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I. Toughening mechanisms in ceramics 

1. Theory of R-curves 

In contrast to metals, ceramics are not able to dissipate energy in front of the 
crack tip by a plastic zone. In order to increase the fracture toughness mechanisms 
have to work at the crack wake. In other words, the goal is to delocalize the damage. 

Below the mathematical concept will be introduced: 

Stress intensity factor K Point of view Energy release rate G 

noR-curve: 

KA = Ko G=R 

R-curve: 

KA-KJJ.=Ko Physician GA- RJi. = Ro 

KA = KJJ. + Ko = KR(c) Engineer G A = Ro + RJJ. = R(c) 

where: 
K A - applied stress intensity factor, 
K 0 - crack tip toughness, 
KJJ. - shielding term, 
KR(c) - fracture toughness as a function of crack length, 
R(c) - crack resistance as a function of crack length, 
G A - total energy release rate, 

(1.1) 

(1.2) 

(1.3) 

with K0 and KJJ. calculated by integration in the crack plane over the length of the 
cohesive zone .X, or alternatively over the length of the bridging zone cb. 

Ro and RJJ. can be calculated by an integration of the crack closure stresses 
over the crack opening until the maximum opening of the cohesive zone u*, or 
alternatively until the maximum opening of the bridging zone Ub. 
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where: 
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Stress intensity factor K 

,\ 

Ko =If I g(c,r)p1(r)dr 
0 

Kp =If] g(c,r)P2(r)dr 

0 

PI ,2 - closure stress, 
g(c,r)- weight function. 

Energy release rate G 

u• 

Ro = 2 I PI ( u) du 
0 

Ub 

Rp. = 2 IP2 (u) du 
0 

(1.4) 

(1.5) 

The closure stress-crack opening functions p(u) give a unique description of the 
crack shielding. The R-curves as a function of grain size (R(c) and KR(c)) are in 
closer detail functions of the exact crack length and of the crack/sample geometry. 

Due to the closure stresses p the crack tip is partially shielded from the applied 
stresses. This causes the crack opening profile to be more compressed than that of 
a material without shielding. Also, the stress field in front of the crack tip doesn't 
increase as much as in materials without R-curve behaviour. 

K and G can be converted into one another starting from: 

one receives: 

in the case of 

• strong shielding: Rp. >> Ro 

• weak shielding: Rp. << Ro 

where: 
E' - Young's modulus, 

K5 = G0 E', 

K~ = GAE', 

K1, = /E' Rp., 

R E' K - P. 
P.- 2K

0 
' 

Go - energy release rate acting at the crack tip. 

(1.6) 

(1.7) 

(1.8) 

(1.9) 

(1.10) 

Depending on the rise of the R-curve and the length of the crack the influence 
on the fracture strength of the material varies. For short cracks and flat R-curves 
the tangent point will not change. For long cracks (flat Ka(c)) and steep R-curves 
the fracture strength of the material can be increased substantially (Fig. 1). 

The Griffith-equation has to be modified: 

..fo KR (ci) 
Uf = 2 ..jCi . (1.11) 
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FIGURE 1. Impact of crack length and slope of the R-curve on the fracture strength [1). 

The fracture toughness for the initial crack length has been replaced by the 
fracture toughness at the point of instability (KR(ci)). The respective crack length 
is ci. 

Since the effect is larger for long cracks there is also a positive effect on the 
variability of the fracture strength. For constant defect population and for a steep 
R-curve the scatter of the fracture strength will be decreased. 

2. Crack bridging 

2.1. General considerations 

A classification of crack bridging can be done by material classes (e.g. fibre­
reinforced materials) or by the kind of mechanism that leads to an increase in 
the strength of the material. The following distinction can be made by the second 
option {Fig. 2): 
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(a) elastic bridge, 

(b) frictional bridge, 

(c) combination of (a) and (b), also called interlocking, 

(d) ductile bridge. 

FIGURE 2. (a) elastic bridge in SiC; (b) frictional bridge in AL203; (c) interlocking in 
Ah03/SiCw; (d) ductile bridge in Al203/SiC/ Al-composite [2) . 

The mechanical description allows a generalisation for the different materials. 
Please note that a single bridge can change it's mechanical effect by increasing the 
load (Fig. 3) . 

FIGURE 3. Bridge in Al20 3 from an elastic bridge (a) to a frictional bridge (b) [2). 
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2.2. Fibre reinforced materials 

Fibre reinforcement can be subdivided into two groups: 

1. In the case of a weak boundary between fibre and matrix the fibre debonds 
partially and is able to sustain high stresses. By calculating the force equi­
librium (tensile stresses in the fibre are transferred by frictional stresses into 
the matrix) it is possible to evaluate the crack closure stresses of the fibres 
and the absorbed energy until fracture R'-' (compare Fig. 4). This leads to the 
following equations: 

[ 
E ]

2 
u

3 
Rf 

R'-' = Em(l- f) i,6r' 

where: 
E - Young's modulus, 
E1 - Young's modulus of the fibre, 
Em - Young's modulus of the matrix, 
f - volume fraction of fibres, 
u - half crack opening displacement, 
p( u) - closure stress, 
R'-' - energy absorbed until fibre fracture, 
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(2.1) 

FIGURE 4. Description of the parameters in order to calculate Rp. in fibre reinforced materials [3]. 

http://rcin.org.pl



374 J. R6DEL 

a 1 - fracture strength of the fibre, 
r - frictional shear stress, 
R - radius of the fibre. 

2. After the fibre is broken (in most cases not between the crack faces) the fibre 
has to be pulled out of the matrix which is called "pull out". In this case the 
closure stress is: 

2r 
p(u) = R(h- u), (2 .2) 

where: 

h- distance between crack plane and position of the fibre fracture. 

The typical stress-strain curve for fibre reinforced materials can be seen in Fig. 5: 
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FIGURE 5. Stress-strain curve for different two dimensional CMC materials (3). 

Perhaps the most important property of fibre reinforced materials is their high 
notch strength. In a normalised form this is shown in Fig. 6. 

Typical values of C-fibre and SiC-fibre reinforced glasses are shown in Table 1. 
In the fabrication process of glasses fibre reinforced materials are used, for example 
as rollers, position markers etc. 
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FIGURE 6. Experimental results to show the notch strength for a SiC/glass-ceramic [3). 

TABLE 1. Characteristic values for fibre reinforced glasses. 

Fibre/matrix-combination 
Property 

C-fibrejDURAN SiC-fibre/SU PERM AX 

p [g/cm3 ] 1.9-2.2 2.3-2.5 

trB [MPa) 700-1300 600-1100 

E [GPa) 150-300 120-150 

Weibull modulus m 20-30 20-30 

o [10- 6 K) 0-1 2-4 

Thermal shock resistance [K) > 500 > 500 

Maximum temperature limit 
~ 450 ~ 700 in oxidising atmosphere [0 C) 

A [W/Km) 1-15 1.5-3 

2.3. Whisker reinforcement 

Since 1984 whisker reinforced ceramics are investigated. Most common are SiC­
whisker in an Al20 3 matrix. Since it is known that whiskers can cause cancer the 
production process is under stringent safety conditions. This caused a price increase 
for whiskers which lead to a decrease in the use of this reinforcement material. The 
fabrication is done by hot pressing. 
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With a volume fraction of 5 to 20% whisker content in Al20 3 / SiCw - the 
compound has a fracture strength a B of 400-800 MPa and a fracture toughness K I c 

of 4-8 MPaJffi. The possible toughening mechanisms are shown in Figs. 7, 8 and 9. 

FIGURE 7. Whisker bridge 10 J.Lm from the crack tip [2]. 

FIGURE 8. Whisker bridges: a) 100 J.Lm, b) 110 J.Lm, c) 330 J.Lm, d) 830 J.Lm distant from the crack 
tip [2]. 
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FIGURE 9. Schematic illustration of the p(u)-function for: a) an average whisker bridge with 
a= 90°, b) the bulk material [2). 

Materials with whiskers that are orientated transversely to the crack fail because 
of the fracture of the whisker and the matrix. The so called in-situ whisker tough­
ening can be described similarly to the normal whisker toughening. In this case the 
processing is controlled so that columnar grains grow out of the matrix material. A 
well known example is Si3N4. 

At the end of the 1980s materials were toughened by plates because of the car­
cinogenity of whiskers. The toughening with platelets showed little success. The 
reason was the weak interface between matrix and platelet which caused delamina­
tion which lowered the fracture toughness. 

2.4. Particle toughening 

Particle toughening is partly used to enable microcrack toughening (Sec. 3.3) or 
transformation toughening (Sec. 3.1). However particles are not suitable to bridge 
the crack, as they provide only a small elongation. 

Another possibility for toughening is to incorporate fluctuations of residual 
stresses into the matrix in order to get complex crack patterns (Fig. 10). This leads 

FIGURE 1-0. Crack extension in an Ah03/ Al2TiOs-composite material [2). 
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to crack bridging and crack branching. This concept, however, was not realised in 
a practical application. 

A special kind of particle reinforcement was suggested by Niihara: nanotough­
ening. This term describes materials with nano particles (mostly SiC) of the size 
50-200 nm incorponned into a microcrystalline matrix (mostly Al203). Even if the 
fracture toughness of these materials is only K 1 c = 3 MPaym they show high frac­
ture strengths of up to 1.5 GPa. The responsible mechanism for the strength increase 
is not clarified yet. These materials also show a high resistance against creep and 
abrasion. 

2.5. Ductile toughening 

By incorporating metal particles into the matrix a ductile bridge can be formed. 
Examples are hard metals like WC/Co (with a1 up to 4GPa and K1c up to 
15 MPay'ffi) and Al2 0 3 / AI. The interaction between crack and microstructure will 
be examplified by the pictures presented in Fig. 11. 

FIGURE 11. Crack extension in a SiC/ Ah03/ Al-composite made by directional melt 
oxidation [2). 

In addition to the influence of the diameter of the metal ligament (Fig. 12) there 
is also an influence of the interface strength on the p( u )-function which results in 
different R-curves (Fig. 13). 

3. Process zone mechanism 

3.1. Transformation toughening 

3.1.1. The fracture toughness approach. In 1975 Garvie et al. (9] first de­
scribed transformation toughening in Zr02 . This was the beginning of deeper re­
search into the field of transformation toughening as a possibility to increase fracture 
toughness. In 1981 McMecking and Evans (10] proposed a model to describe this 
phenomena solely by the dilatational strains which are a result of the volume expan­
sion during the transformation. Other models were introduced over the years like 
the one by Chen which also includes the shear strains of the transformation [11]. 
Lately Hannink et al. (12] provided a review of the current understanding. 
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FIGURE 12. Schematic illustration of (b) p(u)-functions and (c) R-curves for metal infiltrated 
ceramics with (a) different ligament diameters assuming size independent metal deformation [4]. 
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FIGURE 13. Schematic illustration of (b) p(u)-functions and (c) R-curves for (a) weak and strong 
interfaces [4]. 
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Requirement: Phase transformation with volume increase during cooling, 
for example 

Zr02: c 2360oc t ~ m 

t ---t m - martensitic transformation at M 8 , displacive, without time delay, 
~v = 4%, 
Ms = f(d, Coot,P) - martensitic temperature. 

The tetragonal phase can be stabilised at room temperature with dopands or 
by decreasing the grain size. 

Goal: The microstructure is stable if no load is applied. The phase transformation 
takes place when a tensile stress is applied. 

K-formulation: The transformation takes place if a certain hydrostatic stress ah 

is applied: 

(3.1) 

a~ is the critical minimum stress so that the transformation takes place. 

FIGURE 14. Schematic illustration of the stress field in a dilatational transformation zone (5]. 

For the zone in front of the crack tip the increase in the fracture toughness 
due to the transformation is KJJ = 0. At an angle of(} = 60° the height h of the 
transformation zone reaches its maximum. The size and shape of the transformation 
zone is given by : 

rr(8) = 2(1 + v)2 (K/)2 cos2 (~)' 
971' (]~ 2 

(3.2) 

where: 
rr - radius of the transformation zone, 
(} - angle between the extended crack plane and the considered volume element, 
v - Poisson's ratio, 
K 1 - stress intensity factor, 
a~ - critical transformation stress. 

http://rcin.org.pl



MECHANICS OF BULK CERAMICS 381 

For the amount of toughening increase the height h of the plastic zone is impor­
tant: 

h=V\l +v fi)3(1 )2 (~~~)
2

' 
1271" 

where: 

h - height of the transformation zone. 

The integration of the compressive stresses for an infinite crack gives: 

where: 
E - Young's modulus, 
V - volume, 

T Vh 
K~-' = 0.21EVc (1 - v)' 

£T - volume strain during phase transformation. 

The shielding term is dependent on the crack length ~c: 

K"(f!J.c) = EVcT ,fhJ ( ~c, v). 

(3.3) 

(3.4) 

(3.5) 

In Fig. 15 the dependence of the toughening on the crack length is shown. This 
leads to the R-curve in Fig. 16. The maximum of toughening is reached when the 
crack length is approximately five times the height of the transformation zone. 

As an example K ~-' is calculated for a typical Y-TZP-ceramic: 

K1 = 2 MPavm, h = 10 J.Lm, v = o.25, 

c K1 3(1 + v)2 

(Jm = VJi 127r (3.6) 

=> a~ = 320 MPa, K J.',max = 5 MPaJffi. 
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FIGURE 15. Increase of toughness with increasing crack length (5]. 
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FIGURE 16. R-curve for two ceramics with a different maximum fracture toughness [5]. 

The effective height h of the transformation zone can be measured experimen-
tally by: 

• Nomarski-interference, 
• Raman-spectroscopy, 
• AFM (atomic force microscope). 

The amount of transformed material can be characterised by XRD or Raman 
measurements on the fracture surface. 

To achieve a high toughening effect the zone height h has to be big. But it has to 
be less than the dimensions of the sample. However if a~ is too small the material 
transforms prematurely without tensile stresses or without a crack. 

