Ai) }, 

(6.14) 

6.3.2. Damage evolution law 

The threshold f = 0 delimiting the elastic domain is expressed in the 
proper space of components of FD, the thermodynamic force related to D 
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(damage driving force). The evolution of D is assumed to follow the normal­
ity rule, corresponding to the principle of maximum dissipation and exhibit­
ing splitting-like damage mechanism commonly observed in brittle solids. 
The previously discussed (see Chapter 3) hypothesis regarding the pseudo­
standard modelling is here again put forward: the thermodynamic force splits 
into two parts and the damage criterion f (FD; D) = 0 as well as the corre­
sponding potential are assumed to depend on the part FD+ of FD involving 
the positive strain g+: 

3 

F 0 + = L [ -a.i tr (e.Ai) e:+- 2/3ie:+ .Ai.e+J, 
i=l (6 .15) 

FD- = FD- FD+ 
' 

The threshold f = 0 is thus chosen as follows: 

f(FD- FD-, D)= J~ tr[(FD- FD-).(FD- FD-)] 

+ Btr[(FD- FD-).D]- (Co+ C1 trD) = 0, (6.16) 

where Co, C1 and B keep the same signification as in Chapter 3. The rate­
independent damage evolution law obeying pseudo-standard rule is written 
as follows: 

0, if f < 0 or f = 0, j < 0, 

A aj =A [ FD+ +BD] AD~O, (6.17) 
D ()FD D )2 tr(FD+ .FD+) ' 

if f = 0 and j = 0. 

The importance of the positive strain appears in the first term involving FD+. 
The second term (BD), called drag-term, represents the influence of the 
current value of damage on its instantaneous evolution. 

6.3.3. Example 

The predictive capacity of the foregoing approach is tested by simulating 
tension tests on a bi-directional (0°, 90°) ceramic-ceramic composite pro­
duced by the SEP. This material consists of 2D plates of a chemical vapor 
infiltration processed SiC matrix reinforced with plies of Nicalon fibers. The 
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components of the stiffness tensor are identified by an ultrasonic evaluation 

technique, Audoin and Baste [99), which makes it possible to measure the 

nine stiffness coefficients describing orthotropy. From these stiffness compo­

nents, the following set of parameters ( ai, bi, i;) , i = 1, 2, 3 is identified (see 

Table 6.1). 

TABLE 6.1. 

ih = 23.0CPa a2 = 71.0 CPa ib = 74.0CPa 
b1 = 83.5CPa b2 = 13.5 CPa b3 = 1l.OCPa 
c1 = 24.0 CPa c2 = 90.0 CPa c3 = 96.0 CPa 

Tension tests (Aubard [100]) have been carried out on these woven plates 

with different orientations () of the tension axis (tension along axis 3, in the 

plane (2,3), see Fig. 6.1) with respect to fiber axis. The parameters Co, C1, B, 
a2, a3, {h, (33 are identified on 0°- and 45°-tests. Note that no experimental 

information on the direction 1 is available. Thus , in this particular case. the 

parameters a 1 and /31 are arbitrarily chosen equal to zero. Table 6.2 collects 

the values of the different parameters. A third tension test (() = 20°) is used 

as a preliminary validation test. 

FIGURE 6.1. Schematization of the plate under tension. 

TABLE 6.2. Material constants. 

Co c1 B 0:2 {32 0:3 {33 

[MPaJ [MPaJ - [MPaJ [MPaJ [MPaJ [MPa] 

0.017 0.058 -0.7 0 -62000 0 -48000 

Figures 6.2-6.4 exhibit a fair correlation between the experimental data 

and the corresponding simulation. Note in particular the respective posi­

tion (Fig. 6.5) of each curve in agreement with the experiment: eve·n f the 
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elastic response of the composite for B = 45° is initially stiffer than the 
response in the direction parallel to fibers (B = 0°), the subsequent stress 
level is lower for B = 45° than for B = 0° or 20°. This illustrates the in­
teraction effect between (oriented) cracking and the primary orthotropy on 
resultant material degradation in accordance with the postulates formulated 
in Sec. 6.3.1. 

6.4. Conclusion 

The work presented in this chapter completes the modular strategy fol­
lowed since Chapter 3 by adding a supplementary level to the structure of 
the damage model, namely the competition between initial anisotrcpy and 
induced one. This has been done by pursuing a methodology which can be 
considered as phenomenological yet still strongly micromechanicall:r moti­
vated. The existing framework includes damage growth by oriented micro­
cracking, effects of opening/ closure (and inverse) transition for mic~ocrack 
sets and complementary dissipation effects due to frictional resistarce and 
sliding on closed crack sets. The extension proposed in the present ·~hapter 

concerns quasi-brittle solids exhibiting a marked initial anisotropy irdepen­
dently of secondary damage induced one. The initial orthotropy has been 
introduced here in a particular thrifty manner allowing for tractable identi­
fication due to a reduced number of material constants compared t) other 
existing schemes. The model allows furthermore to take into accoum major 
coupling effects between the primary anisotropy and the secondary, damage 
induced and evolving anisotropy. This has been done by introducing irvariant 
terms involving simultaneously damage tensor and material fabric tmsor i!l 
the representation of the free energy (thermodynamic potential). Tlis rep­
resentation is an alternative to the micromechanical expression pmtulated 
in Mauge and Kachanov [89) comprising the crack compliance tensor B and 
indicators of crack orientation. An illustration of the interactional efects at 
stake (primary vs. damage induced anisotropy) has been given for a brittle 

matrix fiber reinforced composite. 
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Chapter 7 

Mesocrack interaction 

via morphology-based 

micromechanical approach 

It is useful at this stage to recapitulate briefly progression of the present notes 
from the introductory damage modelling background (Chapter 2), to more 
advanced microcracking related anisotropic pseudo-standard modelling con­
sisting in modular approach incorporating gradually essential accompanying 
phenomena. The four-fold anisotropic model detailed above (Chapters 3-6) 
includes: 

1. the basic frictionless version for mesocracking damage inducing a form 
of orthotropy, dilatancy and some residual effect for initially isotropic 
solid, 

2. the enhanced version including normal unilateral effect, 

3. the coupled model involving the latter one connected with friction slid­
ing related plasticity, 

4. the combined model incorporating a primary fabric tensors-embodied 
anisotropy with a secondary damage-induced one. 

A number of micromechanical studies has been cited through the forego­
ing developments supporting some essential hypotheses and ingredients of 
the model and putting emphasis on its micromechanical motivations. Several 
simplifications persist, one of most notable being connected to linear depen­
dence of the energy w ( e, D, ... ) on the damage tensor D pertaining - as it 
is stated in Chapter 3- to the hypothesis of non-interaction of mesocracks. 
Obviously, this hypothesis is a strongly limiting one. In the context of the 
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macroscopic local model of Chapters 3-6 the rather precocious localization 

bifurcation (see comments at the end of Chapter 5) represents in fact a sort of 

inherent transformation of dilute distributed damage evolution into concen­

trated, clustering mesocracking. In this sense the localization bifurcation can 

be considered as a sort of phenomenological palliative for the advanced dam­

age process involving crack interaction marked mesocracking stage. Further 

work should be focused on robust modelling including this kind of trans­

formation of the damage kinetics and overcoming related instabilities [73). 
Consensual nonlocal damage modelling, implemented in reliable engineering 

computational schemes, is probably one of ways to accomplish this task in 

the near future. 

The problem of microcrack interaction (within an elastic matrix) was 

extensively studied by Kachanov on micromechanical ground, see for instance 

the recapitulative study [44). One can consult also Fond and Berthaud [25) 
putting stress on friction effects. 

Many paradoxical crack configurations and effects are listed in Kachanov's 

paper. The efficient "pseudo-tractions technique" proposed by this author, 

gives reasonable approximations for prescribed distributions of defects. 

The problem of the crack interaction impact on the effective moduli and, 

furthermore, the problem of essential structure of a macroscopic theory ac­

counting for this effect in an advanced formulation as steming, e.g. from 

the developments presented above (Chapters 3-6) is a non-trivial one. The 

comments by Kachanov [44), p. 386, point out essential non-uniqueness fac­

tors regarding the relationship between crack arrangements and averaging 

schemes tending to predict global energy and effective moduli. As stressed 

by Krajcinovic [2), the nonlocal character and loss of statistical uniformity 

may affect damage process by interaction marked microcracking, in connec­

tion with degree of pressure confinement and clustering phenomena. 

