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Image analysis in materials science is in a certain way quite different from the more 
common in technical literature image analysis related to understanding visual 
processes. The difference is related to semantic complications. In the materials 
science image analysis is mainly of quantitative character. It has its own, specific 
problems, and there are situations where automatic image processing is difficult 
or needs frequent intervention of a human operator. A solution may be looked for 
in application of artificial intelligence methods {AI). Some elementary informa­
tion on AI is given in the paper, and a simple example is described. Unlike typical 
procedures of automatic image analysis, which need direct supervision from the 
operator, various AI computational methods should and can autonomously model 
relations and reveal rules (sometimes called: hypotheses) unknown or even unex­
pected by the user. 

Key words: image analysis, structure of concrete, artificial intelligence techniques, 
machine learning, artificial neural networks. 

1. Introduction - qualitative and quantitative image analysis 

Important part of IA (Image Analysis) investigations concern problems 
of computer vision, like high-level image processing, visual processes, and 
image understanding. Examples of application of the results can be found 
in IA tasks like assistance in radar detection, in processing of stereo images, 
in analysis of motion in image sequences, in higher semantic level objects 
recognition, especially face recognition, in character recognition, document 
image analysis, etc. All such image analysis proceedings are content-based, 
and are aimed at qualitative rather than quantitative description. Even if 
this is not entirely true, as the scopes of both approaches overlap, this type 
of analysis will be referred to in what follows as qualitative IA. In some other 
wording this concerns a Computer Vision, which is understanding images 
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using computers, acting at different levels of abstraction. Closely connected 
are here topics of visual illusions - like ambiguous interpretation, illusory 
perception and visual inconsistency, which will not be discussed further. 

In materials science and in the field of concrete-like composite materials 
in particular, the present situation seems much simplified from the point of 
view of the computer vision. The 'scene' (the 'setting') is well identified, it 
is usually static, and often the operator knows more or less which quanti­
tative characteristics of the image are to be evaluated. It is so at least in 
simple cases. But from the semantic point of view, the analysis in materials 
science may often be much more complicated, due to the lack of knowledge 
of the operator himself. In the text below the approach to evaluate images 
for predicting properties of the material will be called: quantitative lA. 

In the qualitative lA the meaning of the image is more or less obvious. 
The object in the image is usually something well known to the observer -
a car, a human, a letter, an inscription, a star in the sky. A human observer 
can identify them with high probability of a precise evaluation, even if they 
are seen indistinctly. In the quantitative lA the problem may be that of the 
appropriate discrimination of features to be measured. The paradigm (total 
of concepts consisting of formal theories, classic experiments, and possibly 
trusted methods) is that what can be seen in the image of a sample is re­
lated to the properties of the material from which the sample has been taken. 
All that can be measured are 'features', but their definitions involve human 
perception, which is extremely difficult to model in a machine. From the ma­
terials science practice it is known that important is accurate discrimination 
of certain individual components seen in the sample, like defects of different 
phases, their precise separation, and then their proper quantification. What 
actually is 'a defect' or 'a phase' may not be obvious at all. Also the factor 
of the scale, which sometimes may be of a secondary importance in qualita­
tive lA, is of primary importance in the image analysis applied to materials 
sciences. 

Assigning objects or patterns into different classes based on their mea­
surements, behavior, etc., is of principal importance in Qualitative lA. In 
quantitative lA the problem is also the uncertainty about features that should 
be identified. 

In all image analysis problems, both quantitative and qualitative, the 
processing starts with similar image acquisition. This can be realized using 
scanning microscope, a video camera mounted on a microscope or on a macro­
stand, a scanner, or a digital photo-apparatus. Less obvious examples may be 
images obtained from X-ray Computed Tomography (CT), NMR (Nuclear 
Magnetic Resonance), Spectrography, etc. 
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In quantitative image analysis traditionally applied are special statistical 
tools, especially mathematical morphology (morphology - study of the size, 
shape, and structure of distinguishable objects in the structure of materials 
and of the relationships of the parts comprising them; referring to general 
aspects of the form and arrangement of the parts of objects), and stereology, 
(stereology - science of the geometrical relationships between a structure 
that exists in three dimensions and the images of that structure that are 
essentially two- or one-dimensional (2D or lD), which enable deduction of 
important spatial features of the structure of the composite material under 
consideration. The concept of shape is quite abstract and it is rather difficult 
to quantify it. In concrete materials there are no crisp, exact definitions 
of certain objects under consideration, like pores, cracks and microcracks, 
entrapped air voids, interface regions, various defects. Their descriptions are 
usually fuzzy, and the analyst is often uncertain what exactly should be 
observed. 

A good example of the difficulties mentioned above is problem of iden­
tification of steel fibres in a cross section of SFRC specimen (Steel Fibre 
Reinforced Concrete). Any laboratory operator can locate the fibres by turn­
ing the sample manually, until each fibre reflects some light and is identified. 
The spot can thereupon be copied manually to a transparent foil, to analyse 
the distribution of fibres. But in an automatic system a corresponding simple 
procedure is usually unavailable. 

Another example of a similar difficulty is in air void analysis in the air­
entrained concrete. It may be easy for the human operator at the microscope 
to recognize- again after some efforts- whether an object is a void filled with 
the contrasting substance or it is a white aggregate grain, or to distinguish a 
real void from a section of a very transparent, glassy grain of the aggregate. 
It may be impossible or economically unworthy to formulate a sequence of 
commands for an automatic IA system, to produce an equivalent answer. 
Here, a human operator is generally more reliable than a machine. 

In qualitative IA, and this is especially obvious in medical diagnosis prob­
lems, of importance is reliability of the image, and the problem of avoiding 
false estimates. This is connected among others with problem of artifacts 
(false representation of non-existing physical objects). · 

In testing of concrete encountered can be significant difficulties with ap­
propriate and - at the same time - automatic evaluation of the features in 
the image of the material structure. On the other hand, it is a typical situ­
ation when analysing samples of concrete taken from existing construction 
that known is a certain qualitative attribute of this particular material -
its certain 'class' or its certain property. The material may be qualified as 
strong or weak, as frost resistant or frost sensitive, with a higher- or lower 
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resistance to abrasion, etc. In spite of difficulties mentioned before, this "ex­
ternal" knowledge can be exploited by the artificial intelligence methods. 

During a typical automatic image analysis human observer is performing 
actions of perception, understanding and selection of the features to be mea­
sured. The lA software and hardware are for the human observer barely very 
useful tools. All the inference, deduction, and other mental processes concern­
ing the image are left to the operator. The objects of those mental processes 
are results of the more or less automatic image analysis, associated with the 
"external" knowledge, which corresponds to the totality of information the 
operator has obtained. 