3.1.2. The mechanical energy release rate approach. We have 

where: 

h 

Rl-' = 2 J u(y)dy, 
0 

Rl-' - fracture energy, consumed in the process zone, 
u(y) - remaining elastically stored energy due to the transformation, 
cT - volume strain during phase transformation. 

For the transformation it follows: 

These results are consistent with the K-description. 

{3.7) 

{3.8) 

Figure 17 shows the stress-strain curve for a material with a dilatational phase 
transformation. 
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y 

FIGURE 17. Relation between hydrostatic stress and volumetric strain for a material with a 
tensile stress induced phase transformation [5]. 

The medium compressive stress a~ is: 

R -2EVc:T 
am= 9(1- v) (3.9) 

3.1.3. Effects. In materials with transformation toughening failure is limited by 
the constant inherent flaw size given by the Griffith equation. After reaching a 
maximum the fracture strength decreases with increasing fracture toughness because 
the limiting factor has changed. Now the failure is limited by the yield stress or in 
other words plasticity is limited (Fig. 18). 

FRACTURE TOUGHNESS 

FIGURE 18. Schematic illustration of the relation between fracture toughness and fracture 
strength in transformation toughened ceramics [5]. 
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3.2. Zr02-materials 

Generally three zirconia materials are distinguished: 

• PSZ - Partially Stabilised Zirconia (cubic Zr02 matrix; tetragonal Zr02 pre­
cipitates), 

• TZP -Tetragonal Zirconia Polycrystal (only tetragonal Zr02), 

• ZTA- Zirconia Toughened Alumina (Ah03 matrix; tetragonal Zr02 precip­
itates). 

PSZ 

Typical dopants are MgO and CaO. Figure 19 shows the phase diagram of Mg­
PSZ (magnesia stabilised PSZ) 

' ' 2200 ' ' Cubic Solid Solution 

' ' ' Tetragonal / 
/ - / 

0 1800 
/ 

0 I -w 
a: Cubic + 
:J Tetragonal .... 
4( 
a: 1400 w 
Q. 

1240-c ~ w -------------.... 

1000 Monoclinic Zr~ +MgO 

0 15 10 15 20 

MOLE t. MgO 

FIGURE 19. Phase diagram for Mg-PSZ [5). 

The fabrication includes the following steps: 

1. sintering in the cubic phase field, 

2. rapid cooling, 

3. tempering above the eutectic temperature in order to get tetragonal precipi­
tates. 

A typical microstructure can be seen in Fig. 20. 
The size of the lenticular precipitates determines the mechanical properties 

(Fig. 21). Small precipitates have a higher u~. Therefore less material is trans­
formed at a given applied load. The height h of the transformation zone determines 
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FIGURE 20. Microstructure of Mg-PSZ [5) . 
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FIGURE 21. Influence of the precipitate size on K1c for Ca-PSZ [5) . 
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the increase in fracture toughness. Since a low a~ means a high h, J(Ic increa..'les 
with increasing precipitate size. But there is an upper limit. If the precipitate size 
reaches a certain size (in Fig. 21 for this material "' 150 nm) the precipitates trans­
form spontaneously without an applied load and the fracture toughness decreases. 

TZP 

Typical dopants are Y 20 3 and Ce02. The zirconia rich side of the Y 203-Zr02 
phase diagram is shown in Fig. 22. 
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FIGURE 22. Phase diagram Y 203-Zr02 (5). 

FIGURE 23. Microstructure of Y-TZP (5). 
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Y-TZP contains typically 2-3.5mol-% Y20 3 and is sintered at 1400°C. A typical 
microstructure can be seen in Fig. 23. 

The mechanics can be controlled by the Yttria content (K1c increases with de­
creasing Yttria content, Fig. 25) and the grain size (K1c increases with increasing 
grain size, Fig. 26). The fracture strength does not necessarily increase with increas­
ing K1c (Fig. 24). 
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FIGURE 24. Flexural strength dependence on Y 203 content of sintered and hot isostatically 
pressed (HIP) Y-TZP materials [5). 
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FIGURE 25. Fracture toughness measured using Vicker's indentation technique for Y-TZP 
materials as a function of Y 203 content and sintering temperature [5). 
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FIGURE 26. Grain size dependence of the fracture toughness [5]. 

ZTA 

Figure 27 shows a typical SEM picture of the microstructure for a ZTA material 
with the bright t-Zr02 phase and the dark Al203 matrix. 

. , . ' ~4 ,~~ ... . ' . ' ' ., . , . ~~ 6 •. , . .. . .... .. ., . ' ~ \. .. ;. ~ . -., ...... ~ . . ... ~ · ... , .. .. ~ ... \ \ . .. ,,. 
{""' # - · • -

FIGURE 27. Microstructure of a ZTA-composite material [5]. 

ZTA is toughened by two mechanisms: 

• transformation toughening, 
• microcrack toughening. 

3.3. Microcrack toughening and materials 

Microcrack toughening is similar to transformation toughening. In the case of 
a microcrack the extra volume is created by the microcrack and this extra volume 
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E - Young's modulus, 
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0t 
KJ.I. = 0,21Ecmc -( --)' 1-v 

h - height of the plastic zone, 
v - Poisson's ratio, 
erne - strain, caused by micro crack. 

389 

(3.10) 

Since microcracking decreases the Young's modulus, the slope of the unloading 
curve of the representative volume element in front of the crack tip is lower compared 
to the loading curve (Fig. 28). 

FIGURE 28. The mean stress-volumetric strain behaviour for an element of constrained material 
subject to a supercritical microcracking [5). 

Microcracking as a toughening mechanism is only proven in a few materials like 
ZTA and SiC/TiB2 . The significance is much lower than that of transformation 
toughening. 

3.4. Ferroelastic toughening 

Ferroelastic behaviour is based on the switching of domains. This leads to an 
extra strain in the direction of the applied stress. 

Since the switching of the domains determines the toughening effect, the initial 
orientation of the domains has an influence on the amount of ferroelastic toughening. 
This can be demonstrated by measuring the R-curves of PZT poled into the three 
directions and by comparing this with an unpoled material (Fig. 30). 

The piezoelectric effect causes crack shielding at the crack tip. After unloading 
the toughening effect vanishes with time because the domains switch back into their 
original position. 
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FIGURE 29. After a linear increase most of the domains switch. After most of the domains have 
switched the stress-strain curve is linear again. After unloading there is a residual strain [6]. 
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FIGURE 30. R-curve for a PZT poled in different directions [7]. 

3.5. Materials exhibiting ferroelastic toughening 

The most important materials (BaTi03 , PZT) belong to the crystallographic 
class of perovskite (Fig. 31). PZT is commercially used as an actuator and as a 
sensor (load cell). 
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FIGURE 31. Unit cell of a perovskite: a) cubic lattice above Curie-temperature b) tetragonal 
lattice below Curie-temperature [8). 

II. Fracture of ceramics 

II.A. Fracture of Alumina as a function of grain size 

4. Introduction 

Extensive investigations of the fracture surfaces of polycrystalline ceramics, es­
pecially alumina, have shown that fracture invariably originates from some form 
of pre-existing defect [16, 17]. These pre-existing defects may arise from imperfect 
processing, such as a pore or an inclusion, may result from specimen handling, or, 
may be intrinsic in nature, such as a microcrack at grain boundaries as a result of 
thermal expansion anisotropy. Grain size also has a clear effect upon the fracture 
strength of alumina [18-21). Despite this knowledge, a clear consensual understand­
ing of the processes involved in the fracture of polycrystalline ceramics has not been 
obtained. It is the aim of this study to assist in elucidating the factors involved in 
the fracture of alumina and other polycrystalline ceramics. 

The relationship between the fracture strength and grain size of polycrystalline 
ceramics is often represented in the form of an Orowan-Petch plot, which plots 
fracture strength versus the inverse square root of the average grain size, as shown 
schematically in Fig. 32. As seen in Fig. 32 the plot is divided into two regimes: the 
Orowan regime which describes the behaviour of coarse grained materials and the 
Petch branch which describes the behaviour of fine grained materials. The Orowan 
branch shows a strong increase in fracture strength with decreasing grain size [18). 
Conversely, the Petch branch, shows that for fine grained materials fracture strength 
increases only slightly [19-21) or remains constant [22) with decreasing grain size. 
In alumina the transition from Orowan to Petch behaviour [23, 24) occurs at an 
average grain size in the region of 5-15 J..Lm . 
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Orowan Regime 

1/-ffi 

FIGURE 32. Schematic representation of the Orowan-Petch relationships between fracture 
strength, u 1, and the inverse square root of the average grain size, 1/G [13). 

A number of proposals exist in the literature to explain the effect of grain size 
upon strength in polycrystalline ceramics. One proposes that a local fracture tough­
ness variation exists in going from fracture initiation in a single crystal to fracture 
initiation in a polycrystal structure leading to a reciprocal square root law for grain 
size dependence (25). Another explains the dependence in terms of variations in the 
R-curve with grain size (24). Fracture in the Orowan regime is predicted to occur 
when a critical point is reached on the R-curve and is relatively insensitive to the 
size of the failure origin, be it extrinsic or intrinsic. As grain size decreases and 
hence R-curve behaviour, the fracture strength becomes governed by extrinsic flaws 
and displays a Petch regime behaviour (24). 

A recent work, involving extensive fracture origin analysis, was successful in 
quantitatively modelling the grain size dependence of the fracture strength in the 
Petch regime (17). The combination of either a spherical pore with a circumferential 
crack or a hemispherical surface pit with a peripheral crack could rationalize a drop 
in fracture strength from 564 MPa at 1. 7 J..Lm grain size to 320 MPa at 11 J..Lm grain 
size. Crack closure stresses of 120 MPa were shown to have a minute influence on 
strength, as well as strength variability (17). 

Crack closure stresses have been determined by various investigators for a range 
of alumina materials with results for the peak closure stress ranging from 17 to 
120 MPa. A robust method with high resolution is based on measurement of crack 
opening displacements close to the crack tip combined with the use of a weight 
function concept (26) . This concept was applied to alumina in the Petch regime with 
grain sizes ranging from 1. 7 J..Lm to 10.5 J..Lm (26). Closure stresses were found not to 
exceed 20 MPa for all grain sizes. Preceding attempts overestimated the magnitude 
of closure stresses, because monotonically decreasing laws of closure stresses as a 
function of crack opening were assumed and the maximum at crack opening u=O 
was extrapolated from long crack measurements (27, 28). Additionally, the crack tip 
toughness, or the intrinsic material toughness, was found to be independent of grain 
size (29), equal to 2.3 MPaym. Crack closure stress data for alumina of grain sizes in 
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the Orowan regime show levels of crack closure stress up to 50 MPa (30). However, 
even assuming these high closure stresses, bridging interactions have limited effect 
on the critical stress of failure from pores (17). 

The objective of the current study is to identify a stress concentrator as well as 
the ensuing crack geometry at final fracture. This knowledge allows assessment of 
the influence of grain size on crack dimensions. Finally, this leads to a prediction of 
fracture strength as a function of grain size. 

The approach is distinguished by a combination of refined microstructural con­
trol, extensive fractographic analysis and detailed fracture mechanics computation. 
Microstructures with equiaxed grain sizes in the range of 0.8 to 9.2 J..Lm size were 
produced with embedded spherical pores of 85 J..Lm diameter. Defect origins were 
then defined by fractography and two possible crack configurations (semicircular 
crack and circumferential crack) were considered. Surface correction terms in con­
junction with the stress concentrating effect of the pore were utilized to describe 
the evolving crack instability upon loading. An inclusion of the peak closure stress 
in the crack resistance term proved that use of a single valued crack tip toughness 
is sufficient to describe crack equilibrium. 

5. Model 

5.1. Description of the model 

5.1.1. Geometrical description. Based on fractographic evidence [17, 31), a 
model for brittle fracture has to include the interaction of two different defect popu­
lations. Intrinsic defects on a microstructural level such as grain boundaries have to 
be considered as nucleation sites for microcracks, whereas processing defects such 
as pores or inclusions, act as stress concentrators. In this work, one specific type 
of stress concentrator, namely a spherical pore intersecting the sample surface, is 
combined with various crack geometries. Residual stresses are assumed as a driv­
ing force for microcrack formation, although their influence on crack instability is 
neglected. This is acceptable as an approximation, because residual stresses on a 
microstructural level change their sign randomly, thus alternating between tension 
and compression. Microstructural influence in principle is exerted in form of a crack 
tip toughness and by closure stresses due to crack bridging. In the case of alumina, 
crack tip toughness was found to be independent of grain size, at least as far as the 
grain size regime between 0.8 and 11 J..Lm is concerned [29). Because lack of better 
data, we therefore utilize a grain size invariant crack tip toughness in our model. For 
many ceramics, average closure stresses are not relevant for strength predictions, 
since the applied stress intensity factor is rising much faster with increasing crack 
length than the contribution to crack resistance due to bridging effects for realistic 
assumptions of crack shape and size at criticality [17) . In general terms, as long as 
closure stresses are small compared to strength, their influence can be neglected, 
as considered in this work. Grain size exerts an influence on strength, because the 
starter crack length and for the lack of stable crack growth also the crack length 
at instability for fracture from a fixed stress concentration site such as a spherical 
pore is scaling with grain size. Thus, the critical crack length, c, is correlated with 
grain size. 
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The conditions outlined above are cast into three different models as sketched 
in Fig. 33. Their common feature is a location at the edge of a spherical pore. The 
semicircular crack emanating from the pore in Fig. 33b can be considered as the 
most realistic description of cavity fracture [32), but the applicability of this model 
is limited to crack lengths which are small compared to the pore radius. Therefore, 
envelopes for the real behaviour are chosen with the circumferential crack [32-38) 
in Fig. 33a forming one extreme with the crack tip line seeing the highest effect of 
the stress concentrator, while the circular crack in Fig. 33c constitutes the opposite 
envelope with the crack tip line seeing the least stress concentration at the maximum 
distance from the pore. 