It is not intended here to comment furthermore micromechanical studies 

quoted above. The aim of this chapter is to introduce a non-classical microme­

chanical analysis dealing with microcracking and capturing crack interaction 

phenomena. Its non-classical character stems much from kinematical and 

morphological assumptions regarding the microstructure and constituting the 

very basis of the methodology itself. Indeed, many authors search nowadays 

morphologically enhanced representations which in term should bridge the 

gap between 'disordered' and 'periodic' representations in micromechanics. 

A systematic approach involving 'morphologically representative patterns' 
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has been recently advanced by Bornert et al. [101]. Herein, the present au­
thors team's work [28, 102] based on the homogenization scheme proposed 

by Christoffersen in 1983 [103] is outlined and commented in relation to the 
macroscopic model of Chapters 3-6. This contribution, focusing on elastic 
particulate composites, attempts to extend further the Christoffersen's tech­
nique by accounting for microcracking damage at the interfaces grain/matrix. 
Another extension involving viscoelastic matrix and related two-stage 'direct' 
homogenization is presented by Nadot-Martin et al. in [104]. 

7.1. Microstructure schematization and local problem ap­
proach 

Figure 7.1 shows a close-up schematic for grains separated by matrix 
layers according to the scheme proposed by Christoffersen [103] for a broad 
class of "bonded granulates". The grains are considered as polyhedral; any 
two of them are interconnected by a material layer of a given uniform thick­
ness. The grain-layer interfaces are characterized by their orientation and 
their area (respectively n° and A0 for the a-th layer). Some granulometry 
is accounted for through the vectors linking grain centroids ( d0 for the n­
th layer). Moreover, no restriction being imposed concerning grain sizes, the 
representation allows granulometric variations. 

FIGURE 7.1. Two neighbouring grains with an interconnecting material layer 
according to Christoffersen (103J . 

The local problem approach is based on the definition of a simplifying 
kinematical context. The latter is defined by four assumptions consisting in 
piecewise linearization of the microscopic displacement field with respect to 
the geometrical schematization of the microstructure presented above: 
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1. The kinematics of grain centroids is characterized by the macnscopic 
displacement gradient V'U = f. 

2. The grains are supposed homogeneously deformed and the corrESpond­
ing displacement gradient Y'!!0 = f 0 assumed to be common to all 
members of the statistically representative volume element (SRVE). 

3. Each interconnecting layer is subject to homogeneous defornation, 
proper to the layer a under consideration. The corresponding displace­
ment gradient is noted V'!!0 = ra for the a-th layer. 

4. Local disturbances at grain edges and corners are neglected on )asis of 
thinness of the layers. 

With the previous assumptions, the continuity of displacements on the 
grain-layer interfaces leads to the expression of the kinematics of the layer a 

as follows: 

(7.1) 

where h0 is the thickness of layer a. In view of (7.1), strain as well tS rota­
tion are controlled by f, f 0 but also by the geometrical features of tle layer 
a under consideration. One may emphasize that such a dependence on local 
geometrical parameters allows to account for microstructure effect 01 defor­
mation mechanisms of the matrix. Note that due to the fourth assunption 
neglecting interlayer zones, each layer is in fact uniquely loaded on itsbound­
aries with the grains. In this way, there is no direct interaction betweer layers; 
the transmission through grains-and-layers assembly is described vit grains 
as illustrated in Fig. 7. 2 and expressed through the presence of f 0 in ( 7.1). 

---- No transmission 
-- Transmission 

described 

FIGURE 7.2. Grain-layer interaction modelling according to Christoffersen I 03). 

In order to ensure compatibility between local motion accordin~ to the 
above description and global motion characterized by f, the followingaverage 
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relation is imposed: 

[;j = (Ui,j)V = (1- c)fi~ + l~l LJiJA"h", 
Q: 

(7.2) 

where lVI represents the volume of grains and layers excluding interlayer 
zones and c the ratio of layers volume to volume lVI. The summations in (7.2) 
are over all layers contained in the Statistically Representative Volume Ele­
ment (SRVE). Inserting (7.1) shows that compatibility is satisfied only if 

1 "'"" a a Aa ~ M L di nj = Uij, 
Q: 

(7.3) 

where 6ij is the Kronecker's symbol, (see [103) for geometrical interpretation 
of (7.3)). 

Consider now the SRVE to be loaded on its boundaries by uniform trac­
tions represented by a given macroscopic stress~. Then, the well-known Hill­
Mandel principle of macro-homogeneity specialised to the above geometrical 
and kinematical description takes here the following particular form: 

E;1[;1 = (1- c)a~1 J& + l~l LaiJ!fjA"h", 
Q: 

(7.4) 

for any arbitrary f and f 0 and any stress field statically admissible with ~. 
u 0 and uo: represent average stresses in the grains and in the a-th layer 
respectively. By inserting (7.1) and taking successively two particular values 
for f 0 , it can be shown from (7.4) that: 

{ 

E;j = (a;,1)v = (1- c)a~ + I~ I L aijA"h", 
Q: (7.5) 

E;j = l~l Ltfdj = l~l LtJdf, tj = a~1n~A", 
Q: Q: 

where to: represents the total force transmitted through the a-th layer. Note 
that, although the first relation is largely exploited in the context of 'classical' 
homogenization methods, the second one remains specific to the Christof­
fersen approach: stresses are seen from a granular viewpoint as forces trans­
mitted from grain to grain by layers acting as contacts zones, namely accord­
ing to solid line in Fig. 7.2. 

The following consists in searching f 0 in such a way that the real stress 
field, namely this associated to the strain field by local constitutive laws, 
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satisfies the system (7.5) where (7.1) is substituted for f 0
. Christoffersen 

proceeds along the determination of f 0 for isotropic and linear-elastic con­
stituents by considering uniform moduli for grains noted L 0 and different 
uniform moduli for layers noted L(e)i. Note that, in this way, u 0 and u 0 rep­
resent uniforrn fields in the grains and in the a- th layer respectively and t 0 

becomes the mean force transmitted through the grain-layer interface. f0 is 
then obtained as follows: 

f 0 = f- B- 1 :A: f, 

A = ( L(e)) v - L(e)i' 

B A L (e)i L(e)i 5 . 
ijkl = ijkl- ijkl + mjnl.LLimkn, 

5 . 
1 

"'""'d0 a d0 a A 0 /h 0 
.Lvtjkl = M L-t i nj k nz · 

Q 

(7.6) 

(7.7) 

Inserting (7.6) in (7.1) leads to the expression of f 0 as a function of f. From 
the localization relations concerning the displacement gradient , one may fi­
nally deduce the local strain field in the grains and in the layers with respect 
to the microscopic coordinates ~ in the SRVE. 

e(~) = C(~) : E, 

{ C~kt = (Id- Id: B-1 : A)ijkl 
cijkz(y) = 

- Cijkl = Idijkl - Idijuv (B- 1 
: A)vmklll~u 

(7.8) 

for ~ E grains, 

for~ E layer a. 

with Idijkl = ~ ( bik bjt + bil bjk) and llij = bij - di nj / h0
. At last, the overall 

stress is derived from (7.5)1: 

~(E)= L: E, (7.9) 

It is to be stressed that C(~) stands above, in (7.8), for the strain concen­
tration tensor. 

7. 2. Extension in presence of damage 

The purpose consists in incorporating the material discontinuities and rel­
ative displacement jumps in a compatible way with the above Christoffersen's 
kinematical assumptions. In addition to imply the displacement jump linear­
ity, these assumptions, and more precisely the second one regarding f 0 as 
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common to all grains, impose only two possible configurations for a layer a: 
either its two boundaries are cohesive, either they are both debonded. The 
second configuration is described with two mean displacement discontinuity 
vectors (Ji:l:) JO. (i = 1, 2) of opposite signs. By taking into account relative 
conditions of displacement jump, the extended formula for the displacement 
gradient f 0

, the counterpart of (7.1) for a debonded layer a (see Fig. 7.3), is 
given by: 

fij = Jg + (f~k - fi~)dknj / hn + fijD, 

( bi) 1n = - ( bi) 1n = - -
2

1 
fijD cj. 

1 2 

(7.10) 

The supplementary term roD represents the contribution of microcracks to 

the a-th layer's motion; c 0 is the vector connecting the centres of two oppo­
site facets. 

interface 
Ia 

2 

Debonded interface 
Ia 

I 

FIGURE 7.3. A layer with cracks at its boundaries. 