The typical morphological tools, like low level image transformation pro­
cedures, stereology, etc., will always be a primary apparatus to analyze the 
material structures. In both kinds of lA - quantitative and qualitative - nec­
essary are procedures of low level image analysis- procedures like edge de­
tection, image segmentation, image texture analysis, etc. The possible trans­
formations, filters, various lA operations, etc., are not discussed here, as they 
are objects of many excellent monographs; cf. for example [33, 39, 44). All 
these lA tools produce representations of various physical situations, impor­
tant for engineers. 

Examples of such analysis in concrete technology are images - in differ­
ent scales, entire or limited to selected ROis, (Regions of Interest), of fibres, 
pores and voids, interface regions, systems of cracks and/ or microcracks, the 
meaning of which is obvious enough for any civil engineer. New challenges, 
however, are brought by rapid development of modern civil engineering tech­
nologies and materials. This is the case of multiple new composite materials 
like HPC (High Performance Concrete), SCC (Self Compacting Concrete), 
SIFCON (Slurry Infiltrated Fibre Concrete), etc., and new components like 
silica fume, PFA, superplasticizers, microfibres, and so on. The new compo­
nents have usually poorly recognized properties, and the engineer who applies 
the new technologies does not often know yet what is important in the de­
scription, and where the attention should concentrate. For example, it may 
not be obvious whether one should bother about the air voids distribution in 
VHSC (Very High Strength Concrete). With increasing number of attributes 
and new properties the whole problem of material quality estimation gets 
easily multidimensional and therefore still more difficult for human intuition. 
However, if the user knows from the reports, or from the experience, that cer­
tain recorded images of the structure correspond to a 'good' material, some 
to 'poor quality' one, etc., then the human intelligence can be applied to infer 
regularities from examples. The same action can nowadays be tackled using 
machines (computers and AI techniques). 
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The present paper deals with to the possibility of having some assistance 
in image analysis from the methods originating from Artificial Intelligence. 
This promising possibility has been barely exploited yet, but first experiments 
have already been successful. When image analysis is performed on images 
related to certain well-defined categories, artificial intelligence methods can 
either suggest certain general rules (principles) or suggest a numerical an­
swer without any explanation or justification, but being in accordance with 
previously elaborated examples. 

2. The matter to be processed: the databases 

All computational tools originating from or related to the artificial intelli­
gence concepts deal with examples. The examples for the machine treatment 
must be formalized, which means that their form should comply with certain 
precisely defined conditions. The collection of examples is called a database. 
A database is composed of records. In the simplest case the database can be 
conceived as a numerical matrix, in which the rows correspond to records, 
and the columns correspond to different attributes. In general, however, a 
record may be of quite varied nature, and its components do not have to be 
only numerical. They may be numbers, alphanumeric strings, texts, images, 
sound tracks, recorded signals, etc. 

Information that may be gathered and recorded by human mind is free 
and open. We can keep in our memory various sounds, images, smells, and 
even emotions, e.g., a prejudice. Such memory was always necessary for hu­
mans to be able to live in the external, often alien world. For the automatic 
treatment of data, however, the structure of records must be very limited to 
a number of selected, precisely defined fields. 

While in general the content of a database can - as mentioned above -
be of varied nature, in this text discussed are only simple so-called attributes 
of descriptive type. Each field in a record in such a database is referred to as 
an attribute. Basic types of attributes are presented in Table 1. 

Most important differentiation of the attributes is the one between quan­
titative and qualitative descriptors. Many statistical data analysis methods, 
(e.g. multidimensional regression), artificial neural network algorithms, opti­
misation algorithms, etc., operate only on quantitative descriptions that are 
numbers. In the realm of technological problems, the materials, constructions 
and/or situations may be described also by attributes that are qualitative. 
Examples of purely qualitative attributes are colours, forenames, manufac­
turer designations, fuzzy descriptors (like small, medium, large), odours, etc. 
All those cannot be unequivocally ordered in any impersonal, objective way. 
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TABLE 1. Basic types of attributes in a simple, descriptive type database. 

Type I Symbolic I Examples 

1. continuous con x E {x: X> 3.15 AND X~ 14.00} 

2. cyclic eye x E {Spring, Summer, Autumn, Winter} 

3. identifier label any string acceptable by the system 

4. linear lin X E {1, 7,8,11,72,356,1435} 

5. logical log x E {FALSE, TRUE} 

6. nominal nom x E {Basalt, Granite, Limestone, Gravel-F, Gravel-C} 

7. structural str x E {r2-4, r2-8, rB-10, r10plus} 

8. ignored ign - can replace any attribute type 

In case of such nominal variables a list must be created, that encloses all the 
possible terms concerning a given attribute. 

In addition to the above differentiation the attributes may have different 
role in a particular database exploited for a given purpose. They may con­
cern to: input or output, reasons or effects, predictor variables or response 
variables, motives or results - there are different expressions used. 

Each experimental database represents a certain knowledge about the 
physical reality. In the simple case of a purely numerical database, the matrix 
represents a hidden model, which corresponds to mapping of one-dimensional 
or multidimensional space of the input values into another, one-dimensional 
or multidimensional space of the output data. Similar mapping might be 
conceived also in the case of a mixed database, not purely numerical, con­
taining qualitative attributes, but such dataset can not be processed using 
traditional linear algebra. 

Another complication related to the real-life situations is a possibility 
that not all the attributes in a database are known indubitably. Certain 
attribute values may, for example, be only probable, sometimes with a clearly 
specified probability, and sometimes such value may not be known at all. In 
the last case, where instead of the quantitative or qualitative value of the 
attribute a question mark appears (" ? ") the numerical statistics and many 
other numerical tools can not be applied. There are many computational 
methods and tools, however, for example in machine learning or rough sets 
theory, where the system is expecting to deal with classes rather then with 
a continuous, numerical description. These methods can process qualitative 
data, and also to treat the lacking or uncertain data as special, admissible 
categories. 

In the image analysis problems the databases will be mainly composed 
of results of the automatic image analysis- effects of pre-processing, image 
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segmentation, various measurements, etc. All these data may be accompa­
nied by external information concerning the source origin, specimen special 
treatment, or configuration (settings) of the image analysis stage. 

The final step before submitting a database to intelligent processing is 
its evaluation and cleaning it from outlier records, (that might disturb pre­
dictions), removing outlier attributes, and- sometimes also- sorting of the 
training dataset in a certain optimal way. The procedures are described in 
specialized textbooks, e.g. [34, 50). All such measures, however, are beyond 
the scope of the present paper. 

The topic of combining image analysis with artificial intelligence concepts 
is still relatively new, so the structure of a database for concrete materials 
analysis must in each case be decided separately. It can be added that what 
concerns the electronic databases describing in general properties of concrete 
materials, the problem is still in its introductory stage, cf. e.g. [30). 