(A) 

Circumferential 
Crack 
(Conservative) 

(C) 

Circular 

(B) 

Semicircular 
Crack 
(Realistic) 

Crack 
(Non-conservative) 

FIGURE 33. Schematic 3-dimensional representation of (a) circumferential, (b) semicircular and 
(c) circular crack emanating from a spherical pore (14]. 

Assessment of stress intensity factors is divided i~to two subsections. First, the 
stress distribution of the uncracked configuration is derived by means of elastic­
ity theory. In a second step, the elastic stress distribution is integrated over the 
respective crack area utilizing the weight function approach. 

5.1.2. Stress distributions. In order to stress a balance between applicability 
and mathematical tractability we chose a spherical pore intersecting at the midplane 
the tensile surface of a specimen being subjected to biaxial flexure. The selection of 
a hemispherical pore is based on the observation that fracture originates from pores 
intersecting the surface with a degree of embedding ranging from half to almost 
complete [13). In this configuration, the stress concentration is maximized at the 
bottom of the pore. Via finite element modelling it can be demonstrated that the 
stress distribution at the bottom is virtually identical for all spherical pores which 
exhibit an intersection with the surface [13}. Since pore size is small in comparison 
to specimen dimensions, the applied far field stress can be considered as constant, 
effectively reducing biaxial flexure to biaxial tension. The maximum tensile stress in 
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a material with Poisson's ratio v = 0.25 under biaxial load around a hemispherical 
pore at a free surface as a function of distance is given by Eq. (5.1a) [13, 37a): 

(5.1a) 

Here a A denotes the applied far field stress, R- the pore radius and r - a ra­
dial distance from the pore. The stress distribution of a hemispherical pore may 
be contrasted to the stress field of a spherical pore subjected to biaxial tension 
(Eq. (5.lb)) in Fig. 34. Poisson's ratio is, again, chosen as v = 0.25. It is apparent 
that the difference between both stress concentrators is only slight and the basic 
physical principles will not be affected by the particular geometry chosen. Addition­
ally, it was recently demonstrated that the solution according to Eq. (5.1a) might 
show a certain error, i.e. the stress concentratiou factors of both configurations 
might be almost identical (37b), see formula (5.1b) below, 

{ 

~ - - - Hemispherical Surface Pore 
LL 2.0 

a g 
c: 
~ ... Spherical Volume Pore 
a 1.s 
(.) 

~ 
1.0 L___L__.l..==::t:::::=-...1....-..J 

0.0 0.4 0.8 1.2 1.6 2.0 
Normalized Radial Coordinate, r/R 

FIGURE 34. Stress concentration around an embedded spherical pore as compared to stress 
concentration at the bottom of a hemispherical pore at the specimen surface (Poisson's ratio 

"= 0.25}. 

TABLE 2. Numerical Coefficients for Eq. (5.1b}. 

Poisson's ratio 11 A B 

0.2 1 0 

0.25 1.043 4.348. 10- 2 

0.3 1.091 9.091. 10-2 

http://rcin.org.pl



396 J. RODEL 

a= a A [1 + 1.043 (1 + j"z) -s +4.348·10-2 (1 + jzf"]. (5.1b) 

Numerical coefficients for Eq. (5.1b) are given in Table 2 for other values of 
Poisson's ratio. 

5.1.3. Stress intensity factors. The stress distribution of a hemispherical pore 
is used for all three models, while the weight function, h, depends on the assumed 
crack geometry. In principle, calculation of the applied stress intensity factor, K, is 
based on Eq. (5.2) [38): 

c 

K = J h(r, c) u(r) dr. 

0 

(5.2) 

Here, the crack length is denoted by c. The semicircular and circumferential 
crack configurations, have been treated in the literature and are therefore described 
only briefly here. The circular crack model will be derived in the next section. 

The weight function for the circumferential crack (Fig. 35a), which serves as a 
conservative estimate, consists of two components. Depending on the normalized 

Semicircular 
Crack ............................... . 

Pore 
Surface 

·······••·•••· ... 

FIGURE 35. Schematic 2-dimensional representation of an intersection through the crack plane 
for: (a) circumferential, {b) semicircular and (c) circular crack model. The coordinate systems 

and nomenclature used for modelling are also shown. 
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crack length cj R, the weight function h provides a transition between circular crack 
and edge crack [36): 

h = /3 hedge crack + ( 1 - /3) h circular crack· (5.3) 

Here, hedge crack and hcircular crack denotes the weight function of an edge crack [39) 
or a circular crack [36), respectively, while {3 can be considered as an interpolation 
function: 

1 
{3 = 2. 

( 1 + 2~) 
(5.4) 

The interpolation function {3 describes the correct limits, because {3 = 1 for 
cj R -t 0 and /3 = 0 for cj R -t oo, thus representing a pure edge crack or circular 
crack. Equations (5.5) give the two relevant weight functions: 

2 
h edge crack = r,;;:-;. 

y7rC 

[1.3 _ 0.71 m 2 

+ 0.41 G)') 
Jt- (~)' 

2 (r + R) 
hci,culac c'ack = ,j1r (c + R) ,_j(c + R)2 _ (r + R)2 • 

(5.5a) 

(5.5b) 

It has to be noted that the weight function given by Eq. (5.5b) is valid only 
for axisymmetric stress distributions. Combination of Eqs. (5.1) to (5.5) yields the 
stress intensity factor for the circumferential crack. 

While the circumferential crack model is axisymmetric, this symmetry is lost 
for the other two models. Therefore, the stress distribution becomes a function of 
two variables, and the general weight function approach described by Eq. (5.3) has 
to be corrected by the introduction of a second integration variable. This step is 
performed in Eq. (5.6) which contains the weight function for circular cracks in a 
more general form than Eq. (5.5b) [39). 

211" c 

K ( ) _ 1 II a ( r', <p) · r' · J c2 - r'2 d 1 d'lj; 
cp - 1r • .j'irC . c2 + r'2 - 2r'c ·cos 1/J r 

(5.6) 

0 0 

The angle <p defines the point along the crack tip line, for which the applied stress 
intensity factor, K, is evaluated, while 1/J is a dummy variable. The semicircular and 
circular crack model are both derived via Eq. (5.6). Because the following steps 
are similar, both models are treated together. As sketched in Fig. 35b,c, the two 
configurations require the introduction of a new radial coordinate, r', since the local 
stress which is expressed in Eq. (5.1a) as a function of distance from the pore center 
has to be determined with respect to the distance from the center of the circular 
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crack. This coordinate substitution is provided in Eq. (5.7a) for the semicircular 
crack and in Eq. (5.7b) for the circular crack: 

r = r'l sin(cp + '1/J)I, (5. 7a) 

J 2 2 R + r = [ R + c + r' sin ( cp + '1/J)] + [ r' cos ( cp + '1/J)] . (5.7b) 

Combination ofEqs. (5.1a), (5.6) and (5. 7a) or (5. 7b), respectively, yields Eq. (5.8a) 
for the semicircular and Eq. (5.8b) for the circular crack model: 

+ 7.968. 10-2. [1 + r' lsin (<p + '1/J)I]-3} r' Jc2- r'2 dr' d.,P, (5.8a) 
R c2 + r'2 - 2r' c cos.,P 

K (cp) = ~ 1211'/C {1 + 1.153R5 . 
7r.;rrc { 2 2}5/2 o o [R + c + r' sin (cp + .,P)] + [r' cos (cp + '1/J)] 

+ dr' d.,P. 
7.968 · 10-2 R3 } r' Jc2- r'2 

{ 
2 2} 3/ 2 c2 + r'2 - 2r'c cos,P 

[R + c + r' sin (cp + .,P)] + [r' cos (cp + .,P)] 

(5.8b) 

For the semicircular crack model, a simple surface correction method was used in 
order to incorporate the influence of the pore surface (40). The surface correction is 
taken as the ratio of the stress intensity factor, Kc,s, for a semicircular surface crack 
under constant stress and the stress intensity factor, K c, for an internal circular 
crack under constant stress. The stress intensity factor of the semicircular crack 
located at a pore including a surface correction, K 8 , can then be calculated from 
the respective value without surface correction, K, from Eq. (5.8a): 

Ks (cp) = K (cp) Kc,s (cp). 
Kc 

(5.9) 

The local stress intensity factor, Kc,s, for the semicircular surface crack under 
constant applied stress is contained in the empirical equations of Raju and New­
man [41) as a special case of a semielliptical crack. In Eq. (5.10) an infinite specimen 
thickness was assumed: 

K,,. (cp) = uAv'C ·1.04 · J 2.:64 [1 + 0.1 (1- sincp)
2
]. (5.10) 

The stress intensity factor for an internal, circular crack in an infinite specimen 
under constant, applied stress is given by Eq. (5.11): 

2 
Kc = ..(i a A .fC. (5.11) 
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Since the circular crack model is considered as a non-conservative estimate, no 
surface correction is performed for Eq. (5.8b), thus providing an underestimation of 
the stress intensity factor. Additionally, the circular crack touches the pore surface 
only at a single point. 

5.1.4. Crack instability. To determine crack instability, the local stress intensity 
factor is averaged over a virtual incremental crack surface ~A [42): 

(5.12) 

This step has been introduced, since the stress intensity factor varies from point 
to point along the crack tip line, while propagation of the microcrack has to take 
place at least over the adjacent grain facets. For the semicircular crack model, it 
is assumed that the crack will propagate more likely along the pore surface where 
the stress concentration is maximized. This leads to the virtual crack geometry 
in Fig. 36a. Equation (5.13a) defines the averaged stress intensity factor, K, based 
on Eqs. (5.8a) and (5.9) to (5.12): 

(5.13a) 

For the circular crack model a different virtual crack geometry has to be chosen 
which fulfills the requirements of a non-conservative estimate. On the one hand, the 
geometry in Fig. 36b neglects the fact that the crack extends into the pore interior, 
but this is not relevant, since the the crack touches the pore surface only at a single 

·······A 

~···· .... c 
........ ··' ........ . 

(A) (B) 

FIGURE 36. Virtual crack increments for: a) semicircular and b) circular crack crack. 

http://rcin.org.pl



400 J. R6DEL 

point. On the other hand, there is a strong argument for the selection of the special 
geometry in Fig. 36b: it assigns the same weight to all sections of the crack tip 
line. Thus, the stress concentration due to the pore is in fact underestimated. The 
averaged stress intensity factor, K, for the circular crack is calculated via Eqs. (5.8b) 
and (5.12): 

(5.13b) 

5.2. Results and discussion of the model 

The normalized, local stress intensity factor, K ( <p), for a semicircular crack as 
defined by Eq. (5.8a) and a circular crack according to Eq. (5.8b) in the stress field 
of a pore is plotted in Figs. 37a and 6b as a function of relative crack length, cf R. 
As expected, the stress intensity factor reaches its maximum where crack tip line 
and pore surface are touching each other, i.e. at r.p = 0 for the semicircular and 
at r.p = -1r /2 for the circular crack model. These points are relatively insensitive 
of the influence of relative crack length on the normalized stress intensity factor, 
because they are invariably surrounded by an area with high stress concentration. 
Therefore, the maximum of the local stress intensity factor is not a valuable fracture 
criterion, justifying the introduction of averaged stress intensity factors according 
to Eqs. (5.12) and (5.13). As shown in Fig. 37b, the normalized local stress intensity 
factor for angles other than <p = -1r /2 approaches the value for an internal circular 
crack in an infinite medium (2/7r = 0.64) at relative crack lengths, c/ R, between 
1 and 10. The averaged stress intensity factors as computed using Eqs. (5.13a) and 
(5.13b) are compared with the stress intensity factor of the circumferential crack 
according to Eqs. (5 .1a) and (5.2) to (5.5) in Fig. 38. Again, it can be noticed that the 

(A) 1.6 (B) 1.6 

~ ~ <p = ;1t/4 
1/) 1/) 

c: 1.2 c: 1.2 
~lo Cl)~ <P = -7t /2 
.E lJ;; £tij ' 1/) <( ' 1/) <( 

1/) b 1/) b 
Q).._, ~~ J:;~ 
(/)..: (/).,: 

jO i 0 

1~ 
No 

~·=•12 i~ 

~ 0 z z 
<P= 0 

0 .0 
0.0 0.1 0.2 0.3 0.4 

0.0 
0.5 0.1 1.0 10.0 

Normalized Crack Length, c/R Normalized Crack Length, c/R 

FIGURE 37. Normalized local stress intensity factor, K/uAfo, for: (a) semicircular and (b) 
circular crack at the surface of a hemispherical pore as a function of relative crack length, c/ R, 

for three different values of cp. 
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FIGURE 38. Normalized averaged stress intensity factor, K/uA.JiC, for circular and semicircular 
cracks as compared to the normalized stress intensity factor for circumferential cracks at the 

surface of a hemispherical pore. 

normalized, averaged stress intensity factor for the circular crack model as well as 
the normalized stress intensity factor for the circumferential crack approach the limit 
of 2/7r at large crack lengths. These models form envelopes for the more realistic 
assumption of a semicircular crack. 

It is the aim of this study to outline and interpret common trends observed 
in brittle fracture. Therefore, a normalized plot is developed which exhibits the 
characteristics of an Orowan-Petch plot, i.e. a plot of strength, a F, versus the inverse 
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FIGURE 39. Generalized representation of the Orowan-Petch relationship between normalized 
fracture strength, (uriR)/ Ko, and the inverse square root of the normalized crack length at 

instability, 1/ ..JC!R, for three defect configurations. The enclosed triangle provides visualization 
for the slope '1'. 
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square root of the average grain size, G. As a link between microstructure and 
fracture mechanics, average grain size, G, is substituted by the crack length, c. 
This is justified by the observation that the microcrack size is scaled with average 
grain size. At least as far as the Petch branch is concerned, the linear relationship 
between crack length at instability and average grain size is established (27). The 
proportionality constant itself, however, depends on crack model and probably on 
material. In order to maintain a generalized description of the Orowan-Petch plot 
we therefore relate strength to crack size and a specific model and material will 
provide a specific conversion from microcrack size to grain size. For a given defect 
configuration, the strength, aF, is evaluated by equating the applied stress intensity 
factor, KA, to crack tip toughness, K0 , and solving for a A. The influence of closure 
stresses is neglected as pointed out earlier, since closure stresses in many ceramics 
are small compared to strength. In order to treat brittle fracture in general, the 
strength, aF, is normalized by the crack tip toughness, K0. The influence of a specific 
pore size is eliminated by multiplication of x- and y-axis with the square root of pore 
radius, R. Altogether, this procedure leads to a dimensionless plot of normalized 
strength, y = (aF.fR)/ K 0, versus inverse square root of normalized defect size, 
x = 1/ J(cf R). Because this type of representation yields one universal curve for 
a given crack geometry, it is termed a generalized Orowan-Petch plot. In Fig. 39 
this generalized representation is now applied to the three defect configurations 
described in the previous section. 