Equations (7.2) and (7.4) are no longer valid. The following extended 
formulae include the discontinuities (bi): 

hJ = (fiJ)v +I~ I L (bn~~nJAk, (7.11) 
k 

E,JfJi = (1- c)a?1JJi + l~l L aijf1~A"h" 
Q 

+ l~l ~ { 1~ aiJnjbf da- 1~ aiJnjbf da }· (7.12) 

In the above relations, superscript k denotes summation over all layers with 

interfaces debonded. Using some compatibility conditions the material must 
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fulfill (see [105] for details), it can be shown that Eqs. (7.5) remain valid for 
the damaged material, so that the resolution method to find f 0 is the same as 
in Sec. 7.1. Equation (7.5)2 involves the mean force transmitted through the 
interface I? of each layer. For a debonded layer, two cases must be considered. 
When the cracks are open, t 0 = 0. When the cracks are closed, and in the 
framework of this exploratory study, it is supposed that the mean force is 
integrally transmitted, i.e. that no sliding is allowed. The solution is then 
given by: 

0 - 1-1 I -
fij = lii - (B : A )ijktfzk 

t-1 (e)£ [ 1 "'"' J J JDAf ~ 1 "'"' kDAk k] + BijuvLmukl jVf Ldvnmelk - UvuM Lglk h ' (7.13) 
f k 

J?.(d) 
t) 

where superscript f refers to layers with closed cracks only. A' and B' are 
the equivalent of A and B in (7.6)-(7.7), but here degraded by the presence 
of damage: 

A~jkl = (L~;k~) - L~}~z(c5im -Dim), 

B~jkl = Aijkl- L~}~z(c5im- Dim)+ L~}~t(f4mkn- Dimkn), 

.. - 1 "'"'{3{3 {3 
DtJ- IVf LdiniA, 

{3 

- -1 "'"'{3{3{3{3 {3 {3 
Dijkl - fVI L di ni dknt A /h , 

{3 

(7.14) 

(7.15) 

where superscript (3 denotes summation over layers with open cracks. f 0 for 
a cohesive, respectively debonded layer, is then derived from (7.1), respec­
tively (7.10), in which (7.13) is substituted for f 0 . At last, the local strain 
field is obtained in the following form: 

1 (d) {gaD for y E debonded layer a, 
e (y) = C (y) : E + e (y) + -

- - - 0 elsewhere. 
(7.16) 

The degraded elastic strain concentration tensor C' (y) has the same form as 
C(~) given by (7.8) with A' and B' replacing A and B. The field g(d)(~) is 
given by: 

d {e?Jd)(D,f>, {ekD}) = Idijktfz~(d) for ~ E grains, 
eij(~) = a(d) ( - kD ) O(d) a . (7.17) 

eij D, D, { e } = Idijuvfvm IImu fm ~ E layer a. 
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At last, the overall (average) stress is obtained as follows: 

L' = (L(e))- A: B'- 1 :A', (7.18) 

:E(d) (D, f>, {ekD}) =A: tJ(d) + L(e)i : ~~~ :~::>kD Akhk. 
k 

(7.19) 

In view of the above localization relations, the strain for any point ~ in 
grains or layers depends on damage through the tensors D and D but also by 
the term g(d) involving the full set { ekD}. Note that the latter dependence di­
rectly results from the term fO(d) which, by means of (7.1) and (7.10) appears 

in the expression of f 0 and therefore in that of the strain field. This is not 
surprising when reported to Fig. 7.2 and relative comments concerning the 
transmission inside the aggregate. In particular, for a debonded layer a, one 
may distinguish two kinds of contribution of damage to the relative strain: a 
"local" one, e 0 D, related to the microcracks located at its own boundaries and 
a "nonlocal" one, eo( d), involving the effect of the whole set of microcracks 

inside the SRVE. 
It can be seen that A', B' and therefore L' are only degraded by the open 

cracks via the two damage tensors D and D. This is due to the assumption 
of no sliding on closed crack lips. These tensors are natural candidates for 
macroscopic damage variables. Being tensorial by nature, they allow to ac­
count for induced anisotropy. Moreover, the moduli may be recovered with 
crack closure (see that L' = L when {3 = 0) showing that the model is po­
tentially capable of describing unilateral effects. At last, it is interesting to 
compare the damage variables emerging from the present scale transition 
with those resulting from micromechanical approaches for elastic cracked 
solids (see for instance Kachanov [30]). In the two cases, two tensorial inter­
nal variables appear necessary to describe induced anisotropy and unilateral 
effects: a second-order one and an extension of the latter to the fourth order, 
the both dimensionless and displaying information on extent and orientation 
of defects. The difference appears in the form of these variables and is natu­
rally due to the difference between the damaged microstructures considered 
(cracks in an homogeneous elastic matrix on the one hand, cracks located at 
grain-matrix interfaces of a heterogeneous elastic material on the other hand). 
Indeed, the morphology-based modelling advanced in this chapter provides 
damage variables D and D which are not symmetric tensorial products of 
crack normal vectors n.f3 alone, but involve the vectors g_f3. In this way, such 
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damage variables take into account the granular character of composite mi­
crostructures considered. To conclude, one may note that the present scale 
transition does not make use of the hypothesis of non-interacting cracks, so 
that damage nonlocal effects may be identified at the microscopic level. They 
lead in particular to the quadratic dependence of the macroscopic stress on D 
in the detailed forms relevant to (7.18), (7.19). 

7 .3. A complementary localization-homogenization proce­
dure 

The homogenized stress (7.18) conveys a full set { gkD} in addition to 
the damage variables D and f>. Noting Lopen, respectively £closed, the set 

of layers with open, respectively closed, cracks at their boundaries, one may 
emphasize that { gkD} includes in fact two subsets { gf3D; f3 E Lopen} and 
{ gfD; f E £closed} whose respective contributions are clearly additive in the 
expression of :E(d). Indeed, remarking in (7.13) that 

fO(d)(D,f>,{ckD}) = fO(d)l(D,D,{cf3D; f3 E Lopen}) 

+ fO(d)2(D,f>, {cfD; J E £closed}), 

one may write :E(d) (D, f>, t{ gkD}) as follows: 

:E(d)I (n,f>,{ci3D; {3E£open}) 

1 + A : fO(d)2 + L(e)f : M L gf D Af hf 

f 

(7.20) 

In (7.20) , { gfD; f E £closed} acquire the status of macroscopic internal vari­

ables accounting for the distortion due to the blockage of closed cracks in­
side the SRVE and :E(d)2 appears as the corresponding macroscopic residual 
stress. Let examine now the status of { gf3D; f3 E L open}. At the microscopic 
level, gf3D represents, for a layer f3 E Lopen, the "local" contribution to its 

strain of the open cracks located at its own boundaries. It seems natural to 
think that the crack opening depends on the total strain E and therefore gf3D 
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also, so that { gf3D; {3 E Lopen} cannot a priori be considered as macroscopic 

variables independent of E. This is confirmed when noting that L' in (7.18) 
have not all the symmetries required for effective moduli suggesting that 
:E(d) 1 must depend, through { gf3D; {3 E Lopen}, on E. Another confirmation 

is given by the calculation of the average free energy ( w )v showing clearly 

that the explicitly quadratic terms in E can not give by derivation the linear 

part L' : E of the stress. A non-trivial problem consists then in quantifying 
the relationship between each gf3D (for an arbitrary layer {3 E Lopen) and the 

macroscopic strain E. This is done by assuming the linearity of this relation 

and using thermodynamic framework as a guide. Since the stress must derive 

from the free energy with respect to E, the linear relation gf3D = gf3D (E) is 

searched in such a way that :E = (a")v = a(:Jv. After some manipulations 

it follows: 

(3D - Td d(3 (3 /h(3 (B'- 1 . A' M) E (3D eij - -.L< ijmu v nm · - uvkl lk + rij 
for every layer {3 E L open, 

(7.21) 

M = (B' + t(A' + A))- 1
: ( t(A'- A): B'- 1 : A'). (7.22) 

In view of ( 7. 21), the strain induced in a layer by the open cracks at its 

interfaces is controlled by E, the macroscopic strain, D and D the damage 

variables (through A' and B') but also by the geometrical features of the 

layer {3 under consideration. The constant rf3D represents a residual strain 

induced in this layer by a residual opening of the cracks at its boundaries 

when E = 0. 