The additional point to be mentioned here is domain of the database. 
In the Image Analysis applications it may concern the low level and higher­
level processing, that is the texture elements as well as the characteristics of 
the objects (features) already extracted from images. The database may be 
a collection of details that characterise several selected images as well as it 
may cover many images of certain standard form. In both cases it may be 
accompanied or not by external knowledge, being prepared for supervised or 
unsupervised learning, which is to be discussed in the chapter below. The 
way the database is organised should at each time depend on the particular 
problem and on the expected way of its analysis. 

3. Computational methods - techniques of Artificial Intelli­
gence (AI) 

Artificial Intelligence (AI) approach is based on 1950 suggestion of Alan 
Thring that machines could be programmed to mimic the behavior of hu­
mans. As "Artificial Intelligence" it was probably named in 1956 by John 
McCarthy, and this has opened discussion whether a machine, a computer 
could exhibit intelligent behavior. Later on this led to differentiation between 
the concept of strong AI and weak AI. The first one is to be capable to carry 
all human like thinking and reasoning procedures (the actual machine intel­
ligence), and the author of the present text is deeply skeptical about this 
possibility. Instead, the weak AI concerns only certain ability of a machine 
to realize automatically particular tasks, especially those corresponding to 
data regression or classification. This seems quite realistic. The term 'clas­
sification' is used here in a very broad sense, and its range is from a simple 
classification of the groups of numbers up to really complicated classification 

http://rcin.org.pl



118 J. KASPERKIEWICZ 

of the human face photographs, or even of the emotions that such pictures 
may express. 

All AI tasks should be done automatically. It is obvious, that when pre­
sented a list of well-defined steps to execute each in order, computers outper­
form humans in speed and accuracy. They operate, however, without having 
a comprehension of what those instructions are to do. This lack of compre­
hension is characteristic for all the computer programs used around everyday, 
no matter how complicated they are. Computer, in contrast to human, but 
even in contrast to a dog or a mouse, is not a 'being' in philosophical sense, 
and can not 'think'. 

The procedures that are often associated with the artificial intelligence, 
where the list of steps from the beginning to the end is precisely described, 
belong to the so called Expert Systems (ES), cf. [10), which will not be 
discussed in this paper. ES solutions may be quite practical in many appli­
cations, but in this text the discussion is limited to algorithms where the 
system (the machine) can automatically modify its action accordingly to the 
received data. It may be expected that in the future ES solutions will also 
use elements of the real artificial intelligence, but at present they are usually 
without possibilities to learn by examples to infer conclusions [10). 

It should be added that although a computer cannot 'think', it is possible 
to prepare the machine to interact with the expected environment and ap­
parently solving problems. This, however, will not be an 'intelligence'. On an 
uninformed human observer similar activity could make an impression of real 
'thinking', (look for example for 'chatterbots' in the Internet; a chatterbot is 
a program that attempts to simulate the conversation or "chatter" of a hu­
man being- the programs like "Eliza", "Parry" or "A.L.I.C.E."). In creatin_g a 
similar program its author must define the whole environment- a language 
with its syntax for the descriptions, preview possible types and domains of 
attributes, etc., expected questions, etc., but the main intention is to deceive 
the observer rather than to perform any significant analysis. 

AI approach is generally aimed at 'facing the unexpected'. AI techniques 
are associated with a number of particular solutions dedicated to diverse 
tasks, like game playing, e.g. chess, language translation, natural-language 
understanding, fault diagnosis, robotics, etc. Currently much attention is 
dedicated to procuring knowledge from information available in electronic 
form, e.g. on the Internet. Many of those investigations are pure informatics, 
being far away from the area of materials science. But in the last decades 
also in Civil Engineering the computational methods, originating form AI, 
are becoming more and more popular (11, 12, 13, 14, 15, 16, 17, 18, 47, 
51, 52). All these, however, rather seldom concern the problems of image 
analysis. 
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As originating from AI concepts a considerable number of particular so­
lutions have been proposed. These are Artificial Neural Networks techniques, 
(ANNs), Machine Learning tools, (ML), Genetic Algorithms, (GA), Statisti­
cal Structure Recognition methods, Data Mining and Knowledge Discovery 
in Databases, (KDD). Only few selected from those are discussed in what 
follows. 

There are two basic services that artificial intelligence can render in image 
analysis. The first one concerns situations where all the data are quantitative. 
Such is the case of ANNs (Artificial Neural Networks). ANNs are working 
as black boxes that can realize mapping of one multidimensional space into 
another. It can be added that any algebraic, well-defined function might also 
be considered as such mapping, provided that parameters of the function 
were properly defined, (e.g. by regression analysis). In this case, however, 
there would be no element of learning, and the above act of selection of the 
parameters of the function cannot replace the phase of the training in ANNs. 

The principal difference between the closed algebraic expression and 
ANNs solutions is that in the former the shape of the transformation (i.e. the 
mapping) is selected or defined by the user who may eventually be wrong. 
Only if the user is lucky in picking a successful formula the procedure will 
bring a good solution. In case of ANNs the user after deciding the architec­
ture of the system (its hardware) is making no further decisions, because the 
system should adapt itself to the data. A well-formed AI system can not 'be 
wrong', (unfortunately, it should not be proclaimed that 'the system is right' 
either) - what the system does is simply adapting itself to the data. On the 
data change the system should change its actions accordingly. 

It should then be emphasized that ANNs are trained, and not programmed, 
as was in case of ES. The effect is similar to the activity of human brain, 
where spreading activation of neurons results in the ability to think; also to 
reason, infer, interpret, learn, perceive. On the other hand the ANNs do not 
contain any innate knowledge. Once the computer is switched-off the network 
"forgets everything'' (of course, if this knowledge was stored to a disk, than 
it could be re-loaded again). ANNs do very poorly on knowledge-intensive 
problems - such as diagnosis, planning or natural language understanding, 
but may be quite effective in knowledge-poor but learnable situations such 
as motor control, visual number and character recognition or numeric opti­
mization problems. 

In ANNs the network is adopting (modifies) its internal weights, in the 
way corresponding in the possibly best way to the dataset under consider­
ation. The dataset does not have to be either a one dimensional relation or 
to be very regular. The effectiveness of the network will depend, however, on 
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the selected architecture, (number of layers of the so called hidden neurons, 
number of connections, the way the information is processed) . 

The data to the network is supplied in the numerical form and it is pro­
cessed digitally. If part of the data is qualitative it is sometimes possible 
(but only sometimes!) to code the attributes into numerical form, but this 
needs a reliable justification. Such special case is, for example, the situation 
where the values of the attributes can be ordered, and the effects of applying 
different values to attributes are expected not too big. 