In principle, the different models exhibit a division into two branches which is 
commonly observed in the Orowan-Petch plot: 

1. The Orowan branch, i.e. the region of large grain sizes, can be fitted by a 
straight line with slope 1/y, where the defect shape parameter y is defined 
in Eq. (5.14): 

(5.14) 

This line describes the typical behaviour of a Griffith flaw and reaches the 
origin for cf R -t oo. For the limiting cases of a circumferential or a circular 
crack, respectively, the shape factor y obtains the value for a circular crack 
in an infinite medium, i.e. 2/ fi, while the applicability of the semicircular 
crack model is restricted to small, relative crack lengths as explained earlier. 
At x = 0.5, that is with the grain size being four times the pore size, circum­
ferential crack and circular crack yield comparable results. For larger values of 
x, significant influences of the different stress concentration effects of the pore 
are noticeable with the circumferential crack yielding a 20% reduced strength 
at R = c(x = 1) as compared to the circular crack. 

2. In the Petch regime, i.e. the region of small grains, the slope decreases signifi­
cantly due to the rising influence of local stress concentration for small relative 
crack lengths, cf R. As expected, the assumption of circumferential cracks as a 
conservative estimate leads to the flattest curve, while the circular crack model 
as the opposite envelope exhibits the largest increase with decreasing grain 
size. For the semicircular crack configuration as the most realistic description, 
an intermediate slope is observed. This behaviour is expected, because the 
crack tip line of a circular crack escapes the stress concentrating effect of the 
pore in average more than the semicircular crack and much more than the cir-
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cumferential crack. As an approximation, the Petch branch may be described 
by a linear fit to the plotted curves in Fig. 39 with slope of 0.11, 0.31 and 0.34 
for the circumferential, semicircular and circular crack model, respectively. 
If a bilinear representation of the generalized Orowan-Petch plot is utilized, the 
transition point between Orowan and Petch regime is approximately located 
at cf R = 1. It can be concluded from Fig. 39, that it is insufficient to describe 
a strength versus grain size relationship only by means of grain size, since the 
size relation between the size of grains and stress concentrators is essential. 
Let us first consider the case of constant pore size distribution and varied, 
average grain size. If a fine powder is sintered to full density, large pores keep 
a constant size [ 13, 43-45) during further heat treatment, while grain size still 
increases. Therefore it is expected that strength will decrease along a line close 
to the semicircular crack prediction in Fig. 39. This has, in fact, been verified 
experimentally for the Petch branch [27). 

If samples are compared which were fabricated via different routes, i.e. with 
different size distributions of stress concentrators, then the size relationship between 
grain size and stress concentrator might vary from one sample to another. This 
explains why an experimental plot of strength versus the inverse square root of 
average grain size can never be described by a single line as in the case of the 
normalized Orowan-Petch plot, but is rather broadened into wide branches. 

The conclusions drawn so far have been derived under the assumption of cracks 
originating at spherical pores being intersected by the sample surface. The physics 
of the problem, however, is unchanged if other stress concentrators like arbitrarily 
shaped pores or inclusions have to be considered. Transfer of our methodology to 
materials failing from other defects requires sound fractography and computation 
of the stress concentrating effect of the governing defect population (Eq. (5.1a,b)). 
The universal trend that a specific stress concentrator will produce instability loci is 
expected for any type of stress concentrator with both branches existing depending 
on the relative size of concentrator and crack. 

5.3. Conclusions for the model 

1. The influence of grain size on strength of ceramics as commonly described by 
the Orowan-Petch plot can be rationalized by describing fracture origins as 
combinations of a stress concentrator (in our case a large spherical pore) and 
a starter crack with length being governed by grain size. 

2. In the Petch branch (grain size smaller than the stress concentrator) three dif­
ferent crack shapes were assumed and their stress intensity factors computed. 

3. The two limiting crack configurations converge to one crack shape in the 
Orowan branch, where the grain size is larger than the stress concentrator. 

4. The transition between both branches occurs at the point where the size of 
the stress concentrator equals the grain size. 

5. The Orowan-Petch behaviour is not a fundamental function of grain size but 
rather a function of the ratio of grain size to size of the failure promoting 
stress concentrator. 
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6. A normalization procedure yields a generalized Orowan-Petch plot for brittle 
fracture independent of the size of microstructural features, crack tip tough­
ness and strength. 

6. Mechanical properties 

Al2 0 3 with and without artificial pores was investigated with average grain 
size varying between G = 0.8 J.Lm and G = 9.2 J.Lm without significant change of 
morphology. Shrinkage of artificial pores during sintering obeys the linear law [43): 

(6.1) 

with d -- the pore diameter, p - the density, and the subscript 0 denoting the 
presintered condition. Pore diameters measured by optical microscopy are in good 
agreement with predicted values (final pore size between 85 and 88 J.Lm). 

Fracture strength was obtained for four different grain sizes with and with­
out large artificial pores with results seen in Fig. 40. The significant difference in 
strength for samples with and without artificial pores in combination with fracto­
graphic evidence verifies that fracture originates from the artificial pores. Therefore, 
in samples containing them, the artificial pore approach can be a powerful tool for 
relating fractographic and fracture mechanics studies. 
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FIGURE 40. Strength as a function of grain size for material containing artificial spherical and 
natural defects. 

Fracture origins for samples without artificial porosity could not clearly be iden­
tified. When artificial pores are present, strength decreases compared to samples 
without artificial flaws. The fracture surface shows at least one artificial pore at the 
tensile surface, which is split into two semispheres. Since the highest stress concen­
tration is around the equator, these observations provide a strong hint that fracture 
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originates, with very few exceptions, from a single artificial pore which either inter­
sects the tensile surface or which is at least located close to the surface as shown 
in Fig. 41. 

FIGURE 41. SEM micrograph showing partially embedded artificial spherical pore on the 
fracture surface in Ab03. 

The degree of embedding (measured from fractography) of these pores is plotted 
as a function of grain size in Fig. 42. While a very fine grained microstructure 
exhibits a narrow distribution of HI R with a mean value close to HI R = 1, a 
wide scatter of HI R can be observed for larger grain sizes. Fracture surfaces clearly 
demonstrate that fracture remains nearly completely intergranular as long as an 
equiaxed morphology can be maintained. Fractography of the sample group with 
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FIGURE 42. Degree of embedding, H f R, as a function of average grain size,G, as measured on 
fracture surfaces. 
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G = 0.8 J.Lm deserves special attention. Here, as shown in Fig. 43a, fracture tails can 
be clearly seen, as have also been observed in glass [16). Particularly, this indicates 
failure from a localized defect in contradiction to the usual assumption of failure 
from a circumferential crack [17, 33, 34). In Fig. 43b, one possible sequence of failure 
events which lead to the formation of fracture tails has been schematically shown. 
This feature could only be observed in the material with the smallest grain size, 
however, the larger roughness of the fracture surface in larger grained materials 
precluded clear identification of fracture tails. 

(a) 

(b) 

... 
··· ... 

··· ... 
································· 

Fracture Tail 

FIGURE 43. (a) Fracture tail as observed in the SEM, and (b) schematic diagram showing 
progression of crack fronts resulting in a fracture tail. 

7. Discussion 

A failure mechanism for alumina containing artificial spherical pores, which 
is applicable to analysis of the present strength data, has been proposed in an­
other work (47). Residual stresses resulting from thermal expansion mismatch exist 
throughout the body of the alumina (48). These residual stresses, combined with 
an applied stress, cause microcracks of one facet length to be initiated. As resid-
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ual stresses are caused by neighboring grains having different crystal orientations 
one facet length is of the order of one grain diameter. On applying stress, the first 
layer of grains around pores lies in the zone of highest stress concentration and is 
therefore a favorable location for this microcrack initiation. Microcracking releases 
the residual stresses. Therefore, the applied stress must be further increased until 
unstable growth of the initiated microcrack (or microcracks) occurs. 

Confirmation of this series of events has been evidenced through the analysis of 
acoustic emissions obtained during fracture of alumina, containing artificial pores, 
loaded in 4-point bending (49]. Here acoustic emission signals were heard at 40-
60% of the fracture stress during monotonic loading to fracture. These acoustic 
emissions could be ascertained to have originated within 1 mm of the fracture plane 
with acoustic emission activity much higher near the fracture plane than in other 
parts of the sample. They were therefore attributed to the formation of microcracks. 

The present study, albeit not explicitly including residual stress effects, provides 
further evidence confirming the proposed fracture mechanism. Possible R-curve ef­
fects can now be analyzed more rigorously than before. As the full solution for the 
applied stress intensity factor for a semicircular crack (Eq. (11.2)) is now available, 
it can be compared with the crack resistance afforded by a 20 MPa constant closure 
stress setting at 10 /Lm grain size with pore diameter of 100 /Lm (Fig. 44). Figure 44 
demonstrates that at equilibrium the increase in applied stress intensity factor with 
crack extension is much larger than the increase in fracture toughness, therefore 
leading to fracture without the occurence of stable crack growth. The R-curve in 
alumina has therefore no effect on fracture arising from a microcrack around a stress 
concentrator like a large pore. 
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FIGURE 44. R-Curve as compared to the applied stress intensity factor around a pore {radius R 
= 50 ~tm) with a circumferential crack (constant closure stress of p = 20 MPa). 

The present analysis has shown that fracture occurs from a microcrack at the 
surface of a spherical inclusion and not from a circumferential crack. Whereas our 
analysis was performed for the bottom of the surface pore, fracture tails in fine 
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grained alumina (Fig. 43) indicate that fracture may initiate more near the sample 
surface and are interpreted as two semicircular cracks joining at the pore surface. 
A more complete future analysis should, therefore, include the stress fields at other 
parts of the pore surface rather than just at the bottom, as considered in this work. 
Additionally, should the proposed failure mechanism be applicable and strength be 
limited by microcrack initiation, then the size of the critical microcrack at which 
fracture originates should scale with the microstructural facet length, i.e. the grain 
size. 

Equation (5.10) can be inverted and solved for the critical crack size, c, with 
the result depicted in Fig. 45. The size of the critical microcrack, normalized with 
the average grain size is plotted as a function of grain size. Stress is taken to be 
the fracture stress of the sample under 4 point bending of the samples containing 
artificial pores. Fracture toughness is taken to be the crack-tip toughness of alumina, 
2.3 MPayffi (29), and is the governing material constant. It can be seen in Fig. 44 
that for the samples with the three largest grain sizes, G ~ 3.4 J.Lm, that the critical 
microcrack size is in the region of twice the average grain size. Two points should 
now also be noted; firstly, that typical grain size distributions in MgO doped Ah03 

encompass grains on the order of twice the average grain size (50) and secondly, 
that residual stresses as a result of thermal expansion mismatch increase with grain 
size (48). Hence a large grain, feasibly twice as large as an average grain, would be 
the most likely site for a critical microcrack to initiate. This result further confirms 
the proposed fracture model. 
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FIGURE 45. Critical crack length of semicircular flaws emanating from an artificial spherical pore 
normalized with the average grain size, cfG, plotted against the average grain size, G. 

An exception is the material with an average grain size of 0.8 J.Lm. Here the 
reduced facet lengths and residual stresses should result in higher than obtained 
fracture stresses. Figure 45 shows a wide scatter in critical microcrack lengths for 
this material of 4-8 G. A further anomaly is seen in Fig. 42 where the location of the 
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critical artificial pore in relation to the tensile surface of the bend bar is plotted. For 
G ~ 3.4 J.Lm a wide range of pore locations is found ranging from partially embedded 
spherical segments to fully embedded partial spheres. In the case of the fine grain 
sized material, G = 0.8 J.Lm, virtually all pores were embedded with the side just 
touching the tensile surface, HI R = 1. We believe that this is due to the interaction 
between the pore and the machining flaws for the smallest grain size materials as 
explained below. 

It is proposed that for the larger grain sizes material is easily removed dur­
ing machining at low levels of stress with grain boundaries providing the fracture 
path. Machining of samples with small grain sizes, on the other hand, requires 
much higher stresses to induce material removal due to microcrack inhibition. Un­
der these circumstances surface damage entailing a small amount of breakout at the 
intersection of the pore and the tensile surface, for embedding ratio of HI R = 1, 
during machining is quite likely. This surface damage provides the initial microc­
racks for critical fracture, with the size of these microcracks not directly related to 
any microstructural feature like grain size. 

For the finest grain sized material, therefore, a wide scatter in the size of fracture 
initiating microcracks combined with the dominance of the completely embedded 
sphere as the fracture origin induces the proposition that the strength is limited by 
pre-existing damage. For the larger grain sizes, however, the close scaling of critical 
microcrack size with average grain size and the wide scatter in the depth of the 
critical pores favors the assumption that strength is governed by microcrack initi­
ation and subsequent instability. For these materials, with crack initiation limited 
fracture, strengthening may be obtained not only by increased short crack fracture 
toughness, but also by inhibition of microcrack initiation. 