With (7.21), the homogenized stress is finally obtained as follows: 

:E = L(D, D): E + :E(d)1 (D, D, {rf3D; {3 E Lopen}) 

+ :E(d)2(D,D, {efD; f E Lclosed}), (7.23) 

where 

L(D, D) = (L(e))v + t (B'- 1 :A'- M) : (H- t(A'- A) 

-(A'- A)) : (B'- 1 :A'- M), 

H L(e)f D B 
ijkl = mjnl imkn - ijkl, 

and 

~(d)! (D, fl, { rilD; (3 E Lopen}) = (11- A : B'-1) : L(e)£ : 1~1 L rilD Ailhil' 
{3 
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with :E(d)2 given by (7.20) and :E{d)l corresponding to the residual stress 

induced by the residual opening of ( open)cracks. Note that the homogenized 
effective moduli L(D, D) have now all the symmetries available. Consid­
ering the hypothesis of no sliding on closed crack lips, a crack is, in the 
present framework, necessarily open before being closed. Moreover c.f D, for 
a debonded layer with closed cracks at its boundaries, does not evolve as 
long as the cracks remain closed. Therefore, the components of gf D may be 
calculated from those of gf3D given by (7.21 ), i.e. from those of rf3D, at crack 
closure namely precisely when the layer under consideration initially with 
open cracks becomes a layer with closed cracks. The crucial problem is to 
ensure simultaneously the homogenized energy and stress-response continu­
ity during such crack closure transition in spite of a discontinuity of effective 

moduli. It is to be noted that such continuity conditions may open a way 
to determine the constants rf3D, for the moment unknown, in function of 
damage variables D and D. This is the aim of the current researches con­
cerning the unilateral effect (i.e. opening/ closure transition modelling) in the 
framework outlined herein. 

7 .4. Discussion 

The purpose of this work was to extend the homogenization method, ini­
tially proposed by Christoffersen for elastic bonded granulates, in the pres­
ence of damage by grain-matrix debonding. This extension, realized by in­
corporating crack-like discontinuities with corresponding displacement jumps 
in a compatible way with the Christoffersen kinematical and morphological 
assumptions, leads to the natural emergence of two macroscopic damage 
tensorial variables involving granular aspects - a second-order one and a 
fourth-order one - in order to describe moduli degradation, induced aniso­
tropy and unilateral effects. Moreover, the scale transition advanced accounts 
for initial morphology and internal organization of constituents through the 
presence of the fourth-order structural tensor R in the homogenized expres­
sions. In this way, the resulting micromechanical model allows to take into 
account, in a general 3D context, coupling effects between the primary ani­
sotropy and the secondary, damage induced anisotropy. At last, the form of 
the relations obtained on micro and macroscopic levels clearly indicates some 
nonlocal damage effects. Besides these results, a complementary localization­
homogenization procedure is proposed in order to express the local strain 
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induced in a layer by the open cracks at its interfaces as a function of macro­
scopic state variables (strain and damage) and local geometrical features of 
the layer concerned. Such an approach appears as a crucial step to com­
plete the homogenized model by giving access to the effective moduli in a 
direct and thermodynamically consistent manner. Even if the model finally 
proposed is potentially capable of describing the moduli recovery by crack 
closure, a rigorous criterion of unilaterality is nevertheless required in order 
to monitor the respective parts of open and closed cracks in the total popu­
lation. In the authors' opinion, the proper treatment of unilateral effect, as 
it is done for example by Halm and Dragon [4] and in Chapter 3 in this text, 
will allow to calculate { cf D; f E £closed} accounting for the frictional lock­

ing effect of closed cracks and may also provide tools to express the residual 
strain rf3D induced in a layer by the open cracks at its interfaces as a function 

of damage variables and geometrical features of this layer. 

Note 

In the first systematic studies of the "homogenization method", see for 
instance P.M. Suquet, Approach by Homogenization of some Problems in 

Solid Mechanics (in: Plastic Behavior of Anisotropic Solids, pp. 77-117, edi­
tor: J.P. Boehler, Editions du CNRS 1985), two basic options were advanced. 
The first one (see Suquet ibid., p. 79) was called "the mean values (or aver­
aging) method" and the second one "the convergence method" (p. 80). The 
convergence approach is based on some asymptotic developments involving 
a small parameter, say e, related, by hypothesis, to the size of heterogeneity. 
The formal adequation between the heterogenous medium and the equiva­
lent (homogenized) one is found through the analysis of mechanical fields 
(stress, strain, etc) corresponding to the limit e --+ 0. This mathematically 
elegant approach allows for some evaluation of the first approach (averaging) 
as a particular approximation. Today, different averaging techniques as, e.g. 
self-consistent like ones are widely developed and applied. The term "homoge­
nization" is commonly used in this context as well as for genuine convergence 
analyses. Nevertheless, some authors, as e.g. J. J. Telega in Homogenization of 

fissured elastic solids in the presence of unilateral conditions and friction (in: 
Computational Mechanics, 6, pp.109-127, 1990) consider that "mathemati­
cally, the homogenization consists in a passage to a limit [ ... ] when e--+ 0", 
i.e. show more favour to the convergence approach as a "true" homogeniza-
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mogenization. In this Chapter we have employed the term "hornogenization" 

in a wider sense including averaging. Our approach is obviously situated in 
this latter context . 
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Chapter 8 

Adiabatic shear banding in ductile 

metals via anisotropic damage 
modelling approach 

Fracture in metals and alloys may always be considered in terms of nucle­
ation and growth of microcracks and/ or microvoids until large scale separa­
tion takes place. In the case of brittle mechanisms, it is frequently assumed 
that weak links on the micro-level , i.e. microcracks or nuclei, are present 
and under the stress high enough, the crack propagates rapidly along planes 
of cleavage. Cleavage fracture is commonly categorized as a brittle fracture 
mechanism although a more cmnplex relationship is evidenced for a num­
ber of alloys between microscopic observations taking note of cleavage and 
non negligible macroscopic ductility, see for example Woodward [106). On 
the other extremity of a range of deterioration mechanisms there is a gen­
uinely ductile fracture deterioration by the progressive growth and linking 
up of voids. The latter has been approached in these Notes in the introduc­
tory chapter (Chapter 2, Sec. 2.2) in the framework of Continuum Damage 
Mechanics (COM). A phenomenon of notable importance in dynamic defor­
mation is adiabatic shearing, which is a form of local instability spreading in 
the form of bands of intense deformation in impacted bodies. The work done 
in plastic deformation of a metal (intrinsic dissipation) is converted largely 
to heat, which - if not conducted away, as for high strain-rate plastic flow -
leads to a high rise in temperature. In metals and alloys where the rate of 
thermal softening (a corresponding drop in stress) surpasses the rate of work 
hardening (a rise in stress), deformation is seen to concentrate in narrow soft-
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ened bands of adiabatic shear. Stemming from the pioneering work of Zener 
and Hollomon (107], Recht [108], extensive investigation (metallurgical and 
mechanical, experimental and theoretical) and literature have been devoted 
to the matter, see for instance references given in Longere et al. (29, 109]. 
High strength alloys and steels are primarily concerned with adiabatic shear 
as preponderant deformation mode in high strain rates. Sometimes, under 
dynamic loading, ductile fracture deterioration by void growth is observed to 
compete with adiabatic shear leading to complex mixed failure mechanisms. 

The works by Perzyna and coworkers, see e.g. [110], attempted to in­
corporate the shear band formation into three-dimensional modelling re­
garding viscoplastic flow coupled with micro-damage process by adiabatic 
shear banding (ASB) embodied by specific internal variables. The aim of 
the present chapter is clearly situated in this perspective. Including specific 
anisotropy effects induced by the ASB-related damage, the model presented 
herein following [29] for ductile metals at large strains and high strain-rates 
conveys some methodological connections with the approach employed in 
Chapters 3-6 for quasi-brittle solids. The highly non-trivial and still arduous 
problem of combining finite-strain plasticity and anisotropy effects is being 
considered using the 1\!Iandel-Sidoroff framework, see e.g. Mandel [111], Sido­
roff and Dogui [112]. 

8.1. The ASB-related damage variable and kinematic pre­
liminaries 

We are interested in the description of the material behaviour in the 
presence of ASB considered as a damage mechanism to be put forward in the 
framework of a 3D continuous model: within this model the deterioration at 
stake is to be captured by a corresponding internal variable, its evolution 
and its effect on elastic stiffness and viscoplastic flow. The model should be 
robust enough to overcome local instabilities relative to inception and growth 
of ASB on the mesoscale level. Another feature to be accounted for by this 
model is the strongly oriented character of ASB thus inducing significant 
mechanical anisotropy with both elasticity and plasticity being potentially 
affected. 

In order to describe the state of the anisotropic degradation of the mate­
rial caused by the presence of ASB, a 2nd order tensorial damage variable is 

introduced. Its components are denoted as Dij and are expressed by (8.1 ), 
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FIGURE 8.1. Equivalent homogeneous volume element (o: = 1). 

where d0 and n° represent respectively the scalar intensity and the orienta­

tion of the band pattern a (see Fig. 8.1). 

{ 

Dij =~do: NtJ, 

N o: 0: 0: 
ij = ni nj. 