Typical ANN has a complex structure, and contains certain hidden at­
tributes, which are modified during the training. However, the current states 
of those attributes, called weights, is never analyzed nor even revealed to the 
user (even if it were quite easy to do so). The whole network behaves there­
upon like a 'model', constructed in the convention of a 'black box', which 
realizes mapping of independent variables into dependent variables. 

The objects processed by ANNs are direct experimental results in form of 
numbers, digitized sounds, images or other signals. The record resulting from 
capturing the same image in the lA system, for example a representation of 
an alphanumeric symbol, can be analyzed in different ways - as an image or 
as an ordered collection of digits representing such image. The first one can 
be processed in a cellular network, after using special receptors, which com­
pares two-dimensional collections of pixels that can be activated in different 
way (these are images of pixels). The second one can be processed using a 
more common feed forward network, analyzing the same image as a series of 
zeros and ones of a certain characteristic distribution, without no reference 
whatever to the form of the image. 

X 

X 

supervised 
learning 

unsupervised 
learning 

i(x) 
~---f(x) 

1----y 

FIGURE 1. Difference between supervised and unsupervised learning. In super­
vised learning the result of the mapping f(x) of the input data vector xis accom­
panied by in!ormation concerning the wished-for result, e.g., a complete output 
data vector f(x) . In the unsupervised learning the only reference for the network 
are results formed previously by its inference module (only internal criteria can 
be applied). 
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To evaluate the effectiveness of a network the system should be used in 
training on a selection of the available records, followed by testing the system 
predictive power on the other records (not used for training). For the more 
detailed analysis new set of records should be selected for the training dataset, 
the predictions done on the remaining ones, and the process being repeated 
many times. When finally the average value of the errors is calculated, this 
gives the estimate of the effectiveness of the whole system. Such procedure 
is known as cross validation. 

There are two basically different modes in which an artificial neural net­
work (ANN) can acquire the knowledge. It may function in terms of unsuper­
vised or supervised learning. Assuming a simplified depiction of ANNs as a 
mapping of one multidimensional space into another such space the difference 
between the two modes can be explained similarly to Fig. 1. 

Two important examples of ANNs presented below are the networks of the 
feed forward type and Fuzzy ARTMAP, see Fig. 2 and Fig. 3. Feed forward 
type ANNs behave finally (that is after successful training, for example with 
back propagation correction of weights, which usually takes long time) as a 
continuous function, even if it may be highly non-linear. When presented in 
the testing phase with a new record, very different from the records in the 
training set, the network will also generate a certain prediction, even if this is 
unsubstantiated, for example when the input data corresponds to the locus 
of discontinuity in the process under consideration. 

Discontinuous response is enabled in the ART idea of unsupervised learn­
ing (ART- Adaptive Resonance Theory), based on quite different neural net­
work concept, where the individual records are classified depending on the 

hidden neurons 
layers 

---+ ___..o- -~ 
I 
I 

<? _ ~up~ryi~iQn_: 
I 

---+ ---+ ---+ I 

0---' 
---+ ---+ 

FIGURE 2. The idea of multilayer neural network. Supervision concerns resetting 
internal weights in the way compliant with the information carried in the input 
data. Difference between f(x) and ](x) is the error of prediction. 
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-• -.e-y -· .... --· .... _ -· .... --· -· RGttern : 
Cfett~ction 1 
module 1 

look-up 
table 

:--- -·~·-unrecognized pattern exception 
(only in prediction) 

FIGURE 3. The idea of unsupervised solution - concept of ART network solution 
(Adaptive Resonance Theory). Some patterns among input vectors x remain un­
recognised as y, if not encountered previously during training; the case of output 
marked as: "(!)". 

distance between them. Each record is some numerical vector, and the dis­
tance between the records is defined applying certain metric, like Euclidean, 
City block metric, Hamming, etc. The concept of ART has been first pro­
posed by Carpenter and Grossberg [5), and later on developed into supervised 
network system Fuzzy ARTMAP. In ART solutions during training new 'neu­
rons' are born, creating a kind of a look-up table- Fig. 3, the whole process 
having a certain likeness to the process of new neural connections forming 
in the human brain during learning. Fuzzy ARTMAP has been applied suc­
cessfully to concrete materials in predicting the compressive strength of HPC 
mixes [12, 18). 

In solutions of this kind, when the system is fed with an input record too 
remote from the previous 'experience' of the system (which means that the 
example is too different from the examples presented in the training stage) 
the program may refrain from giving any answer at all, presenting instead a 
message equivalent to declaration: "I do not know". 

In the Fuzzy ARTMAP solution two fuzzy ART classifiers create stable 
recognition categories in response to arbitrary sequences of input patterns: in 
the domains of predictor variables and response variables, respectively. Each 
of these operates in an unsupervised mode. However, the two systems in a 
group act in the supervised mode: each predictor information is accompanied 
by a response variable (in the training stage, not so during testing!). 
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An example of another approach is Hopfield network, which is at the 
same time an example of an associative memory. A pattern consists of an 
n-bit sequence of 1 sand -1 s, (or 1 sand Os), so it may represent a binary 
image. In the Hopfield net every node is connected to every other node in 
the network, see Fig. 4. Each connection has an associated weight. Signals 
can flow in either direction on these connections, and the same weight is 
used in both directions. Assigning weights to a Hopfield net is interpreted as 
storing a set of example patterns. After the storage step, whenever a pattern 
is presented to the net, the net is suppose to output the stored pattern that is 
most similar to the input pattern. All this resembles biological brain ability 
to recognize image patterns. 

inputs -· -· -· x_. -· -· -· 
y 

OUtP.Ut 
a selected pattern 

FIGURE 4. Hopfield network (unsupervised) may classify patterns according to 
their similarity to the patterns frequently observed during training, which em­
bossed a certain combination of internal weights specific for the data. 

There are plenty of different ANNs architectures, concepts of training, 
identification of records, and prediction of the results. Those methods are 
not discussed here more deeply and the reader is referred to as there is a rich 
bibliography of ANNs [2, 28, 31, 46), etc. Also the mathematical details of 
the solutions are not discussed here. 

Special ANNs solutions can be applied in some qualitative IA problems. 
For example, cellular ANNs can be applied for qualitative lA when some 
'general meaning' is expected to be found in the image, like in the Hopfield 
network. 

The second important function that can be realized by special AI methods 
and tools is generation of rules. This is domain of Machine Learning (ML). 
The procedure is always realized on a specified set of the results (a sub-set of 
the database), which is identified by a descriptor, an attribute, an affiliation 
of the group of records to certain class or category. For example, in a given 
database, a subset of examples declared as 'good', or 'medium', or 'bad'. 
The ML program fed with one or more of such subsets (usually needed are 
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also accompanying so called 'background examples'), is formulating a rule, in 
terms of conditions on the attributes of the database. The rules have the form 
of implications, conjunctions, and disjunctions, sometimes even negations. 
They are almost directly interpretable or easy to translate into everyday 
language [8, 19, 24, 25, 26, 28, 36). 