8. Conclusions 

Existing models for fracture in brittle solids, originating from a spherical defect, 
were reviewed and extended. The applicability of the fracture mechanics analysis 
was investigated by determining the strength of alumina as a function of grain size 
with artificial, spherical pores. A complete approach was used to investigate the 
effect of grain size on the strength. This included generation of microstructure with 
controlled pores and grain size, experimental measurement of strength, fractography 
and fracture mechanics analysis of relevant failure origins. A number of conclusions 
can be drawn: 

1. Spherical cavities act as stress concentrators and promote microcrack forma­
tion in the surrounding matrix. 

2. R-curve behaviour in alumina is irrelevant for the strength, at least as far as 
the Petch-regime is concerned, only knowledge of the crack tip toughness of 
the material is required. 

3. Analysis of a semicircular and circumferential crack located adjacent to a 
spherical pore are extended to include pore surface effects. Fracture occurs 
most probably from the semicircular crack configuration. 

4. For larger grain sizes (G = 3.4-9.2J.Lm): 
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(a) the microcrack length depends on grain size. Thus, a microstructural 
parameter is introduced in a continuum mechanics background. 

(b) the critical defect is created by interaction between processing defects, 
especially pores, and intrinsic defects, i.e. microcracks: This explains the 
moderate influence of grain size on strength in the Petch'"regime. 

5. At very small grain sizes (G=0.8 J.Lm) microcrack initiation is inhibited due to 
decreasing facet lengths and residual stresses. Strength is therefore limited by 
pre-existing machining damage. 

II.B. Fracture of Alumina as a function of porosity 

9. Introduction 

The evolution of mechanical properties in ceramics and specifically alumina has 
been studied by several researchers in the case of free sintering. In particular, the 
influence of porosity on Young's modulus has been documented in detail in the 
literature [51-58]. A number of approaches have been developed to understand the 
evolution of strength as a function of porosity (59-64). A phenomenological equation 
(59, 60) has been used to fit available data with porosities higher than about 60%. 
Recently, a description based on fracture mechanics was developed to model the 
evolution of strength by including the evolution of the size of the largest defect 
as well as the evolution of the crack tip toughness with densification (63). In cases 
where the size of the largest defect varies by up to a factor of 5 (64) or the grain 
size varies by up to a factor of 10 (13, 14), a simple description based on a defect 
shape parameter is not sufficient and a defect has to be viewed as a combination of 
stress concentrator and incipient flaw. 

Pressure-assisted sintering such as hot pressing is generally accepted to improve 
the microstructural homogeneity as well as the mechanical properties of ceramics. 
Much lower sintering temperatures and/or times are usually required to obtain the 
same density compared to free sintering. Thus grain growth can be reduced which 
in turn results in a more homogeneous microstructure and improved strengths. The 
accelerated densification during hot pressing of alumina is attributed to an increased 
sintering stress due to the externally applied pressure (65). 

In assessing the possible effect, which an applied pressure can have on the evo­
lution of mechanical properties during sintering, three issues require attention: 

1. The influence of applied pressure on evolution of the largest defect by a long 
range creep mechanism. 

2. The influence of applied pressure on rearrangement in the early stage of sin­
tering. 

3. The influence of applied pressure on the evolution of the contact area between 
particles and thereby the crack tip toughness of the material. 

9.1. Influence of evolution of largest defect 

According to Kingery and Francois (66), pores with a concave surface curvature 
are thermodynamically unstable and will shrink and finally disappear if kinetically 

http://rcin.org.pl



MECHANICS OF BULK CERAMICS 411 

permitted. Pores with convex surface curvature, however, will shrink to an equi­
librium size, dependent on grain size and dihedral angle. This equilibrium size is 
modified by an applied pressure [67]. Even with large applied pressures as occurring 
during hipping and sinter forging [67-70], the shrinkage of large pores may be ki­
netically hindered. The disappearance of either large artificial pores (67, 69, 70] or 
natural pores (69] in dense microstuctures was only achieved if the material exhib­
ited sufficient plasticity (67] with a suffciently small grain size (67, 70] or contained 
a glassy phase (68]. A positive influence of hipping on the strength of alumina con­
taining artificial pores (68] as well as zirconia toughened alumina containing natural 
defects (69] has been demonstrated. In contrast, nothing is known on the evolution 
of artificial or natural large defects during pressure assisted sintering. Without ap­
plied pressure, the evolution of the size of large artificial pores during densification 
has been studied by Flinn et al. (64]. They found that the shrinkage behaviour of the 
pores could be described by a simple shrinkage law in accordance to the macroscopic 
shrinkage of the sintering body. 

9.2. Influence on rearrangement 

Agglomerates may cause differential sintering and lead to fissures in the mi­
crostructures creating potential fracture origins. Conclusive observations of differ­
ential sintering and rearrangement, however, have only been demonstrated in two 
dimensions (71]. In a study on liquid phase sintering of alumina (63], the size of 
the largest flaw appeared not to be affected by rearrangement above the density 
of about 63%. On the other hand, rearrangement under an applied pressure may 
support densification by filling large voids by a buckling mechanism in powder 
arches [72]. A quantitative evaluation of rearrangement has not been reported yet, 
and its influence on the strength determining defect- with or without pressure- is 
unknown. 

9.3. Influence on evolution of contact area 

The effect of applied pressure on the evolution of crack tip toughness due to the 
evolution of contact area and thereby Young's modulus has not been studied. An 
increase in grain boundary diffusion coefficient or an increase in sintering pressure 
at fixed surface diffusion coefficient can lead to increased contact areas and non­
equilibrium pore surfaces (73-75]. Equilibrium pore surfaces (76), however, appear 
to be maintained for a wide range of plausible ratios of surface diffusion coefficient 
and grain boundary diffusion coefficient (75, 77]. 

10. Mechanical properties of porous ceramics 

Figure 46a shows the evolution of Young's modulus with the porosity for both 
hot pressing and free sintering. Each data point marks a single specimen. Included 
is the model given by Phani and Niyogi (53): 

E(P) = E10o (1- :.r, (10.1) 

http://rcin.org.pl



412 J. R6DEL 

400 

• TM-HP 

'ii' 0 TM-FS 

0.. • M-HP 

~ 300 
* CT-HP w 
+ tti 

CT-FS 

;:, -- Eq (1)forTM-DARd 

= 200 ---- Eq (1)forCT2000SG 'C 
0 

:::E 
U) 

'en 
c 100 ;:, 
0 
> 

(a) 
0 
50 40 30 20 10 0 

Porosity, P rto] 

1.0 

• TM-HP 

0 TM-FS 
0 0.8 • M-HP w w * CT-HP 

tti + CT-FS 
;:, 0.6 
= '8 
:E ., 0.4 
Q 
c 
;:, 
0 0.2 > 

(b) 
0.0 

0.0 0.2 0.4 0.6 0.8 1.0 
Degree of Denstftcatlon, (p - Po )/(1 - p 0) 

FIGURE 46. (a) Young's modulus vs porosity including the model given by Phani and 
Niyogi (Eq. (10.1)), and (b) normalized Young's modulus vs degree of densification, for 

hot-pressed and free sintered aluminas. 

TABLE 3. Summary of the parameters Ko(P = 0), n, Y 2co and Po for the powders TM-DAR 
and CT 2000 SG. 

Powder 
Ko(P = 0) Y2 co Po 

[MPayffi] 
n 

[%J [~mJ 

TM-DAR 2.0 1.35 19 50 

CT2000SG 2.0 1.35 23 48 

where n = 1.35 and Po = 0.5 (TM-series) and n = 1.35 and Po = 0.48 (CT-series), 
and E10o = 404 GPa (see Table 3 for a complete set of parameters used). The data 
of the two different processing routes clearly follow the same dependence upon the 
porosity. In the range 0 < P < 20%, the E-P-relationship is approximately linear. 
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Above P = 20%, it deviates from linearity, and the slope decreases continuously 
with increasing porosity. In the initial stage of sintering, the samples made from 
both powders behave differently. The finer TM-DAR yields higher elastic moduli 
than the coarser CT 2000 SG. In order to eliminate density differences in the green 
body, Fig. 46b provides the normalized Young's modulus as a function of the degree 
of densification. The difference in elastic modulus in the initial stage is still visible. 
Note that there is no observable difference between the elastic moduli of the free 
sintered and hot pressed samples. 

The dependencies of fracture toughness, K1c, and crack tip toughness, K0 , on 
porosity are shown in Fig. 47. K 0 (P) was calculated in the following manner: its 
maximum value Ko,max was obtained by measuring the near-tip crack opening dis­
placement from the highest-density samples of HP and FS, and then K 0 was ex­
trapolated to higher porosities by using a proportional relationship between K 0 
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and E [54, 55, 63, 64] (Eq. (10.2)): 

Ko(P) = Ko,JOo ( 1 - :. r (10.2) 

Here K0 ,100 is the crack tip toughness extrapolated to 100% theoretical density. 
K0 measured from hot-pressed alumina was found to be equal to 1.9 MPaJffi, for 
TM-DAR (P = 1%) and 1.8MPaJffi, for CT2000SG (P = 6%). In the case of free 
sintered samples, K 0 was equal to 2.0 MPaJffi, for both TM-DAR (P = 2%) and 
CT 2000 SG (P = 4%) . The measured values for the crack tip toughness show no 
influence of starting powder or processing conditions, as the accuracy of the method 
applied for indentation cracks is not better than 0.5 MPaJffi [29]. 

The energy absorbed at the crack tip, Ro, is taken to be related to the area 
fraction in analogy to the crack tip toughness (Eq. (10.2)), yielding Eq. (10.3), with 
Ro,1oo, the fracture energy of the fully dense alumina: 

( p)n 
Ro(P) = Ro,1oo 1 - Po (10.3) 

Accordingly, the energy absorbed in the crack wake by crack bridging, R1,, de­
pends on the number of effective bridging sites and is therefore assumed to be 
proportional to the contact area, providing Eq. (10.4), with RJ-1., 100 the shielding 
term for the fully dense material: 

(10.4) 

A conversion from fracture energy to fracture toughness finally yields an equation 
for the fracture toughness of porous ceramics linked to the fracture toughness and 
the elastic modulus of the dense bodies (Eq. (10.5)): 

( 
p)2n 

Kic(P) = (Ro,1oo + RJJ.,lOo) E10o 1- Po 

= ( 1-:. r J (Ro,JOo + R",10o) E10o = ( 1- :.r Ktc,lOO· (10.5) 

Equation (10.5) appears particularly appealing as the terms describing mechan­
ical properties are separable from the terms describing porosity effects. In all stages, 
K1c is noticeably larger than K 0 . The processing route has only negligible influence 
on both K1c as well as K0 . The suggested equations (Eq. (10.2) and Eq. (10.5)) 
describe the influence of porosity on both K1c and K0 very well. 

Figure 48 depicts the average fracture strengths as a function of porosity for both 
powders. In the range P0 > P > 25%, there is no detectable difference between hot 
pressing and free sintering. In the intermediate stage and final stage of sintering, 
the hot pressed samples reveal slightly higher strengths than the free sintered sam­
ples for the coarse-grained alumina. No difference is detected for the fine-grained 
powder. The modified hot pressing runs do not show differences compared with the 
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FIGURE 48. Fracture strength vs. porosity for hot-pressed and free sintered specimens. Included 
is Eq. {11.4) {thick line for coarse powder and dashed line for fine powder). 

conventionally pressed specimens. The comparison of the two powders in the initial 
stage of sintering reveals a superiority of the fine-grained powder to the coarser 
material which is removed in the intermediate and final stages. 

The results of the fractographic [79] analysis do not provide clear differences 
between hot pressed and free sintered samples and are therefore not reproduced 
here. As for failure causing flaws, pores, crack-like structures, porous and differ­
entially sintered regions could be identified. In the highly porous samples, fracture 
marks were hardly detectable. Thus, a distinct fracture origin was not unequivocally 
visible. 

11. Discussion 

For hot pressing and free sintering, the experimental procedure chosen succeeded 
in producing samples with a wide variation in densities ranging from 55 to 99% TD. 
At the same sintering times, hot pressing yields slightly larger grain sizes as the 
densities are higher and pore drag is reduced. Significant grain growth only sets in 
at densities of 85 to 90% TD, close to the final stage sintering regime. 

Hot pressing increases the densification rate. Thus, the pressure chosen {13 MPa) 
was sufficiently high to accelerate the driving force for sintering. According to Svo­
boda et al. [76], the hydrostatic sintering stress for alumina with the dihedral angle 
of 120°, the surface energy of 1 J /m2 and the density of 70% with grain sizes of 
0.2 and 1.0 J.Lm can be computed to be 17.2 MPa and 3.5 MPa, respectively. The 
uniaxial pressure of 13 MPa therefore should have some effect on the densification 
of fine-grained powder, but a marked effect on the coarse-grained powder. 

The following paragraphs are devoted to a discussion of the correlation of mi­
crostructural parameters and mechanical properties. The experimentally measured 
elastic moduli follow the same dependence on the porosity independently of the 
processing route (Fig. 46). In the initial stage, both sintering mechanisms lead to a 
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strong increase in Young's modulus with density as has been described by Green 
et al. for pressureless sintering [57, 58] and Ostrowski et al. for liquid-phase sinter­
ing (63]. This rapid increase has been attributed to fast neck growth. In this regime, 
a difference exists in the behaviour of the two powders. For the finer TM-DAR and 
at lower densities the Young's modulus increases much faster than for the coarser 
powder. This indicates that coarsening as compared to densification is more domi­
nating in fine grained alumina as compared to coarse grained alumina in the initial 
stage. 

The semi-empirical model given by Phani and Niyogi (Eq. (10.1)) provides a good 
data fit with the parameters nand Po as given in Part III. It is clear from those data 
that Eq. (10.1) cannot describe a non-densifying strong increase in Young's modulus 
in the early stages of sintering such as it can be seen in the case of TM-DAR. 
Conversly, this equation provides an appropriate fit for the CT powder. A previous 
study [47) successfully employed the same equation but with n being equal to 1.15 
for liquid-phase sintered specimens. In the literature data can be found that imply 
an exponential dependence on porosity [52], or a purely linear E-P-relationship (62). 
Our data are located somewhere in between. Fundamental relationships (76] based 
on an equilibrium pore surface area provide equations for the evolution of the contact 
area between grains, but require knowledge of the coordination number of particles 
as a function of density, which is not available. 