(8.1) 

The formal resemblance of (8.1) with the mesocracking related damage ten­

sor D (Chapters 3-6) is evident. 

As discussed in the foregoing, the onset and further evolution of adia­

batic shear banding are a consequence of thermal softening, respectively in 

the sound (i.e. undamaged) material during locally homogeneous plastic de­

formation, and inside bands themselves during evolving localization process. 

The intensity d0 includes consequently informations relative to temperature 

inside the band pattern ex. Consider now a single band pattern (ex= 1), and 

introduce the adjective 'singular' for the processes relevant strictly to the 

adiabatic shear banding, and the adjective 'regular' for the other processes. 

With such a distinction, the current density d of the damage variable D 
depends on the 'singular' te1nperature, and can thus be written as: 

d = d (T*, .. . ) , (8.2) 

where T* represents the 'singular' temperature, and where the dots represent 

other possible arguments. Later on, an estimation of dmax is given based on 

mechanical considerations for the case of simple shear. 

The geometric consequences of the shear band pattern (Fig. 8.1) are 

viewed as those of a 'super-dislocation' (see also P~cherski [113]). By us­

ing concepts of the crystalline plasticity, a damage induced supplementary 

velocity gradient ld is introduced as the result of the glide velocity -yo: caused 

by the band pattern a of normal n° and with orientation g0 (see Fig. 8.1): 

ld ~ . 0: 0: 0: 
ij ex~ 1 9i nj · (8.3) 

0: 
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The partition of this damage induced velocity gradient ld gives the damage 

induced strain rate dd and the damage induced spin wd as follows: 

{ 

Dd '""' . aMo: 
ij ex~ I ij' 

d '""' . aTa 
wij ex L...t I i)' 

Q 

(8.4) 

where 
Ma ( a a)S 1 ( a a o: a) ij = 9i nj = 2 9i nj + 9j ni , 

T0': = (g~n<!-)AS = ~(g~n~- g~n~) 
t} t J 2 t J J t . 

(8.5) 

The kinematic variable dd allows to smooth the boundary discontinuity 

caused by the ASB (see Fig. 8.1). Two contributions to the inelastic evolution 

of the equivalent homogeneous volume element can thus be distinguished: the 

'regular' plastic strain rate, denoted dP, and the 'singular' damage induced 

strain rate, denoted dd. The total inelastic strain rate ddp is defined as the 

sum of those two contributions: 

(8.6) 

Very large strains and rotations usually occurring during the adiabatic shear 

banding process make the finite elastic-plastic deformation framework indis­

pensable. Since pioneer Mandel's works (111], many valuable contributions 

appeared as concerns the introduction of (initial and/or induced) anisotropy 

in the context of large elastic-plastic strains. Despite this, the problem 

remains still open, see for instance Sidoroff and Dogui (112] and Ekh and 

Runesson [114]. In the present approach, a spatial vision of the motion is 

adopted in order to preserve the physical signification of the state variables, 

of their derivatives and of their conjugate forces. Clearly, the Eulerian point 

of view is suitable to deal with plasticity whose rheology is close to fluid one 

in some aspects [112]. However, the Eulerian point of view is not proper to 

identify material symmetries. 

Let Co be the initial undeformed configuration of the material, and Ct 
its deformed configuration at current time t. In order to account for finite 

elastic-inelastic (damage-plastic) strains, a pseudo intermediate configura­

tion (inter is introduced by elastic unloading with respect to the current con­

figuration Ct. The deformation gradient F from Co to Ct is conventionally 

http://rcin.org.pl



8 .1. THE ASB-RELATED DAMAGE VARIABLE AND KINEMATIC PRELIMINARIES 105 

F 

FIGURE 8.2. Intermediate configuration as pseudo material configuration . 

decomposed as the product F = FeFdp (FiJ = Fi~F~j), where Fdp denotes 
the 'damage-plastic' transformation from Co to Cinter, and Fe denotes the 
elastic transformation from Cinter to Ct. The Latin capital subscript indices 
refer to the initial configuration C0 while the Latin lower case subscripts refer 

to Ct. The Greek indices are relevant to Cuter. Correspondingly X R desig­
nates the reference rectangular, Cartesian coordinates of the particle which 
occupies Xi at timet, while its (unloaded) intermediate position is given by x0 

(R, i, a = 1, 2, 3). In the present case, anisotropy is induced by damage (in 
the form of adiabatic shear bands) during the inelastic transformation Fdp. 

It then seems natural to define anisotropy in the intermediate configura­
tion Cinter that becomes henceforth a pseudo material configuration (see also 
Lubarda [115]) . To ensure the double objectivity (in variance under change of 
frame on the current configuration Ct, and in variance under rotation of the 
intermediate configuration Cinter) of the constitutive model, derivatives in the 
motion of the matter with respect to the anisotropy axes A are required [111]. 
Interference effects of the rotation of anisotropy axes A with respect to the 
laboratory frame S have then to be neutralized. Let the current configura­
tion Ct be virtually unstressed by a pure elastic stretching (Ve)- 1 to a new 

configuration called Ct (Fig. 8.2). Q denotes the orthogonal transformation 
from Cinter to Ct ( Q describes the rotation of anisotropy axes A with respect 
to the laboratory fixed frame 5), and W = Q QT (Wij = QiaQ;) denotes 
the rotation rate relative to these two configurations. 

The deformation gradient F can be written as: 

(8.7) 
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The velocity gradient lij = ( ~) is thus expressed by: 

l .. _F .. p-1 _ vve (v;e )-1 W ·· v.e z~dp (V.e )-1 
lJ - lK K j - ik kj + lJ + im mp pj ' (8.8) 

where 

(8.9) 

and 
fdp Q zdp (Qdp)T 
ij = io: o:{3 {3j ' 

zdp _ pdp (Pdp) -1 
o:{3 - o:J 1{3 . (8.10) 

Objective derivatives constructed with the orthogonal tensor W , such 

as (8.9), will be called rotational derivatives. 

The decomposition of the velocity gradient l (8.8) into a symmetric part, 

the strain rate d, and an antisymmetric part, the spin w , yields: 

(8.11) 

In (8.11) de and we represent respectively the elastic strain rate and spin, 

ddp and wdp represent respectively the inelastic strain rate and spin. It is 

assumed that the class of materials considered here involves small elastic 

strains (Vij ~ bij + €ij). The kinematics related quantities above are finally 

expressed by: 

W e = 0, ij 
dp ~ dp (zelp) AS ( ) w .. = w .. = . . . 8 12 
l] l} lJ . 

As a consequence, the rotation rate W, needed for the rotational deriva­

tives, becomes: 

W - dp 
ij - Wij - W ij . (8.13) 

As previously written by Mandel [111], constitutive relations for 

anisotropic elastic-plastic media need not only the definition of the strain rate 

but also that of the spin. An evolution equation for wdp is indeed required to 

achieve the calculation of the rotational derivatives (see also Da.falias [1 16]). 

8.2. The constitutive model 

The state of the material may be described in the current configuration Ct 
employing the following variables, invariant under any rotation of the inter­

mediate configuration (inter: 
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• elastic left Cauchy-Green tensor: bij = Fta ( F~j) T = ~k vkej' 

• absolute 'regular' temperature: T, 

• scalar isotropic strain hardening variable: p, 

• internal damage variable: Dij = dNij = QiaDaf3QJj, with Nij = ii(nj 

and iii= QiaUa· 

The objective rotational derivative of f> is obtained by neutralizing the 

rotation Q: 

(8.14) 

Daf3 represents the darnage tensor components with respect to the interme­

diate configuration. 