The idea of the ML procedure is illustrated in Fig. 5. Examples of ML 
techniques in concrete materials studies can be found in [17, 48, 49). 

EXAMPLES 8 

ML 
INFERENCE MACHINE 

IDENTIFICATION 
RULES 

FIGURE 5. Machine Learning (ML) procedure. The system (its inference machine) 
is trying to formulate rules (hypotheses) that enable recognition of membership of 
a record to one of the groups presented during training (Examples A, Examples B, 
etc.). The records contained information on the properties of tested concrete 
specimens. 

Usually the ML program has many parameters that allow for more narrow 
or more broad scope of searching during creation of the rules. Their choice 
allows or prevents exceptions from certain proposed rule. 

In classical correlation or regression analysis the aim is association be­
tween variables. There is a hidden assumption that the whole description 
can be perceived as 'frozen', that is unchanging. Instead the ANNs systems 
were conceived assuming situations similar to those faced by the living beings: 
the system is to react to the environment that may be constantly changing, 
supplying new facts and situations. The same concerns typical ML solutions 
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and all AI systems should basically be able to learn continually and, if neces­
sary, to change even their ''paradigms", whatever the term "paradigm" could 
mean for a non-living system .... A number of different machine learning 
programs was reviewed in (20). 

An additional help in constructing computational tools can be obtained 
from Genetic Algorithms approach (GA). GA combined with other AI tools 
enable so called hybrid solutions. The idea of GA is examining in parallel 
a number of solutions of the problem and making selections. The system is 
more or less randomly changing records describing solutions, looking for the 
'mutations' that are closer to the optimum. 

The solutions are described with typical wording like 'population', 'par­
ents', 'offspring', etc. One possible idea is to use GA to search for a better 
organization of given ANN: 

• start with arbitrary setting of the network parameters, 

• make random changes, 

• check the new effectiveness of the network, 

• if what was done improves the effectiveness use the last solution to 
generate next generation of solutions, which are expected to be better, 

• discard the older solutions and try again. 

Selection of the better combinations of the attributes is identified with 
multiplication and survival of 'chromosomes'. By repeating the action many 
times a kind of Darwinian type evolution proceeds and eventually produces 
solutions close to optimal; the result is elimination of the less adapted "chro­
mosomes". 

4. Artificial intelligence and image analysis problems 

There is a basic question whether and which functions of the AlA (Auto­
matic Image Analysis1)), as summarized e.g. in the special issue of Cement 
Concrete Composites (7) can be entrusted to actual, real control by the ar­
tificial intelligence. As discussed by Chermant (7), by measuring size, disper­
sion, distribution, orientation, shape, number etc., of objects in the image, or 
amount of observed components, and by evaluating changes of such quanti­
ties under actions like temperature variations, mechanical loading or environ­
mental phenomena, it is possible to obtain valuable characterisation of the 
material and to estimate its quality, for example its physical properties (7). 
The above statement represents the fact, that the so called 'automatic' lA 

I) In this text three slightly similar acronyms are used as follows: AI - Artificial Intelli­
gence, lA- Image Aalysis, AlA- Automatic Image Analysis. 
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analysis (AlA) is actually only 'semi-automatic', because there is always a 
human operator who is to decide operations, to apply filters, to choose what 
is to be measured. It is the opinion of the present author that at least some 
of such decisions can be really controlled by AI measures. 

Of course it should be remembered that there are yet various natural 
limitations on the AI methods, for example in what concerns higher lev­
els of morphological analysis. It seems for example barely possible at the 
moment to effectively apply AI in tasks of estimation of 3D morphological 
parameters, like number of particles per unit volume. This magnitude cannot 
be obtained by purely stereological methods without introducing hypotheses 
or using serial sections. The problem can be dealt with, in a special way, 
by simulation of the microstructure, applying probabilistic model (Boolean 
scheme) or Voronoi partitions (random sets, dead leaves model) [6), but this 
needs human intelligence, not AI. 

Speaking in general terms there are two different ways of mathematical 
characterization of images. In deterministic image representation the image 
functions are related to the point properties of an image, and the neighbor­
hood of this point. In statistical image representation the knowledge about 
the image is related to the average properties [33). Both types of approach 
generate data that can successfully be used in general evaluation of the ma­
terial. 

By application of procedures of automatic image analysis (AlA) it is 
possible to extract varied objects from a typical image of a sample of con­
crete, and to get almost unlimited number of different numerical information. 
Various ensembles of numerical data (records) can be obtained by process­
ing colour, grey levels or black and white images, constructing histograms 
of numerical characteristics of collections of selected objects, of forms en­
hanced by operations of opening, erosion, etc. The attributes corresponding 
to such components can be Boolean variables, natural or rational numbers, 
also vectors, e.g. air-voids distribution histograms. The AI system is to oper­
ate on collections of records creating a database. From AlA only numerical 
databases can be obtained directly, but certain computational procedures 
can analyse also quantitative parameters, like classes or categories. 

Only selected components of such records seem meaningful in the estima­
tion of materials, and a few have been reported to be measured in analysis 
of concrete. Examples concerning the latter are: 

• concrete pores characteristics, air-voids distances, morphology of voids, 

• morphological characteristics of ITZ (Interface "fransition Zone), 
• regions of particular processes of hydration, their distribution, etc., 
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• dispersion, mean distance and orientation of selected phases, especially 
their homogeneity, 

• grain size of particles of aggregate or non-hydrated cement powder, 
aggregates grain size distribution, 

• 2D and 3D analysis of fracture surfaces, 

• morphology of microcracks and their orientation. 
In modern image analysers special routines are available to automatic 

measurement of many numerical descriptors of features, like- for example­
area and perimeter of distinct and rounded objects, or length, thickness and 
curvature of elongated objects. 

As it was mentioned above in case of ANNs, there are two basically differ­
ent modes of AI tools functioning. The system is trained either as supervised 
or unsupervised. In the first case the input information to be processed is ac­
companied by some explanatory information, like output data of a process, 
observed reactions of the material, classification of each record. For example 
an image of a concrete-like composite may be accompanied by the informa­
tion on the actual quantity of some particular component used in the mix. 
In the supervised mode the system can learn from the examples what is the 
actual correspondence between the input data and the output information. 
Sometimes the supervision results automatically from performing simultane­
ously separate measurements in parallel. 