Hot pressing does not affect the relationship of elastic modulus and porosity. 
This is in accordance with Riedel et al. for the late stage of sintering [77]. These 
predict, that if an applied hydrostatic stress is not greater than a few times the 
sintering stress, the shapes of intergranular pores as computed by Svoboda et al. 
(and thereby Young's modulus) are not altered and thereby the elastic modulus is 
not affected [76]. 

In the entire density range, K1c > K0 , reflecting R-curve behaviour even in 
porous alumina, consistent with related work on liquid phase sintered alumina (63]. 
Recently, Fett et al. (78] have shown that in alumina the crack closure forces due 
to bridging elements are very small ( = 20 MPa). Stable crack growth emanating 
from processing-related flaws can therefore be neglected (13, 17]. For this reason, 
the strength is exclusively determined by the initial defect size and the crack tip 
toughness with K 0 (P) provided by Eq. (10.2). 

Strength in porous ceramics with a shallow R-cur.ve and concomitant negligible 
effect on strength can therefore be described using the Griffith criterion (Eq. (11.1)): 

Ko 
CIJ = y JC' (11.1) 

and equations describing K 0 (P) and the defect size c(P). Flinn et al. (64) sug­
gested that shrinkage of large pores follows the macroscopic specimen shrinkage and 
demonstrated this dependence with measurements on artificial spherical defects. In 
our previous study on liquid phase sintered specimens (63], we have already utilized 
a similar dependence using engineering shrinkage strain (43) instead of true shrink­
age strain [64). This shrinkage law is provided by Eq. (11.2) with r the pore radius 
at the porosity P and r0 the pore radius at the porosity Po: 

(
1 R )1/3 

r(P) = ro 
1 
~; (11.2) 
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If great care is taken during surface machining and finishing, surface damage 
should play a minor role as a failure causing flaw, and processing related defects 
are the major fracture origins. The evolution of the defect shape parameter Y with 
decreasing porosity is not known. However, it can be assessed by using K 0 (P) 
in Eq. (10.2), r(P) in Eq. (11.2), the Griffith relationship in Eq. (5.6) and the exper­
imental results of the fracture strengths in Fig. 48. Rearranging Eq. (11.1) and for 
simplicity setting the crack size c(P) as the size of the largest pore r(P) yields: 

(11.3) 

This approach was suggested by Flinn et al. (43) for artificially introduced flaws, 
and is applied here since we do not have any information about the evolution of the 
defect shape factor, Y, with the porosity yet. The equivalent flaw sizes are plotted 
in Fig. 49 for the CT and TM powders, respectively. Also included is Eq. (11.3) to 
describe the shrinking defect, assuming that Y remains constant. A least squares fit 
of both hot pressed and free sintered data sets yielded Y 2 eo of 19 J.Lm for TM-DAR 
and 23 J.Lm for CT 2000 SG. 

For the fine-grained powder, the evolution of the equivalent flaw size with de­
creasing porosity follows the proposed shrinkage law very well. Pore shrinkage due 
to rearrangement has therefore no effect on the strength of the material except 
possibly for the first 5% of densification where no data could be obtained. For the 
coarse-grained powder, the shrinkage law also applies for P < 40%. At P > 40% 
the high values of Y 2c can be due to either polishing damage (63) or may indeed be 
an indication of a rearrangement effect in the very early stages of sintering. As the 
large equivalent flaw sizes occur for both hot pressing and free sintering, polishing 
damage is considered the more likely cause for this effect. We therefore suggest that 
an essentially constant defect shape factor over a wide porosity range can be used 
to describe strength as a function of porosity. With large changes in grain size [13, 
14), and pore size [64) more elaborate models specifying stress concentrators and 
starter defects need to be considered. As the change in grain size in our materials as 
well as size of the largest defect was small, we resort simply to combining Eq. (10.2), 
(11.2) and (11.3) and use Y(P) = const. The equation for the porosity dependent 
strength then reads (63): 

(11.4) 

This relation is plotted in Fig. 48. The parameters K 0 (P = 0), P0 , n and Y 2eo 
are summarized in Table 3. The proposed equation is a good description of the 
experimental data for porosities smaller than 40%. In the initial stage, the model 
underestimates the measured data. The slight difference ofEq. (11.4) with Eq. (11.2) 
in our prior work on strength of liquid phase sintered alumina (63) is due to the use 
of engineering instead of true sintering strains in our older work. 

The modified hot pressing runs had no positive effect on the defect size compared 
to the purely isothermal hot pressing cycle. A possible explanation may be that the 
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FIGURE 49. Equivalent flaw size vs. porosity for hot-pressed and free sintered samples: 
(a) CT powder, {b) TM powder. Included is also Eq. {11.3) {thick line). 

viscosity at the onset of pressure is still too high. Thus, the microstructure is frozen 
rather than rearranged by the external pressure. 

12. Conclusions 

1. Strength of porous ceramics with small closure stresses can be described using 
a relation of crack tip toughness related to the evolution of Young's modulus 
with porosity, a shrinking defect in accordance with the macroscopic strain 
field and a constant defect shape factor. 

2. An applied uniaxial pressure of 13 MPa had no mesureable influence on main­
taining the equilibrium pore surface area as established for free sintering in 
both the aluminas used. 

3. The applied pressure did not alter the evolution of defect size and defect shape 
factor for both our materials. 
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III. Graded and layered ceramics 

13. Introduction 

The concept of a compositional gradient within a material to attain specific func­
tional properties has resulted in the development of functionally graded materials 
(FGM). This concept is not a new one, for example, case hardening of metals is a 
long-used process involving a microstructural and consequently hardness gradient. 
Recent research in this field has concentrated upon systems that involve stiffness and 
toughness gradients, which is usually a consequence of changes in other functional 
properties, e.g. refractoriness. 

Ceramic coatings are usually considered brittle. However, a range of structural 
ceramics have enhanced toughness because interlocking grains bridge the crack in 
the region behind the crack tip leading to crack-growth resistance or R-curve be­
haviour [80-84]. Alternatively, by layering different structural ceramic materials the 
apparent fracture toughness can be increased through either enhancement of tough­
ening mechanisms or residual stress effects (84-90]. Various processing techniques 
may also lead to a microstructural gradient within ceramic layers or coatings which 
is usually associated with a change in grain size and, hence presumably, a change 
in the crack growth resistance behaviour [91, 92]. 

Jin and Batra (93] calculated the R-curve behaviour of cracks extending paral­
lel to the graded direction in a ceramic-metal FGM. The calculations showed that 
there was a "strong" R-curve behaviour when a crack grows from the ceramic rich 
region toward the metal-rich region. The results of the calculations were confirmed 
by experiments conducted on alumina/aluminum (ceramic/metal) gradient struc­
ture (94] where R-curves were measured for cracks extending parallel to the graded 
direction, from the ceramic rich to metal rich regions in the gradient. Addition­
ally, several compositional profiles were considered which resulted in different crack 
growth resistance behaviour, demonstrating that the bridging by metallic ligaments 
of different graded volume fraction can affect the R-curve behaviour. A special 
weight-function analysis was used which accounted for the notable elasticity gradi­
ent in the sample (95j. However, for an elasticity difference across the graded region 
of Ed E 2 = 1.33, the discrepancy in stress intensity factors that were calculated 
using a weight function which considered an elasticity gradient and one which did 
not was < 10% (94j. These works demonstrate that the effects of crack-growth re­
sistance toughening by crack bridging, attributable to the compositional change, 
appear to have a far greater influence upon the crack growth behaviour than the 
resultant elasticity gradient. 

A well recognized effect of producing composite materials with different thermal 
expansion behaviour is that residual stresses form within the composite. This is 
especially significant when high temperatures are used during processing. The mea­
sured fracture toughness and crack growth resistance behaviour, which depend on 
both microstructure and residual stress, become functions of position within com­
posites having microstructural or macroscopic residual stress distributions (85-90, 
93-96]. 

When measuring the R-curve behaviour of either multilayered or gradient com­
posites, separating microstructure-related toughening mechanisms (i.e. crack bridg-
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ing, kinking, transformation toughening, etc.) from residual stress-based mecha­
nisms is difficult. It has already been demonstrated that the weight function analysis 
may be used to differentiate the influence of a macroscopic residual stress distribu­
tion (stepwise change in residual stress) from that of other microstructural medla­
nisms on the measured R-curve behaviour of a layered alumina-zirconia composite 
(89). Experimental results showed that the macroscopic residual stress distribution 
significantly influenced the measured R-curve behaviour. 

14. Experimental procedure and analysis 

14.1. Sample preparation 

Multi-layered alumina-zirconia composites were produced by sequential centrifu­
gal consolidation [91, 92, 97, 98) of coagulated (91, 99) aqueous alumina-zirconia slur­
ries. FUrther details of the centrifugal procedure used can be found elsewhere [103]. 
The composite green bodies were dried and then fired at 1600°C for 4 hr in air 
with 250°C /hr heating and cooling ramp rates. Two sintered discs were produced 
measuring 60 mm diameter by 10 mm thick and containing < 5% porosity. 

Sintered discs were surface-ground flat using a 600 grit diamond wheel and 
multiple bend bars measuring 4 mm x 3 mm x 35 mm were then cut from the center 
of each disc. A V-notch was cut across the 3 mm x 35 mm face, perpendicular to the 
length of the bend bar as described in previous work (88, 101). The V-notch radii, 
p, were measured to be 5 to 10 J.Lm using optical microscopy. The 4 mm x 35 mm 
side-surfaces were additionally polished to 15 J.Lm diamond abrasives to facilitate 
observation of crack growth. 

Both monolithic (homogeneous) and graded specimens were produced (Table 4). 
The monolithic specimen, having a composition of 80 vol%-alumina-20 vol%-zirconia 
(80Al), was used to measure the R-curve behaviour without the influence of bulk 
thermal residual stresses or grain size variations. The graded specimens were pro-

TABLE 4. List of samples tested. 

Layer Sample V-Notch 

Sample Thickness Testing Cross-Section Depth 

IJ.Lm) 
Orientation 

lmm) IJ.Lm] 

B w ao 

Monolithic - - 3.01 4.02 1050 

1 "'700 1 2.97 4.02 920 

2 ""700 1 2.96 4.03 935 

3 ""700 2 2.97 4.03 1045 

4 ""700 2 3.03 4.02 1340 
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duced by centrifuging slurries having a solids composition of 76 vol% alumina1) + 
19 vol% zirconia2) + 5 vol% platelike alumina3) . During centrifugation, the larger 
platelike alumina particles (average particle diameter, D50 = 9 JLm) preferentially 
settled, producing a microstructural gradient as seen in Fig. 50a. The ASTM E562 
standard point counting method (900 points per location) was used to determined 
the composition and porosity, while the ASTM E112-96el standard (duplex mi­
crostructure line intercept method) was used to estimate the average grain size. 
The results of these calculations are shown in Figs.50b and 50c, respectively. The 
Young's modulus, E(x), Poisson's ratio, v(x), and coefficient of thermal expansion 
(CTE), a(x), as a function of position within the layer were estimated by taking 
the geometric average of the upper (equal strains) and lower (equal stress) bounds 
of the Rule-of-Mixtures models using the material properties shown in Table 5. Fig­
ure 50d shows the results of this calculation for Young modulus and CTE across a 
single layer. 

(a) (b) 

~ 

x x' 

w 

FIGURE 51. Orientation 1: a) Optical micrograph of the post cracked SEVNB sample showing 
the layer stacking with respect to the V-notch, b) A schematic of the three independent stress 

distributions acting within a specimen: bending (ubend(x)), residual (ur(x)), and bridging 
stress (ubr(x, a)). 

The graded samples tested in this investigation consisted of,....._ 6 layers, a macro­
graph of a bend bar side surface is shown in Fig. 5la. The R-curve behaviour was 
tested in two different orientations with respect to the gradient within the layers. 

I) Al6SG, 99.8%, Dso = 0.4 J.Lm, ALCOA, Bauxite, AR. 
2>CEZ-12, 98%, Dso = 0.4 J.Lm, American Vermiculite Corp., Marietta, GA. 
3>PWA 9, Dso = 9 J.Lm Fujimi America Inc., Wilsonville, OR. 
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TABLE 5. Material properties of composite constituents. 

Material 

Ah03 

t-Zr02 

E 

[JLm) 

38Q&) 

205a) 

a) Ref. [116), b) Ref. [117). 

0.25b) 8.39a) 

0.32a) 11.5a) 

423 

In orientation 1 (samples 1 and 2), the cracks were extended in the particle settling 
direction, i.e. from small to large grain size, and in orientation 2 (samples 3 and 4) 
the cracks were from large to small grain size. 

14.2. Mechanical testing 

Direct observations of crack initiation and extension were made on the bend 
bar side surfaces using a specialized four-point bend fixture placed on the stage 
of an optical microscope [88, 100, 102]. Loading was achieved using a piezoelectric 
translator and measured with a miniature load cell. A fluorescent dye penetrant 
(Met-L-Clek FP 90, Helling KG, GMBH, Hamburg, Germany) and an ultraviolet 
light source were used to measure crack lengths. The fluorescent dye was in con­
tact with the V -notch tip during crack initiation and was within the crack during 
every subsequent crack extension. For slow crack extensions, the fluorescent dye 
immediately penetrated into the newly extended crack allowing crack extensions 
to be observed. There was no measurable influence of the fluorescent dye on crack 
extension [ 103]. 

Specimens were tested under displacement-control where subcritical crack initi­
ation and further crack extensions ("' 10 J..Lm increments) were achieved by loading 
at a slow rate. The incremental loading technique used is described elsewhere [88, 
100]. The applied load to instigate crack propagation, Pc, and total flaw length, a, 
were measured and for each crack extension the apparent fracture toughness, Kn, 
was calculated as outlined below. 