The thermo-elastic response of the anisotropic medium is supposed to be 

described by a thermodynamic potential, narnely the free energy per unit 

unstressed volume pP'ljJ ( ce' T; p, D)' where pP represents the density in the 
intermediate configuration, ce = FeTFe and '1/J( ce, T; p, D) the specific free 

energy. Assuming incompressible inelastic deformation ( det Fdp = 1), initial 

and unstressed volume are equal, then p0 'ljJ (Ce, T;p, D)= pP'ljJ (Ce, T;p, D), 
where Po represents the initial density. lVIaterial frame indifference require­

ment is ensured through the invariance of the thermodynamic potential under 

any rotation of the intermediate configuration: 

po'l/J (Ce, T;p, D)= Po'l/J (QCeQT, T;p, QDQT) = Po'l/J (be, T;p, D). 
The free energy per unit initial volume is further decomposed into a 

reversible part po'l/Je (be, T; f>), namely the elastic potential, and a stored 

energy part p0 '1jJP ( T; p, f>) as follows: 

Po'l/J (be, T;p, D) = Po'l/Je (be, T; D) + po'l/JP ( T;p, D). (8.15) 

The elastic potential includes the initial isotropic linear thermo-elasticity of 

the sound material and damage induced anisotropic degradation effects. It is 

being built from the theory of isotropic scalar functions of several tensorial 

arguments (see Boehler [90]). The elastic degradation is described as being 

dependent on f>, thus comprising damage-induced orthotropy effects via two 

terms involving material constants a and b below, see also Dragon et al. [27). 
The constants a and b and the respective terms in the energy expression 
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below are thus counterparts of the constants a and f3 and the terms con­

cerned in the energy expression (3.4), Chapter 3. The change in notation 

operated here is motivated by different deterioration mechanisms underlying 

the corresponding models. It is assumed that possible interactions between 

different band clusters are not taken into account. The form (8.16) below is 
thus limited to the first order in D: 

(8.16) 

with 

e 1 e e 
eij = 21n bij = ln 1/ij, ~T=T-To, K = 3-X + 2JL 

3 ) (8.17) 

where -X and JL represent Lame's coefficients, K the bulk modulus, a the 

thermal expansion coefficient, p0 the initial density, C the heat capacity, 

a and b positive constants related to elastic energy degradation caused by 

adiabatic shear banding. 

The stored energy reflects the competition that takes place in the ma­

terial between hardening and softening. Hardening is a consequence of the 

micromechanisms of 'regular' plasticity, while softening is due to heating on 

the one hand and to current ASB related damage on the other one. Dur­

ing their evolution (formation and propagation), ASB modify the state of 

internal stresses. In this sense, one can assume that damage acts much like 

temperature to release stored energy. These considerations justify the choice 

of a multiplicative decomposition of hardening into respective heating and 

damage contributions. Note that in the expression (8.18) above, the intro­

duction in the stored energy of the 2nd invariant of the damage variable f> 
allows to produce some band interaction effects: 

po'I/JP =Roo [p + ~ exp( -kp)] exp (- -yT) exp (- ddJ;;- ~ iJ;jiJJi), 
(8.18) 

where Roo represents the saturation stress, k the plastic hardening param­

eter linked to the initial hardening modulus, 1 the thermal softening scalar 

parameter, d1 and d2 the damage (ASB) related softening constants. 

A model consistent with irreversible thermodynamic framework should 

satisfy the Clausius-Duhem dissipation inequality. The latter is written below 

http://rcin.org.pl



8.2. THE CONSTITUTIVE MODEL 109 

in the current configuration: 

Dint = aijdji - p ( ~ + sT) ~ 0, (8.19) 

where u represents the thern1o-elastic (reversible) Cauchy stress tensor, pis 

the current density, and s is the entropy. 

The invariance of~ requires objective derivatives for the tensors. To avoid 

surplus contribution to dissipated energy, rotational derivatives are used fol­

lowing Dogui and Sidoroff [ 11 7]: 

. 81/J ~ 81/J . 81/J . 81/J '57 
1/J = ~be bji +8TT + -8 p + --- Dji. (8.20) 

u 0 P 8D0 

'V 
Derivation of ee yields an equality between the rotational derivative ee and 

the elastic strain rate de: 

'V 
e de ·e W e + e W eij = ij = e'ij - ikekj eip pj · (8.21) 

The Gibbs relation and the Clausius-Duhem inequality are finally written as: 

{ 
p~ = -psT + aijdji + Rp- Kij ~i, 

Dint = aijc!Jf - Rp + Kij ~i ~ 0, 

(8.22) 

where R represents the isotropic hardening conjugate force, and K the dam-

age conjugate force. 

Conjugate forces are derived from the thermodynamic potential: 

Tij = Jaij = Poa0~ = >..ei.k8ij + 2f-Leij - aK t6.T8ij 
eij 

81/J 
r=JR=p0 -

8p 

-a ( e~mDnm8ij + ekkbij) - 2b ( eikDkj + Dikekj) , 

[ 
~ ] ( - d2 - - ) =Roo 1- exp( -kp) exp( -1T) exp -d1Dkk- 2DkzDzk , 

(8.23) 

(8.24) 

(8.25) 
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(8.26) 

where T represents the thermo-elastic Kirchhoff stress tensor, and J the 

Jacobian (determinant) of F. 
Isotropic heating and anisotropic damage contribute to reduce the stress 

level Tij ( ee, T; f>) according to (8.23). Positive constants a and b contribute 

both to reduce Young's modulus, while b is alone responsible for the de­

crease of the shear modulus (see also Sec. 8.3). Without heating and damage 

(isothermal conditions in quasi-static loading), the conjugate force r(T;p, D) 
in (8.24), relative to isotropic hardening, tends to the saturation stress 

Roo exp( -!To). This force increases during pure hardening but decreases 

with heating and damage, describing the competition between hardening and 

softening. The damage conjugate force k( ee, T; p, f>) - the energy release rate 

with respect to f> - given by (8.25) includes a first contribution from the re­

versible part of the free energy, and a second one from the stored energy. The 

corresponding terms represent respectively elastic and stored energy release 

re.tes. It is noteworthy that both contributions to the damage conjugate force 

exist before damage inception. This means that a finite supply of energy is 

necessary to activate the damage process ('constrained equilibrium' config­

uration for the damage internal variable vs. its conjugate force according to 

the terminology of Maugin (118]). 

The objective formulation of the incremental constitutive model can be 

written in a compact form as follows: 

'V 
dkl + Tij 

[ CiJkl 
0 Eijkl 

Ji l +r 
E~kl 

Q Akl 
p 

'V V' (8.27) 
- kij 

Aii Lijkl \lij Dkl 
.]kl s vkl X t -pos 

with 
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and 

82~ 82~ 
Aij = Po 8p8Dij' LiJkl = Po aiJiJ8Dkz' 

82~ 82~ 
~j = Po - , X = Po ~2 • 8Dijar u..L 

The dissipation (8.22)2 can be decomposed into a 'regular' part directly 
linked to plasticity and a 'singular' part resulting from band formation Dint = 
Dreg + Dsing, where: 

(8.28) 

The effects of 'singular' heating localized inside the band cluster are in­
cluded, by definition of the damage variable (8.1 )-(8.2), in the scalar damage 
density da (8.2), evolving with the ongoing deterioration. 'Regular' heating 
caused by plasticity outside the bands is then expressed by the common 
relation established with the adiabaticity assumption: 

(8.29) 

One may distinguish three stages during the deformation progress: before the 
onset of localization, 'regular' plasticity is the only dissipative mechanism ; 
just after the onset of localization, both mechanisms namely 'regular' plastic­
ity and 'singular' damage coexist; when localization advances, ASB damage 
process becomes progressively the prevalent dissipative mechanism. A single 
yield function that includes both plasticity and damage effects appeared to 
be suitable to favour such a chronology in the evolution of 'regular' and 'sin­
gular' variables. The following extended form of the plasticity and damage 
loading function F is postulated: 

(8.30) 

The generalized 2nd invariant 12(r, k) incorporates the damage conjugate 

force k(D, .. . ): 
3 -
2Sijpijkl(kmn)Sk[, (8.31) 

where s represents the deviatoric part of the Kirchhoff stress tensor, 
P(k) the 4th order tensor inducing anisotropy in the plastic flow: 

and 

N 
- 1 """" (-+ - )q - -Pijkl - 2 (c5ikc5jl + c5ilc5jk) + 2 ~ TJq kmnNnm MijMkl· 

q=2 

(8.32) 
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112 8. ADIABATIC SHEAR BANDING IN DUCTILE METALS ... 

The tensor P(k) includes a first term relative to conventional plasticity with­

out damage and a second one relative to damage induced effects on the plastic 

flow. In order to preserve the continuity of stress at the onset of damage, the 

damage driving force k intervenes via the expression tr(k:+:N), the latter 

representing the difference between the current value tr(kN) and the corre­

sponding one at the incipience of darnage kine = tr(kN)ine: 

(8.33) 

the bracket (.) defining the ramp function. To determine kine an auxiliary 

analysis based on a perturbation method will be conducted for a particular 

loading path and generalized further (see below). 