In the second case, i.e. in the unsupervised mode, only the input infor­
mation is applied to the system, and the system by itself is to elaborate the 
concept of similar records. From certain point of view, the records are 'sim­
ilar' depending on the accepted metric, in case of purely numerical data, or 
on special topological concepts in case of mixed data. The programmer of 
the system naturally suggests the choice of metric and other similar details. 

In both cases the system can finally either to model the real behavior 
of the phenomenon under consideration or to formulate hypotheses (rules) 
concerning combination of features (attributes) typical for selected subsets 
of the input database. 

The records resulting from the quantitative image analysis can be charac­
terised either internally, by certain combination of attributes, or externally­
by certain information accompanying the given image. Both characteristics 
have to be supplied (indicated) by the user of the system, so most of AI 
processes in the image analysis will really be of the supervised type. Unsu­
pervised automatic data analysis is more natural in the case of qualitative 
lA; for example, in recognition of letters by ART neural network [40, 46). 

An introductory step to the AI image processing is to decide: 

• What image characteristics are to be extracted? 
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• How this information is to be extracted? 

• How should it be represented? 

• How should this information be used to perform the task? 

Conscious decomposition of the human perception into formal, procedural 
steps may be difficult, and it usually needs certain effort and imagination to 
realize at all where the real problem is. The task is complicated by poor 
visibility, ambiguity of images, their inconsistency and even visual illusions. 
Practical effect of the situation is that applications of AI in quantitative 
image analysis are rare. 

The concept of application of ANNs in IA has been tried by Adeli [1), who 
integrated genetic algorithm with error backpropagation multilayer neural 
network. The weights of the neural network were encoded as decision vari­
ables in chromosomes. The reported examples dealt with image recognition 
in case of numerals and faces recognition problems. The examples seem typ­
ical enough, as in the Internet a list of neural networks related to IA from 
the last two decades, is above 350 references long, but all of those seem to 
be dedicated to the Qualitative IA2) . 

From the same review by Adeli [1) it can be seen that rare applications 
of AI to IA concern very particular studies, with the results being obtained 
at a great computational effort. In a relatively simple problem of recognition 
of seven by seven binary images, using an ANN of three layers (of 49, 99 and 
10 nodes, respectively), and the content of the images being 10 numerals: 
{0, 1, 2, ... , 8, 9}, there were 5950 weights to set in the system, and the prob­
lem was by the author classified as a "large-scale" and "hard-to-learn" [1). 
In this paper there was even a suggestion that similar complications need 
high-performance parallel machines and supercomputers, and hours or even 
days of computing on normal computers; the paper, however was published 
in 1993. The above observations show that the efficiency of the approach may 
be very limited if using inappropriate methods are applied. 

A similar picture, concerning the abundance of the qualitative IA and 
scarcity of quantitative IA, especially the one applied to materials science, 
can be seen in the large overview published recently [9). In the special edi­
tion of the specialist concrete materials review there was no reference to AI 
applications either [7). Most of the problems discussed and related to the 
image analysis and AI belong rather to qualitative IA, notwithstanding the 
circumstance that the complications encountered are often related to the 
basic image processing, e.g. cleaning of noisy images. 

Convincing example of quantitative IA application of artificial intelligence 
tools is somewhat complex case of image analysis in medicine [37), which 

2
) Confer: http : I /www. cs. uu. nl/people/michael/nn-review. html 
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concerns screening mammograms (X-ray pictures). The ambitious aim of its 
authors was to get a 95 percent accuracy rate of automatically discriminat­
ing normal mammograms from those that indicate possible cancers, which 
as the authors claim is equally good or better than the best human experts 
(the mammographers) can do today. Clinical medicine and radiology involve 
complex decision making without the aid of defined algorithms. Neural net­
works are designed to handle inexplicit complex systems. The case is recalled 
here since due to a certain resemblance to material structure investigations 
a similar solution could be studied also in case of concrete materials images. 

Rein us (Washington University) and his colleagues proposed to use neu­
ral networks as interpreting classifiers for imaging studies and as predictors, 
the ultimate goal being direct image interpretation of images using such 
(neural network-based) classifiers. Their focus was on diagnosing mammo­
grams. Preliminary work with digitized mammograms was found effective in 
identification of mass lesions directly from the images without human inter­
vention [37). 

The method combines wavelet transforms and artificial neural networks 
to create a system capable of mathematically "reading'' images. Wavelets are 
algorithms that interpret features of an image or other data. An artificial 
neural network analyzes the above information to decide whether the infor­
mation matches a correct mathematical pattern. The mammogram images 
are digitized and turned into format appropriate for the processing by the ar­
tificial neural network. The wavelets transform the pixels into representations 
of very fine features of the image separating them into a mathematical hierar­
chy, and so the wavelets separate the features of the images into two subsets, 
one the standard, or control, the other concerning anomalous records, where 
the disease symptoms are present. 

A special artificial neural network software (LOSRAAM, developed by 
Kalman and Kwasny) detects six distinct, recurrent "internal states", or dis­
tinctive features, out of the one to four million pixels in each image. These 
features are made obvious by a signature ~lustering of mathematical values, 
representing each feature. The networks, working in harmony, come into the 
process at different starting points, each one responding to the digital data 
and voting ''yes" or ''no" on what it reads. One overriding network gathers all 
the votes from the other networks and states a final answer. 

The approach involving wavelet transform techniques seems to be a re­
ally effective solution, as can be seen from the more recent publication [35), 
where a four-channel wavelet transform was used for image decomposition 
and reconstruction, with a novel Kalman-filtering neural network being used 
for adaptive subimage selection. 
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In another example, also from the medicine area, certain soft computing 
methods were applied in the analysis of computer tomography records [3), 
where artificial neural networks have been applied to process database con­
taining multiple information from images. The procedure was based on find­
ing anomalies in geometric figures and attributes of the database were like: 
Shape {circular, ovoid (image in plane of greatest diameter)}, Edge definition 
{poor, moderate, well}, etc., that obviously were introduced into the database 
manually by the operator, or by an expert evaluating the radiograms. This 
was a case of supervised learning. 

It can generally be assumed that the user has some prior knowledge and 
can rationally select the parameters that AlA system should measure and 
store in the database. What concerns the technical details all the problems 
discussed here may look different in case of different image sources and in 
different magnification scale; for example, a microscope and CCD camera, 
a scanning electron microscope and backscattered electron imaging, a digital 
photo-camera, a flat-bed scanner, etc. As images are sometimes degraded, 
artifacts may appear in them, virtual features, and it is the operator of the 
system who should exclude them from further processing. In certain way 
the brain of human will act here as a complex stereological / morphological 
device, which can be automated only with great difficulties. 