14.3. Weight function analysis 

Bueckner [104] showed that the stress-intensity factor for an edge crack of depth 
a can be calculated by intergrating over the crack length the product of a weight 
function, h(x, a), and any stress distribution a(x) acting normal to the fracture 
plane: 

a 

K =I h(x, a) a(x) dx, 

0 

(14.1) 

where x is the distance along the crack measured from the surface. The weight 
function used must be derived for a specific crack-component configuration. 
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In the work of Fett and Munz [105-107J a weight function for an SENB sample 
and notch geometry is given by: 

· 1-- + A 1-- -[( a )1.5 L ( x)v+l (a )J.L] 
vV VJ.L a w ' (14.2) 

where a is the total flaw length measured from the bend bar tensile surface and W 
is the sample width as shown in Fig. 50b. The values of the coefficients AvJ.L and the 
exponents v and J..L are given in references [105] and [106). 

14.4. Stress distribution 

Three independent stress distributions were considered in this study: an ap­
plied bending stress distribution, residual thermal stress distribution, and a bridg­
ing stress distribution. The applied bending stress distribution for the monolithic 
sample, a~end(x, P), was estimated using a standard bending-stress formula for ho­
mogeneous materials: 

h ( P) = 1.5 P(So - Si) ( 1 _ 2x) 
CTbend X, B W2 W ' (14.3a) 

where P is the applied load, S0 and Si are the outer and inner support spans of the 
four point bending fixture (in this study: 20 mm and 10 mm respectively), B is the 
sample thickness, and W is the sample height. 

The applied bending stress distribution for the graded samples, a~end(x, P), 
was estimated using a modified bending-stress formula in which the influence of the 
modulus variation across the bend bar cross-section is accounted for. The derivation 
is shown in the appendix. The resulting equation is specific to the sample geometry, 
the layer configuration, and elasticity gradient used in this investigation: 

g _ P , E2- E 1x 
CTbend(x)- 4B (So- Si) E (x) Ei- E1E3' (14.3b) 

where E'(x) is the plane strain variation of modulus across the sample cross-section. 
The residual thermal stress distribution within the graded composites, CTr (x), 

was estimated from the thermal expansion mismatch strains resulting from the 
variations of E(x), v{x), o:(x) across the sample. The derivation is shown in the 
appendix. 

( ) = LlTE'( ) [ (') -A1E2 + A2E1x + A1E3- A2E2] 
CT r X X Q X + Ei - E 1 E3 . (14.4) 

A LlT = 1225°C was used for the temperature range over which the residual 
stress develops. When cooling from the sintering temperature to "' 1250°C, the 
thermal stresses developed within the sample were believed to be alleviated via 
creep [108, 109]. 

http://rcin.org.pl



MECHANICS OF BULK CERAMICS 425 

The bridging stress, CTbr, for the samples tested in the current study was believed 
to be caused by frictional pullout of interlocking grains , which resulted from the 
predominantly intergranular fracture mode [88, 89]. Phase transformation of the 
15-25 vol% tetragonal zirconia was not detected along the fracture surface by X-ray 
diffraction [103], thus transformation toughening was assumed not to contribute to 
the bridging stresses. 

The bridging stress distribution that acts along a given crack length will be 
dependent on the crack opening displacement (COD) along the crack length. For 
monolithic materials the bridging stress distribution, CTbr(u), was taken to have an 
empirical power-law form similar to that which has been used previously (80-83, 
110-112]: 

(14.5) 

where 2u is the COD, CTmax is the maximum stress supported by the bridging zone, 
n is a softening coefficient, and 2u* is the critical COD in which closure stresses 
resulting from interlocking grains stop contributing to the bridging stress. 

The weight function calculation used in this study required that the bridging 
stress function in Eq. (14.5) to be modified so that the bridging stress was a function 
of distance behind the crack tip rather then a function of COD. The COD was 
related to the distance behind the crack tip using the Irwin K-field plane-strain 
displacement relation, u(x'), developed for homogeneous materials: 

, 8x' 2 K 0 

[ 

I l COD = 2u(x) = 2 (-;-) E/(l _ v2 ) , (14.6) 

where x' is the distance behind the crack tip and K 0 is the intrinsic stress intensity 
factor that represents a lower bound for COD [83]. The COD estimate was simplified 
by using Ko = 3.6 MPaym and E = 335 GPa, these values were based on the 
80Al composition monolithic sample. Wake effects resulting from crack bridging 
will reduce the COD, however, due to the complexity of estimating these effects for 
graded materials, they were not considered. 

Equation (14.5) was modified to be a function of distance behind the crack tip by 
substituting Eq. (14.6) in for both u and u•: for the u substitution, x' was replaced 
with a - x, and for the u* substitution, x' was replaced with L . The resulting 
equation relates the bridging stress as a function of distance behind the crack tip, 
CT~r(x, a): 

h · a-x 
( )

n 

CTbr(X, a) = CTmax 1 - --y;- , (14. 7) 

where a - x is the distance from the crack tip and L is the steady-state bridging 
zone length, i.e. the critical distance behind the crack tip in which the COD is 
large enough so that closure stresses resulting from interlocking grains are zero, x•. 
Values of CTmax = 17 MPa, n = 1, and £=1000 J.Lm were determined from experimen­
tally measured data for a 80Al composition monolithic specimen, which has been 
described previously (89]. 

The bridging stress distribution acting along the crack will deviate from those 
estimated by Eqs. (14.5) and (14.7) due to the changing composition and grain size 
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as a function of location along the crack length, both of which may have an influence 
on the crack bridging capability of the material. The influence of the "'10 vol% Ah03 
compositional change across the graded region (Fig. 50b) on Gmax, n , and Ucr or 
L was believed to be minimal. This assumption was based on the observation that 
the initial R-curve (up to 300 J.Lm) of the 90 vol%-alumina-10 vol%-zirconia (90Al) 
layered sample reported in reference (100] was accurately estimated with values of 
Gmax = 17 MPa, n = 1, and L = 1000 J.Lm calculated for the 80Al monolithic sample. 

The influence of grain size on Gmax and n is unclear, thus were considered in­
dependent of grain size. Steinbrech et al. (82] showed that R-curves predicted with 
fixed a max and n values could accurately estimate the experimentally measured R­
curve for alumina samples having 4, 9 or 16 J.Lm grain sizes, suggesting that Gmax and 
n are not functions of grain size. However, Sohn et al. (111] have reported that n is 
dependent upon the grain size distribution within the material and in the analysis 
they considered that Gmax was also influenced by the grain size. 

In this investigation the bridging stress distribution acting along the crack was 
believed to be dominated by the changing grain size, GS(x'), as a function of distance 
behind the crack tip. It is recognized that a large grain size requires greater CODs 
before separation of bridging grains occurs [82,112]. This critical COD* can be 
estimated if one considers that a single grain can only contribute to the bridging 
toughening mechanism if the COD at this given grain is less then one half the grain 
size, thus 2u*(GS) = GS/2 = COD*. For the case where the grain size changes with 
position along the crack the critical COD* that is necessary to end the bridging 
stresses for each x' location along the crack will be different. The bridging stress 
distribution as a function of grain size, agr(GS(x')), is given by: 

ag,(GS(x')) = Umax ( 1- ~~p))" (14.8) 

where x' is the distance behind the crack tip. Equation (14.8) was modified to 
make it a function of distance behind the crack tip rather than a function of COD. 
Initially, Eq. (14.6) was set equal to GS/2, solved for x', where x' being the critical 
distance behind the crack tip in which complete grain separation occurs for a given 
grain size was renamed to, x*: 

* = ~ (E/(1- v
2

) GS)
2 

x 8 Ko 4 
(14.9) 

If the material had a homogeneous grain size this critical crack length would 
be the "steady-state" bridging zone length L. However, for composites with graded 
grain size regions there is no "steady-state" bridging zone length and Eq. (14.9) 
becomes a function of distance behind the crack tip, x*(x'). For each location along 
the crack length the local grain size, GS(x), influences the size of the bridging stress 
that will be applied at that location. Substituting x*(x') into Eq. (14.7) for Land 
replacing x' with a - x the resulting equation calculates the bridging stress as a 
function of distance behind the crack tip: 

agr(GS(a- x)) = agr(x,a) = Gmax (1- ~-X ))n 
x• a-x 

(14.10) 
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Figure 51b shows the distribution of these three stress contributions, a~end' ar 
and a~r, within a graded sample loaded according to orientation 1. 

14.5. Measured stress intensities 

The weight function analysis was used to calculate the apparent stress intensity 
factor, Kn, from experimental data: the critical applied load to further extend a 
crack, Pc, and the average total flaw length, a = (aA + aB)/2, measured on both 
sides (A and B) of the sample. aA and aB are the sum of the V-notch depth, ao, 
and the crack length as measured on sides "A" and "B" of the bend bar. 

For the monolithic sample a standard bending-stress formula, Eq. (14.3a), was 
substituted into Eq. (14.1) and for each Pc vs. a data obtained from the experiment, 
the apparent stress intensity factor, Kn, was calculated. The procedure for the 
gradient samples was much the same as for the monolithic sample but the modified 
bending-stress formula, Eq. (14.3b), was substituted into Eq. (14.1) to account for 
the influences of the changing modulus across the sample. 

14.6. Stress intensity factors 

The stress intensity factors associated with each stress distribution were inde­
pendently defined using the weight function analysis. The applied stress intensity 
factor for a homogeneous material, K~(x, P), was calculated with Eq. (14.3a) sub­
stituted in Eq. (14.1), whereas for the graded samples, Kg(x, P), was calculated 
with Eq. (14.3b) substituted in Eq. (14.1). The stress intensity factor resulting from 
the residual stress distribution acting along the total flaw length, Kr(x), was cal­
culated with Eq. (14.4) substituted in Eq. (14.1). Note that the range of integration 
was over 0 to a. 

The stress intensity factor resulting from the bridging stress distribution acting 
along the crack length for the homogeneous sample, K~r(x, a0 ), was calculated with 
Eq. (14.7) substituted in Eq. (14.1), and for the graded samples the stress intensity 
factor, K~r(x, a0 ), was calculated with Eq. (14.10) substituted in Eq. (14.1). Bridging 
stresses are considered to only act along the extended crack length, i.e. the region 
defined by a0 < x < a, and thus the range of integration was over a0 to a. 

14.7. Stress intensity calculations 

It is of particular interest to ascertain the effects of microstructural stresses 
due to crack bridging and residual stress upon the ultimate applied stress intensity 
factor for crack propagation. To this end, the principle of superposition was used to 
sum Ka, Kr, and Kbr resulting in the crack tip stress intensity factor, Ktip, which 
is shown below: 

(14.11) 

For estimating the stress intensity factor for crack propagation as a function 
of total flaw length, a, Eq. (14.11) was solved for Ka, which was relabeled to KR. 
Note that Ktip was replaced by the crack tip toughness, Ko (Ktip = K0 for crack 
extension). The resulting equation is: 

KR(a, ao) = Ko(a) - Kr(a) - Kbr(a, ao). (14.12) 
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For the monolithic sample, K 0 (a) was estimated by extrapolating the measured 
R-curve to the y-axis (located at a0 ), resulting in KgoAt = 3.6 MPav'ffi. Since 
the monolithic sample has a continuous composition, K 0 remained constant for all 
values of a. The stress intensity obtained using this technique is believed to give a 
reasonable estimate for K 0 because the effects of crack tip shielding and bridging 
would be minimized. 

In an attempt to account for the modulus variations in the graded samples, 
the crack tip toughness, K 0 (a), was estimated following a procedure introduced by 
Lakshminarayanan et al.[85). First, Ka(a) was set equal to K0 for the corresponding 
composition within the specimen and the critical applied bending load necessary to 
cause crack extension, Pc, as a function of total flaw length, a, was calculated. The 
Pc vs a results, incorporating the influence of the modulus variations, were then 
used in a standard formula for the stress intensity for a SENB specimen [101, 113) 
to calculate the K 0 (a) profile. 

The intrinsic fracture toughness in the graded samples was assumed to vary as a 
function of composition across the layer where for the alumina richer region (85Al), 
KgsAt = 3.4 MPaym and at the alumina poor region (75Al), KJ5A 1 = 3.8 MPaym. 
The estimated values were based on extrapolations of the 80Al and 90Al measured 
R-curves to the y-axis, in which the intrinsic fracture toughness values of KgoAt = 
3.6 MPaym and K8°Al = 3.2 MPaJlli were obtained, respectively [89, 100). 

The Kr(a) and Kbr(a, ao) profiles, being independent of the applied load, where 
simply calculated for several values of a. 

15. Results 

15 .1. Bridging function 

The bridging function for the graded samples was intended to account for the 
variation in crack growth resistance behaviour resulting from the grain size gradient 
within each layer. The bridging stress distribution that acts along a given crack 
length will depend on the difference between the COD along the crack length and 
the critical COD*. Figure 52a shows the COD profile for a homogenous material as 
a function of distance behind the crack tip (Eq. ( 14. 7)), and superimposed on this 
plot is the critical COD* for a homogenous material with an average grain size of 
1.9 J.Lm (representative of the 80Al composition sample). Note that the crack tip is 
located at the far right of the figure. For distances behind the crack tip, where the 
critical COD* is greater than the COD of the crack, the grain size is large enough 
to bridge the crack and provide closure stresses. The example shown in Fig. 52a for 
the homogenous sample suggests that bridging stresses are acting along the crack 
until "'900 J.Lm behind the crack tip, and for further distances behind the crack tip, 
the COD of the crack is sufficiently large that grain bridging cannot occur. 