The function Ro in (8.30), which represents the radius of the Huber-Mises 

cylinder without hardening in the stress space, must account for heating 

and damage softening. A form similar to that of the hardening conjugate 

force (8.24) is adopted: 

(8.34) 

where Rt, represents an internal stress, 1 is a thermal softening parameter, 

d1 and d2 are damage (ASB) softening parameters. 
The inelasticity criterion F = 0 is assumed. The viscoplastic flow and 

(viscous) damage growth domain is thus F ):! 0. The existence of a viscoplas­

tic potential of Perzyna's type [119) is assumed. On the other hand, as time 

dependent shear banding (damage mechanism considered here) is an evi­

dent consequence of thermo-viscoplastic flow, the viscous darnage potential 

is chosen in a form close to that of plasticity: 

Y IF\ n+l 
¢~ = n + 1 \ Y I ' 

Z IF\m+l 
¢d = m + 1 \z I ' (8.35) 

where F represents the yield function, Y and n viscous parameters relative to 

'regular' plasticity, Z and m viscous parameters relative to 'singular' damage. 

Evolution laws are consequently derived from the normality rule: 

-fJ = a¢~ = APaF 
ar 8r' 

D~. _ 8¢d _ Ad 8F 
t) - - - - ' 

akij akij 

(8.36) 
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the viscoplasticity and viscous damage respective multipliers being ex­

pressed by: 

p = ( 8¢~ ) = ( F) n 
A 8F Y ' 

d = ( 8¢d ) = ( F )
1

n 
A 8F Z . 

The corresponding fluxes can finally be written as follows: 

df!. = ~ AP Sij 
t) 2 js' 

2 

N 

L 1}q ( k~nNnm) q SklJ\:'hl 

dd - 3AP q=2 M· . 
ij - A t)' 

J~ 

(8.37) 

(8.38) 

The evolution laws (8.38) verify the collinearity of the 'regular' plas­

tic strain rate dP with the deviatoric part s of the Kirchhoff stress ten­

sor, the collinearity of the 'singular' damage induced strain rate dd with 

the orientation tensor M, according to (8.4), and finally the collinearity of 

the damage rate D \7 with the orientation tensor N for conservative damage 

growth configuration considered here, according to (8.1). On the other hand, 

the form of the polynomial in tr(k+N), starting with the exponent q = 2 
(see (8.38)2 and (8.38)4), ensures the concomitance of the damage induced 

rates dd and D \7. The adiabatic shear banding process which generates the 

damage induced strain rate dd modifies the initial direction of the inelastic 

strain rate ddp. The damage conjugate force k is actually the preponderant 

driving force of the damage induced strain rate dd, while the damage conju­

gate force k and the resolved shear stress Tres = tr(sM) keep approximately 

the same weight in the expression governing the magnitude of the damage 

rate D \7, recalling that shearing is at the very origin of the damage process. 

In the absence of damage, the 'regular' structure of matter can be sup­

posed approximately statistically isotropic, what implies that wP = 0, see 

Mandel [120]. The rate W is in this case equal to the spin w: rotational 

derivatives are then simply Zaremba-Jaumann derivatives. The presence of 

damage generates the spin wd. Assurning that the effects of the distorsion 
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caused by the presence of ASB are concentrated in their close vicinity, 'reg­
ular' matter is supposed to be globally weakly affected. In this sense, the 
'regular' plastic spin wP can be neglected with respect to the 'singular' dam­
age induced spin wd. The rotation rate (8.13) reduces to: 

(8.39) 

The detailed expression of the damage induced strain rate dd defined 
by (8.4)1 is given by (8.38)2; it allows now to specify the form of the damage 
induced spin wd (8.4)2 as follows: 

N - - r L 'f/r(k~Nqp) Skt!Vht 
d - 3Apr=2 T ·. 

wij- js tJ· 
2 

(8.40) 

As stressed before, material behaviour, described via the incremental 
law (8.27), requires objective rotational derivatives. The above evaluation 
of the damage induced spin has been obtained from the analogy of damage 
induced viscoplastic deformation with finite plastic distorsion in crystals, 
thus completing the constitutive relations. 

The above constitutive model is now completed by a damage incipience 
criterion based on a simplified analysis of material instability using the linear 
perturbation method in order to determine kine = tr(kN)inc (8.33), which 
activates the damage-related rates dd and f> V'. 

The method is in general applied in the case of simple shear under con­
stant velocity boundm·y conditions. Assuming negligible elastic effects, lami­
nar viscoplastic flow and adiabatic conditions, the problem can be reduced to 
a one-dimensional formulation, see for instance Bai [121], Clifton et al. [122], 
Molinari [123], and Shawki and Clifton (124). Admitting analytical solutions, 
the linear perturbation method provides in this case a criterion for the onset 
of instability, which is interpreted as the incipience of the adiabatic shear 
banding process. Nevertheless, instability does not imply rigorously local­
ization [123). This means that the use of the method gives a 'lower' bound 
of the deformation localization incipience. An auxiliary simplified analysis 
performed and not detailed here is intended to help to establish damage 
incipience threshold from mechanical considerations. Instead of rigorous in­
stability search (the above-mentioned 'lower' bound for localization), the aim 
is to find a more realistic ('upper' bound) evaluation for localization incip­
ience. The hypotheses taken further favour delaying the strong localization 

onset with respect to the supposed instability onset. 
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8.3. EVALUATION AND APPLICATION OF THE MODEL 115 

In addition to the current assumptions mentioned above, a supplemen­
tary simplification is made concerning the contribution of Ro (8.34) to the 

thermal softening. By neglecting the latter ( ~ = 0), the aforementioned 
delayed estimation (an 'upper' bound for the instability onset) is reached 
without loosing the mechanical consistency. It is noteworthy that this sim­
plification yields closed-form results. On the other hand, the extension of 
the one-dimensional case to a three-dimensional formulation is obtained by 
introducing the resolved shear stress Tres = tr(sM) as the projection of the 
deviatoric tensor s on the band cluster plane and along the glide direction. 
In this case, the perturbation analysis leads to the following instability con­
dition: 

( . ar ar) 
G Tij, r,p; 8p' aT 

2 

( 

Y .l ar ) 
( 

- ) pn 8p 
3 SijMji - r- --:;;:-- + poC ( -Bf) > 0, 

(8.41) 
which relates the resolved shear stress Tres to the isotropic conjugate force r, 

1 

the strain rate-induced overstress Y p-:;;., and the ratio of the plastic harden-

ing ~ to the thermal softening Bf. In the present simplified analysis, the 

damage process is actually assumed to run as soon as G( Tij, r, p; ~, g~) = 0. 
This latter condition must be interpreted as the auxiliary indicator for the 
damage process incipience leading to the determination of the damage con­

jugate force threshold kine = tr(kN)inc (8.33). 
It is noteworthy that the criterion (8.41) has been obtained from an anal­

ysis based on the linear perturbation method (which has not been detailed 
here) rather than from an arbitrary purely phenomenological damage incip-
ience criterion. 

8.3. Evaluation and application of the model 

The three-dimensional constitutive model developed in Sec. 8.2 is tested 
on a volume element (material point) loaded in simple shear in the context of 
adiabatic dynamic process. The time integration procedure is purely explicit 
and the time increment is imposed at the beginning of the analysis. The 
simple shear loading is applied via the velocity gradient h2 (Fig. 8.3(b)) and 
the damage process (strong deformation localization) is supposed to occur 
inside the material through the development of a single shear band pattern 
of normal vector n collinear with x2 axis (Fig. 8.3(a)). 
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(a) (b) 

t 

FIGURE 8.3. (a) Volume element containing a band. (b) Nominal shear strain 
rate history. 

The nominal deformation gradient F, the nominal velocity gradient I, and 

the damage variable D are given by: 

[F] = [~ I ~] [
0 0 0] 

[D] = d 0 1 0 , 

0 0 0 

where t represents the nominal shear strain rate, and r the nominal shear 

strain (r = t't). 
In order to illustrate qualitatively the model capabilities, the well-known 

experimental data obtained by Marchand and Duffy [125] have been chosen 

as general reference. Model constants (Table 8.1) have been identified from 

their experimental data (Fig. 8.4). Consequently, the curve in Fig. 8.5 should 

not be considered as genuine model validation; it simply reproduces the ex­
perimental curve of Fig. 8.4. Following simulations have been performed for 

T0 = 20°C and t = 1600s-1 . The value of nominal shear strain at the 

damage incipience (strong deformation localization onset) is close to 39%. 

TABLE 8.1. Material constants of the constitutive model. 

Po c E Q a 
[kg/m3

] [.J/kg.KJ [MPaJ 
l/ [K-1] [MPaJ 

7800 500 200e+3 0.33 1e-6 0 
:_-

b Ri Roo 
k 

1 

[MPaJ [MPaJ [MPaJ [oc-1] d1 

15e+3 510 400 20 1.5e-3 0.05 

T12(N = 2) y z 
d2 [MPa- 2 ] [MPas1/nj n 

[MPas11m] m 

0.05 0.12 100 10 19 2 
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FIGURE 8.4 . Experimental stress-strain curve (after Marchand and Duffy, [51) . 
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FIGURE 8.5. Shear stress T 12 vs . nominal shear strain r reproduced with the 
30 model. 