In qualitative lA the differences that are searched for may be related to 
analysis of separate unique images, groups of images or to a permanent analy­
sis of the same, changing image. For physical reasons some of these cannot be 
realized in particular situations of quantitative analysis. Various interesting 
solutions were applied in an apparently quite remote field of ATR, (Auto­
matic Target Recognition), in laser radar imagery [43) where, for example, 
classifications of an object in the image were correctly based on: 

1. eccentricity of object shape, 

2. standard moment m01 (horizontal coordinate of the shape centroid), 

3. maximum gray level, 

4. kurtosis (4th order statistic) of gray levels, 

5. a measure of fractal dimension of gray levels. 

The data supplied by an automatic image analysis system (AlA) enclose 
varied information. Important features can be enhanced by application of ap­
propriate edge detection algorithms [53). More sophisticated procedures can 
indicate differences in texture. Important information can .also be obtained 
by fractal analysis [ 22]. 

Artificial Neural Networks (ANNs) are therefore a recognized tool in im­
age analysis [27). Inductive techniques seem to be much less used in image 
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analysis than solutions involving ANN s. A basic study of this possibility was 
presented recently in the dissertation (21]. 

Various information collected by means of automatic lA (AlA) can be 
processed in any arbitrary way decided by the operator but, quite obviously, 
various settings of the system can be optimized. The general idea of possible 
treatment of the image data with modern computational tools is shown in 
Fig. 6. In this image units marked with terms "INFERENCE" and "SELEC­
TOR" represent possible program modules based on the concepts of artificial 
neural networks, machine learning, genetic algorithms, etc. 

SELECTOR 
of tht changes unit 

8 ---
sample evaluation 

ROI selection 
data evaluation 
classification 

. -

FIGURE 6. General idea of possible image analysis treatment using AI methods. 
In this example AI techniques are limited to two blocks only (marked as IN­
FERENCE and SELECTOR). All the other elements correspond to conventional 
automatic image analysis. The dashed line represents transfer of "external" infor­
mation corresponding to a given sample (or a given ROI - Region of Interest in 
the sample). 
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5. AI application in structural lA problems 

5.1. Identification of the air voids in concrete 

We pass to a detailed discussion of the idea of practical processing of the 
image analysis data using artificial intelligence methods. 

The problem concerning the analysis of air voids distribution in hardened 
concrete was as follows. 

To estimate the air voids structure in concrete according to Polish new 
standard PN-EN 480-11/2000, one needs an identification and evaluation of 
the system of the regular pores, usually seen as the separate circles - e.g. 
white on blue or black - of diameters mainly between 10 J-lm and 50 J-lm. 
The preparation of the surface of a concrete sample, its grinding, polishing, 
staining and introducing contrast to enhance the air voids should improve the 
quality of the image, but the preparation is never perfect. There should be no 
need to separate overlapping particles present in the image, but practically 
the operator encounters a whole spectrum of different features white on black. 
There are: 

• agglomerates 2, 3, or more voids in close contact, 

• regular entrained air objects - separated small and medium size air 
voids with maximum size of 0.010+ 1.0 mm, 

• entrapped air - irregular air voids of all sizes, 

• filled voids, 

• cracks and voids along aggregate/paste interface discontinuities. 

The presence of all these must naturally be recorded, but not all of them 
should be taken into account in calculation of the air entrainment charac­
teristics. Some of them may be artifacts or may be related to presence of 
microcracks. Some of them should be counted as 2 or 3 objects, not a single 
air void. Classification of the objects to be counted and measured must then 
be done manually, (identifying and flagging of the individual objects), which 
increases time and cost of testing. 

The idea of application of AI approach is that during the automatic im­
age analysis (AlA) the system should identify by itself and separate the non 
Air Entrainment air voids, without respective information being supplied by 
the operator. This can be done by finding the identification rules from exam­
ples [52]. Such rules will enable sorting and rational selection of the records. 
1\vo machine learning (ML) programs have been used for this purpose - aq 19 
and See5, cf. [25, 36]. 

For the experiment a database of 2504 'white objects' evaluated by Image 
ProPlus software have been collected from three concrete specimens, pre-
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pared for the standard air voids analysis. The database was collected from 
two photographs ( 1_ pc and 2 _ pc; taken at magnification of the stereoscopic 
microscope 30 x), of correctly air entrained concrete, and one photograph of 
poorly air entrained concrete ( 2 _ ik). 

For the training all2504 objects extracted by the AlA have been evaluated 
by an expert (the operator) in such way that to each single object a label 
has been assigned, indicating whether the object was an air entrainment air 
void ( 1776 cases) or some entrapped air or another non-air entrainment air 
void (186 cases). In case of 542 objects the expert restrained from deciding 
what is the nature of the object, marking such objects with sign"?" (class: 
uncertain). 

The labels for the three classes: {Air Entrainment Void, Non Air Entrain­
ment Void, Unclear Case}, were respectively: {T, N, Q}. The Unclear Case, 
{Q}, concerned objects where the operator could hardly decide as for the 
nature of the object. 

Each object have been characterized by 8 attributes generated automat­
ically after the threshold operation on Image ProPlus lA system. The 8 at­
tributes for each object were: 

• Area (A) of the object, [mm2], 

• Aspect (As)- ratio of the major to minor axis of the ellipse of the same 
area and the same moment of inertia as the object, units: [- ], 

• Area/Box (AB) - ratio of the area of the object to that of a of a 
rectangle circumscribed on it, [- ], 

• Box X/Y (XY) -ratio of width to height of such rectangle, [- ], 

• Radius Ratio (RR)- ratio of maximum distance from centre of gravity 
of the object to its border, to minimum such distance, [- ], 

• Roundness (Ro) -coefficient defined as: 

(perimeter of the object)2 

41rA '[-), 

• Size (W) - width of the object, [mm), 

• Fmctal Dim (FD)- fractal dimension of the object according to Image 
Pro Plus (only in case of objects larger than 30 pixels), [- ]. 

One derived attribute, Der, has also been introduced into the database, 
mainly for demonstration purposes. It was calculated as a product of the 
three primary attributes: Ro, As and RR, normalized so as to keep the the 
value of Der in the range (0, 1000). 

The above characteristics have been selected from among 31 different 
numerical features offered as built-in functions of the Image ProPlus. There 
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were also additional information recorded in the same database, that have 
been disregarded later on: 

• image identification number { l_pc, 2 _pc, 2 _ ik}, 
• background characteristics {Z, U, K, R, Od, Ob, W}, 

• number of pores clustered {1, 2, 3, 4, 5, 9}. 
Exactly from the last of the above attributes the classification of the 

objects has been introduced, resulting in labeling them with numbers of 
interconnected circles, even if they were recognized by the Image ProPlus as 
a single binary object. 

TABLE 2. Factors used in normalisation of the data from Image Pro Plus. 