The bridging stress ·distribution, as a function of distance behind the crack tip, 
for graded grain sized materials will be directly related to the variation of the critical 
COD* (Fig. 52b). The larger grain size in the platelike particle region of each layer 
results in a larger critical con· and thus these regions can continue to contribute 
to the bridging stresses for much longer distances behind the crack tip (regions "b" 
in Fig. 52b). 
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FIGURE 52. The location behind the crack tip in which the microstructure can bridge the crack 
and apply closure stresses (regions labeled "b") for: a) the homogeneous sample and b) the 

graded sample in orientation 1. c) The estimated bridging stress distribution acting along the 
1800 J.'m crack length for the monolithic sample (---) and the gradient sample (-). 

The bridging stress distribution, Ubr(x, a), resulting from the homogeneous and 
graded sample (sample 1) is shown in Fig. 52c. In this case the total flaw length 
was 2720 /Lm (920 /Lm notch depth + 1800 /Lm crack length), and the graph shows 
the bridging stress distribution acting along the crack as a function of distance 
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behind the crack tip. For the homogeneous sample the bridging stress distribution 
falls off linearly as a function of distance behind the crack tip and reduces to zero 
at x' ~ 900 Jlm (L = 900 Jtm in Eq. (14.7)). For the gradient sample the variation 
in the grain size significantly influenced the resulting stress distribution profile. 
Within the platelike particle regions the bridging stresses are still being applied at 
large distances behind the crack tip where the amount of bridging stress from the 
platelike particle regions decreases as the distance from the crack tip increases. 

15.2. Calculated stress intensity profiles 

Figures 53 and 54 show the calculated stress intensity profiles K0 (a), Kr(a) and 
Kbr(a, a0 ) for the graded specimens with a crack extending from the V-notch tip, 
length a0 , in orientation 1 and 2, respectively. With the sign convention used in 
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FIGURE 53. Orientation 1: A schematic of the estimated stress intensity factors as a function of 
position within the gradient specimen: a) Ko, b) Kr, c) Kbr· 
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FIGURE 54. Orientation 2: A schematic of the estimated stress intensity factors as a function of 
position within the gradient specimen: a) Ko, b) Kr, c) Kbr· 

defining Eq. (14.11), Kbr(a, a0 ) acts to reduce the stress at the crack tip, where as 
for Kr(a) the stress at the crack tip can be reduced or increased depending on the 
residual stress distribution. Additionally, the extent of influence of each component: 
Ko(a), Kr(a) and Kbr(a, ao) on the resulting KR(a, ao) profile can also be seen. 

15.3. Monolithic sampleR-curve 

The microstructure and R-curves for the monolithic sample are shown in Fig. 55. 
The plot consists of three curves: the measured R-curve, the calculated KR(a) 
profile and the estimated intrinsic crack tip toughness, KgoAt. The intrinsic crack 
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FIGURE 55. Monolithic specimen: a) The experimentally measured R-curve ( +) and the 
calculated KR(a, ao) and KgoA! profiles. b) An optical micrograph of the post tested sampl~ 

showing the microstructure that the crack propagated through. The • symbol on the K wax1s 
represents the Ki for crack initiation from the V-notch tip. 

tip toughness was estimated by extending the R-curve to the y-axis, resulting in 
KgoAl = 3.6 MPav'ffi. The measured stress intensity for crack initiation from the 
V-notch, Ki was 4.0 MPav'ffi, in which the discrepancy between Ki and KgoAI was 
attributed to the shielding resulting from the relatively blunt (p = 5 J.Lm) starter 
notch. The R-curve had a shallow rise where a 0. 7 MPav'ffi increase in K R oc­
curred after a"' 700 J.Lm crack extension. The calculated KR(a, a0 ) profile, using the 
Eq. (14.7) bridging stress distribution, estimated the R-curve behaviour of the 80Al 
material. 

15.4. Grade.d sample R-curve 

The microstructure and R-curves for the graded samples tested in orientation 1 
(samples 1 and 2) and in orientation 2 (samples 3 and 4) are shown in Figs. 56 
and 57, respectively. The plots consist of three curves: two measured R-curves and 
the calculated KR(a, a0 ) profile for the given testing orientation. The similarity of 
the two measured R-curves for each testing orientation demonstrates the consistency 
of the R-curve measurement technique, while the proposed model describes the 
general R-curve behaviour of both sample configurations. 

The direct superposition of several R-curves measured from layered or graded 
samples can be inappropriate due to the influences of starting the R-curve mea-
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FIGURE 56. Orientation 1: a) The experimentally measured sample 1 ( 0) and 2 ( +) R-curves 
and the calculated K R (a, ao) profile. b) A representative microstructure through which the crack 
extended. The (0 and •) symbols on the KR-axis represent the Ki for crack initiation from the 

V-notch tip. 

surement at different locations within the microstructure. For samples 1 and 2 the 
V-notch position (R-curve starting position) within a given layer were nearly iden­
tical, whereas the sample 4 V -notch was ,...... 20 J.Lm closer to the bottom of the next 
layer as compared to sample 3. This problem was partially alleviated by lining up 
the layer interface for both samples through subtracting 20 J.Lm from the measured 
crack length for each data point of the sample 4 R-curve. 

The gradient microstructure resulted in an asymmetry in the measured R-curves 
and in the calculated KR(a, a0 ) profile for orientations 1 and 2. The orientation 1 R­
curves have a gradual increase in slope until the end of the platelike particle region 
was reached, resulting from the gradual increase in residual compressive stress and 
bridging stresses within the platelike particle region of the layer. The orientation 2 
R-curves initially have a near fiat R-curve until the crack impinged on the bottom 
of the next layer, the resulting steeper rise in K R was due to the immediate increase 
in the residual compressive stress and bridging stresses. 
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16. Discussion 

16.1. Stress intensity calculation errors 

Using a weight function, h(x, a), that was developed for elastically homogenous 
samples for calculating the stress intensities for elastically graded materials, will re­
sult in errors. However, the extent of theses errors in the graded samples investigated 
in this study is believed to be less than 10%. 

The studies by Erdogan (114) and by Jin and Batra (93, 115), demonstrate that 
the size of the elasticity change significantly influences the size of the deviation 
between stress intensity calculations that account for the elasticity variations and 
the ones that do not. For changes in modulus of E 1 / E2 = 1.36 across the graded 
region Jin and Batra (93] have shown that the deviation between stress intensity 
calculations that account for the elasticity variations and the ones that do not to 
be~ 10%. 

The weight function that was used in this investigation was developed by Fett 
and Munz [105-107], and they have recently investigated methods for incorporating 
the influences of elasticity variations using a specialized weight function analysis [95). 
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They report that the procedures using the weight function analysis for graded mate­
rials were found not to change as compared to that for homogeneous materials (95]. 
The study by Chung et al. (94], using the weight function analysis developed by 
Fett and Munz, demonstrated that for a modulus variation of EI/ E2 = 1.33 across 
the graded region that the difference in the calculated stress intensities between 
the homogeneous weight function analysis and the elastic graded weight function 
analysis was less than 10%. 

The use of Eq. (14.1) may still not be entirely appropriate for calculating the 
stress intensities for the samples tested in this study in which the modulus change 
was EI/ E2 = 1.06, however, for errors of < 10% this is considered reasonable. 

16.2. Residual stress influence 

By comparing the calculated stress intensity profiles: Ko(a), Kr(a) and /(br(a, ao), 
shown in Figs. 53 and 54, it can be seen how each add up to obtain the final KR(a, ao) 
profiles shown in Figs. 56 and 57, respectively. The K 0 (a) stress intensity provides 
the basis of the Kn(a, a0 ) profile. For the graded samples tested in this study, the 
K 0 (a) stress intensity variation across the graded region was only~= 0.4 MPaym, 
the Kr(a) variation was ~ = 2.7 MPaJiii, and for Kbr(a, ao) the variation was 
~ = 0. 7 MPaym after 700 J..tm crack extension. This suggests that the variation in 
Kr(a) will dominate the variation of Kn(a, a0 ) across the graded region. 

It should be noted that for orientation 1 the KR(a, a0 ) profile underestimated 
the measured R-curve by "'0. 75 MPaym over short crack lengths. This is unex­
pected since toughening by bridging is small at short crack lengths. For distances 
< 10 J..tm from the notch tip both curves should have similar K R values (Fig. 56). 
This difference was also apparent in samples 3 and 4, which were tested in ori­
entation 2. Incorrect estimates of the elastic modulus and coefficient of thermal 
expansion across each layer may account for these deviations. 

16.3. Bridging stress influence 

The resulting bridging stress distribution shown in Figs. 53 and 54 demonstrated 
that the bridging stress relation derived for the gradient materials, Eq. (14.10), could 
be used to estimate the variable stress distribution associated with a changing grain 
size and with the distance behind the crack tip. This suggests if O"max(x), n(x) and 
Xcr(a- x) are estimated well, for a particular gradient, that a reasonable estimate 
of the bridging stress distribution acting along the crack can be calculated and the 
resulting K br profile will describe the bridging toughening component. 

In the current study, the bridging stress distribution between the monolithic sam­
ple and the graded samples were significantly different; however, the resulting K br 

profiles were essentially the same. The bridging stress distribution for the graded 
samples was not significant enough to account for the discrepancies between the 
measured R-curve and the calculated K R (a, a0 ) profile. It is possible that O"max ( x) 
and n(x) may also vary as a function of position within the gradient, thus signif­
icantly altering the bridging stress distribution. Additionally, it should be noted 
that the estimated average grain size for the large grain sized regions of the graded 
layers ("' 3.1 J..tm) is oversimplified, in which some of the plat~elike alumina grains 
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were nearly 10 J..tm long, suggesting that the con· and x*(a- x) would actually be 
larger than the estimates used. However, the changes of a~r(GS(x')) resulting from 
this would not account for all the differences between the measured R-curve and 
the calculated KR(a, a0 ) profiles. 

17. Conclusions 

1. The addition of a layered microstructure having a grain size and composition 
gradient within each layer was found to significantly alter the R-curve be­
haviour of alumina-zirconia composites. Additionally, the measured R-curve 
was influenced by the direction of crack extension with respect to the layered 
microstructure. 

2. The weight function analysis demonstrated that the macroscopic residual 
stress distribution acting within a specimen can have a significant influence 
on the measured R-curve behaviour. 

3. A bridging function used for monolithic materials was modified to account for 
the bridging stress variation as a function of a changing grain size as the crack 
extended through a graded microstructure. The influence of a variable grain 
size on the bridging stress distribution acting along a crack was demonstrated. 
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Appendix. Calculations for the bending and residual stress 
distributions across a repeating graded layered 
composite 

The purpose of this appendix is to determine both bending stresses and residual 
thermal stresses as a function of position within each layer of a bend bar such as 
that shown in Fig. 58. Only normal stresses acting in the y-direction are treated. 
It is assumed that the variations in elastic modulus, Poisson's ratio, and thermal 
expansion coefficient are periodic (the same in each layer). 

A.l. Bending stress distribution 

This analysis estimates the bending stress distribution within graded samples 
tested in 4 pt bending. During testing it is assumed that the applied forces in the 
y-direction will be zero, and that the applied bending moment will be that for a 
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y 

FIGURE 58. Schematic bend bar with graded layers. The tile contains five complete layers 
(thickness a) and two partial layers. 

beam tested in 4 pt bending as shown below: 

Xf 

F = I c( x) E' ( x) B dx = 0, {A.l) 

xo 

Xf 

M= I c(x)E'(x)Bxdx= {n(so-Si), {A.2) 

xo 

where E'(x) is the elastic modulus corrected for plane strain, B is the sample 
thickness, P is the applied load, and So and Si are the outer and inner loading span 
lengths for 4 pt bending. 

Due to variations in E(x) across the sample the local strains were assumed to 
vary as: 

(A.3) 

where ab and bb are constants. By substituting Eq. (A.3) into Eqs.(A.l) and (A.2), 
the constants ab and bb are found: 

P E1 
ab = - 4B (So - Si) Ei - E1 E3 ' (A.4) 

P E2 
bb = 4B (So - Si) Ei - EI E3' {A.5) 
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where 
Xf 

E1 =I E'(x) dx, (A.6) 

xo 

Xf 

E2 =I x E'(x) dx, (A.7) 

xo 

Xf 

E3 =I x2 E'(x) dx. (A.8) 

xo 

Substituting Eqs. (A.4) and (A.5) into Eq. (A.3) and using the relation a(x) = 
c:( x) E' ( x), a final bending stress relation is obtained: 

9 ( ) _ P ( ) , ( ) [ E2 - Er x l 
O'bend X - 4B So- si E X E~- E1 E3 . (A.9) 

A.2. Residual thermal stress distribution 

Upon heating the tile in Fig. 58 to a temperature at which creep occurs readily, 
the tile will assume a condition of zero stress. If the tile is then cooled an amount, 
~T, but is constrained in the y-direction so that no thermal contraction occurs, 
then a net tensile stress will develop. The variations in CTE and elastic modulus 
within each layer will produce variations in the stress.· The strain at any point is 
given by: 

(A.lO) 

where c:th(x) is the thermal contraction, (n(x)~T), (ar x + br) accounts for warping 
of the tile resulting from non-symmetric variations in n(x), across the sample, and 
ar and br are constants. The values of ar and br must be determined such that the 
net load and bending moment exerted by the tile are zero. The net load, F, and 
bending moment, M, are given by: 

Xf 

F = I e( x) E' ( x) B dx = 0, (A.ll) 

xo 

Xf 

M =I e(x) E'(x) B xdx = 0. (A.l2) 

xo 

Solving for ar and br one obtains: 

=-AT (.41 E2- A2E1) 
ar u E2- E E ' 

2 1 3 
(A.l3) 

(A.l4) 
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where Et, E2 and E3 are defined by Eqs.(A.6), (A.7), and (A.8), respectively, and 
At and A2 are defined as follows: 

Xf 

At = I a(x) E' (x) dx, (A.15) 

xo 

Xf 

A2 =I xa(x) E'(x) dx. (A.16) 

xo 

The residual thermal stress relation is obtained by substituting Eqs. (A.13) and 
(A.14) into Eq. (14.10) and using the relation a(x) = c(x) E'(x). Finally, the final 
residual thermal stress relation is obtained: 

(A.17) 
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