Various contributions to the calculated strain component e12 are plotted 
versus the nominal shear strain r in Fig. 8.6. After the onset of damage, the 

damage-related strain contribution increases while both elastic strain and 
plastic 'regular' rate decrease: as the deformation concentrates more and 
more inside the bands, the mechanism of damage replaces progressively the 
mechanism of 'regular' plasticity. 

Various contributions to the calculated spin component w12 are plotted 
versus the nominal shear strain r in Fig. 8. 7. As mentioned above, the rota-
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FIGURE 8.6 . Strain e12 vs. nominal shear strain 1' . 
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FIGURE 8.7. Spin WI2 vs . nominal shear strain r . 

1,2 
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tion rate W represents, in the absence of damage, the spin w; the objective 

derivative is thus simply the Zaremba-Jaumann derivative. After the onset 

of damage, Fig. 8.7 shows how the increase of damage-induced spin wd leads 

to the decrease of the rotation rate W . 

Components of the thermo-elastic Kirchhoff stress tensor T (called Sij) 
are plotted versus the nominal shear strain r in Fig. 8.8. The various stress 

contributions to the generalized 2nd invariant Ji (called J2) are detailed in 

Fig. 8.9. It is noteworthy that, while the shear stress r12 decreases strongly, 

the isotropic hardening conjugate force r remains significant. This preserves 

a non vanishing strength of the material outside the bands. 

The first invariant (density d) of the damage variable D is given versus 

the nominal shear strain r in Fig. 8.10. At the end of the calculations, the 
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value of dis about 3. Interpretation of this result needs returning on the def­

inition (8.2) of the density d of the damage variable D: d = d(T*, . .. ) . In the 

case of simple shear, neglecting second order terms (resulting from complete 

time integration), the thermo-elastic shear stress (8.23) is approximately: 

T12 = 2p,ei2 - 2be!2D22 = 2 (M- bD22) e!2, (8.42) 

where 

(8.43) 

According to (8.42) and (8.43), with the notation employed in (8.27), one 
can write: 

c1212 = J-L- bd, (8.44) 

where c1212 represents the current 'global' shear modulus and 1-l its initial 
value. 

As the deformation is accommodated by ASB at some advanced stage of 

localization, the current 'global' shear modulus is close to the shear modulus 

of the band material. At high temperature, especially inside the bands, the 

shear modulus is strongly affected. In the guise of highly overestimating eval­

uation of an upper bound for d = d(T*), we can state first that temperature 

inside the band is bounded by the melting point. Consequently the shear 

modulus is bounded by its value at the melting temperature. If J-L(T111 ) ~ 0, 

the upper bound dmax can be crudely approxirnated from (8.44) by: 

d "'f.-l max"' t;· (8.45) 
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FIGURE 8.11. Damage force k vs. nominal shear strain r. 
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In the present numerical example, the value of b is chosen as 15 GPa 

(Table 8.1), which gives an upper bound for dmax close to 5. The value close 
to 3 attained for nominal shear strain of about 1.2 is well below this limit. 
If prolonged further, the curve in Fig. 8.10 would ultimately approach the 
upper bound limit. 

The components of the damage force tensor k (called k_ij) are plotted 
versus the nominal shear strain r in Fig. 8.11. The damage conjugate force 

increases with the nominal shear strain. At the onset of damage, the compo-
- - -

nent k22 diverges from k11 and k33 to increase more strongly in the damage 
process. 

Different loading conditions have been imposed in shear to test the model 

capabilities. The following effects are illustrated in Figs. 8.12 and 8.13: 

• nominal shear strain rate t effect on stress-nominal strain response, 

• initial temperature To effect on stress-nominal strain response. 

Figure 8.12 shows that instability appears earlier when the nominal shear 

strain rate is higher. This agrees with experimental evidence. Concurrently 

the influence of the nominal shear strain rate on stress increase is stronger 
after the onset of damage. 

Figure 8.13 shows that instability appears earlier when the initial tem­

perature is lower. The global experimental trend is respected but numerical 
values of nominal shear strain r at the onset of localization do not agree ex­

actly with experimental ones [125). The influence of the nominal shear strain 
rate on stress is higher before the onset of damage. 

The final objective of the present chapter is clearly the simulation of 
penetration engineering problems by means of an industrial finite element 
calculation code, namely LS-DYNA. The necessary step consists thus in the 
numerical implementation of the constitutive model in this context. As stated 
above, this context imposes constraints relative to the features of the bound­

ary value problem to treat, the finite element code to use, the calculation 

duration to respect, and obviously the accuracy (versus experimental evi­
dence) to reach. The implementation of a 'user material' should not interfere 

with a numerical environment affected by the penetration problem related­
boundary conditions, concerning for instance surface interaction, rezoning 

in the case of erosion, and others, which are already costly in calculation 
duration. For instance, the use of the constitutive model should not imply 
a decrease in the element size (which obviously means an increase in the 
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FIGURE 8.12. Shear stress vs. nominal shear strain r, To= 20°C. 
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FIGURE 8.15. Adiabatic shear (damage) kinetics in the hat specimen - numerical 
simulation; after Longere et al. [127] . 
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number of elements) in order to ensure the calculation convergence. With 

this aim in view, a crucial choice regards the numerical integration algorithm 

of the evolution equations. This choice is here strongly affected by the code 

facilities for using a great number of history variables. In the implementa­

tion accomplished, the integration algorithm is fully explicit combined with 

a sampling procedure which reduces, if necessary, the local time step set by 

the code, Kulkarni et al. [126]. 

The following simulation based on the calculations with the code 

LS-DYN A tends to represent the loading of a plate hat specimen in a tungsten 

alloy Hopkinson bars-like device (Fig. 8.14). Only half the device is meshed 

with adequate boundary conditions. The initial velocity of the striker bar 

is 15 m/ s. An initial gap exists between the lower pressure bar and the spec­

imen, thus the time to impact is 1.4 J-LS. The constitutive model has been 

implemented as 'user rnaterial'. Model constants are those of Table 8.1. Fig­

ure 8.15 shows the evolution of the adiabatic shearing (damage process) in the 

specimen at different times after impact (TAl). ASB initiate from the corners 

and meet progressively. In real tests, fracture would appear furthermore. 

According to Fig. 8.16, the model is able to describe the local stress drop 

caused by the formation and evolution of ASB in a realistic manner. 
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Remarks 

It is hoped that this text, synthesizing the 2002 AMAS course given by the 

first author, has allowed for deeper insight into several 'modelling challenges' 

and advances of the contemporary nonlinear mechanics of deteriorating ma­

terials. The present notes have atten1pted to introduce some basic concepts 

and related issues of constitutive modelling involving damage (Chapter 2) 

and to review, in an extensive manner, selected developments of the authors' 

team in the field of anisotropic damage for quasi-brittle and ductile engineer­

ing materials (Chapters 3-8). 

The deterioration process by multiple mesocrack growth, coupled with 

additional dissipC}tive mechanisms, notably frictional sliding related plastic­

ity for closed equivalent crack systems, has been of primary focus in Chapters 

3-6. The pivotal issues of the control of mesocrack closure/ opening and of re­

lated 'unilateral' phenomena have been addressed employing rigourous tools 

of multilinear elasticity. These issues are still debated in the research com­

munity, see e.g. the recent works [85, 86]. The methodology applied herein 

exploits the traditional framework of internal variable formalism for irre­

versible damage and friction phenomena. However, both, they are treated in 

a non-classical manner (pseudo-standard phenomenological modelling) and 

a strong connection to micromechanical analyses is maintained. A specific 

micro mechanical approach is outlined in Chapter 7. 

The particular deterioration mechanism regarding ductile metals, namely 

adiabatic shear banding is considered in Chapter 8. The modelling method­

ology, put forward in the finite strain elastic-viscoplastic framework, has had 

to face the difficulties inherent to the Eulerian formulation to cope with dete­

rioration related anisotropy effects combined with objectivity requirements. 

A coherent model has been formulated and promising numerical results con­

cerning an impacted structure illustrated. 
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128 REMARKS 

Computational efficiency and reasonably manageable identification of ma­
terial parameters for the constitutive models presented have been issues of 

strong concern herein. It is believed that conjunction of multiple methodolog­

ical tools for damage related constitutive modelling, as shown in the present 
notes, can provide a conceptual impetus for Continuum Damage Mechanics 
to be employed to a larger extent to treat complex problems of structural 
reliability, as postulated recently by Krajcinovic in [2). 
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