I Parameter I Symbol I Range I Factor I 
Area A 0.000015+ 2.159781 106 

Aspect As 1.000+9.303 100 

Area/Box AB 0.253+ 1.000 1000 

Box X/Y XY 0.238+9.583 1000 

Radius Ratio RR 0.005+ 124.589 1000 

Roundness Ro 1.000+5.037 1000 

Size(width} w 0.000+ 1.231 1000 

Fractal Dim FD 0.000+ 1.320 1000 

To unify the notation the attributes in the database have been multiplied 
by certain factors (constant numbers) and were approximated by rejection 
of the decimal fractions, see Table 2. After rejection of 6 uncertain records 
the final structure of 2499 records database, matrix 2499 x 10, is explained 
in Table 3. 

An example of the database layout is shown in Table 4. 
During the experiment special emphasis was put on rules describing the 

objects not being entrained air voids. Excerpts from the input scripts for the 
both ML programs - AQ19 and See5, respectively, are shown in Figs. 7-10. 

Results, rules presented in form of conjunctions, obtained in the exper­
iment involving machine learning programs AQ19 and See5, as described 
in [51], are recalled in Table 5 and Table 6. 

The accuracy of rule was defined as the number of the records positively 
not being pores to the total number of recognized records. Accuracy of the 
rules in Tables 5 and 6 was defined as~· 100%. Here: 
C - total number of records satisfy the rule from whole database, 
N- number of correctly detected objects, not being entrained air voids. 
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TABLE 3. The structure of the database matrix prepared for ML analysis. 

Feature attribute Symbol Meaning Units Domain 

1. Area A area of measured object [mm21 15+2159781 

2. Aspect As ratio between major and minor axis [-1 100+930 
of ellipse equivalent to object 

3. Area/Box AB ratio between area of object and area [-I 254+1000 
of its bounding box 

4. Box X/Y XY ratio between width and height of the [-1 238+9583 
object bounding box 

5. Radius Ratio RR ratio between maximum and mini- [-I 5+124589 
mum distance between object cen-
troid and outline 

6. Roundness Ro 
perimete,:Z 

shape factor defined as ( 47r Area) [-I 1000+5037 

7. Size w (width) - Feret diameter along the [mml 0+1231 
minor axis of object 

8. Fractal Dim FD fractal dimension of the outline of the [-I 0+1320 
object 

9. Derived Der a function of other attributes [-I 0+1000 

10. Category TN specification of the air void object [-I { Nobl, Qob1, 
(number of spheres from air entrain- Tob1, Tob2, 
ment - T, or entrapped air - N, or: Tob3, Tob4, 
'uncertain' - Q) Tob5, Tob9} 
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TABLE 4: Example of records from the database specified in Table 3. 

I No. ll . A- - r As I AB I XY I RR I Ro I w I FD I Der I Type I 
1 1356 109 742 938 1385 1057 40 1063 2 Tob1 

2 1311 200 652 1833 5662 2685 30 1233 31 Tob1 

3 6751 102 668 1147 1305 1342 96 1088 2 Tob1 

4 1112 108 802 929 1247 1000 34 1063 1 Tob1 

5 137 182 750 667 4714 1004 9 0 9 Qob1 

6 30 100 1000 1000 5 1000 3 0 0 Qob1 

... . .. . .. ... . .. . .. .. . . .. . .. . .. . .. 
2448 3353 116 765 1087 1324 1099 61 1068 2 Tob1 

2449 411 206 701 1571 12167 1317 15 0 34 Tob1 

2450 46 163 1000 667 8 1000 3 0 0 Nob1 

2451 30 100 1000 1000 5 1000 3 0 0 Qob1 

2452 457 264 536 571 5192 1546 16 1083 22 Tob1 

....... 
c.,.., 
0) 

~ 

~ 
> 
Cll ., 
t:r:l 
::X' 
~ 

sa 
~ 
0 
N 
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TABLE 5. Examples of rules generated by AQ19. 

Number of records supporting the rule 
No. Obtained rule not AE AE air (?) total 

void void unknown 

[A= 83.81 ... 921.99] 

1 [As> 126.64] [RR > 2391.77] 243 40 142 61 

[ W > 3.42] (FD < 1228.28] 

(A= 1847.80 ... 9905.78] 

2 (As> 150.24] [RR > 2795.76] 23 9 13 1 

[W > 32.70] (FD < 1110.11] 

TABLE 6. Examples of rules generated by See5. 

Number of records supporting the rule 
No. Obtained rule not AE AE air (?) 

total 
void void unknown 

Nr_Z = 2_pc; 

1 A> 76.19; As> 201.87; 8 4 1 3 

Ro ~ 1037. 78; W~5.86 

Nr_Z = 2_pc; 

2 A~ 9433.35; XY ~ 1291.67; 7 6 1 0 

RR > 2823.96; RR ~ 3206.43; 

Ro > 1256.5; Ro ~ 2614.84 
-

,_ 
--

Accuracy of 
the rule [%) 

16.5 

39.1 

Accuracy of 
the rule [%) 

50.0 
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parameters 
run ambig trim 

mini 
wts test criteria 

1 pos cpx e default 

default-criteria 
# criterion tolerance 
1 minsel 0.00 

variables 
# type levels cost 
1 con 1 1 A.A 
2 con 1 1 As.As 
3 con 1 1 AB.AB 
4 con 1 1 XY.XY 
5 con 1 1 RR.RR 
6 con 1 1 Ro.Ro 
7 con 1 1 w.w 
8 con 1 1 FD.FD 

name 

9 con 1 1 Der.Der 

Nob1-events 
# A As AB XY RR Ro W FD Der 
149 5174 179 518 1281 3619 2695 78 1110 18 
2382 30 100 1000 1000 5 1000 3 0 0 
192 30 100 1000 1000 5 1000 3 0 0 

Tob2-events 
# A As AB XY RR Ro W FD Der 
914 36072 164 653 1522 2353 1592 197 1076 

Nob1-tevents 
# A As AB XY RR Ro W FD Der 
149 5174 179 518 1281 3619 2695 78 1110 18 
2382 30 100 1000 1000 5 1000 3 0 0 

FIGURE 7. Excerpts from the AQ19 input script. 

In these preliminary experiments the rules generated by programs AQ19 
and See5 were insufficient for fully automatic elimination of all erroneous 
objects, that is objects considered to be NOT air entrainment air voids, 
without removing simultaneously many regular, properly shaped air voids. 
It was found, however, that assuming a rule resulting from these experi­
ments, that rejected should be objects characterized by the set of attributes: 
Radius Ratio > 3. 7, Roundness > 3.5, Width < 0.2 mm, a number of para­
sitic objects could be eliminated. After objects with shape factors performing 
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Qob1-outhypo 
# rule 
1 [A<91.00] [AB>750.00] 

(t:420, u:420, f:O, n:383, q:20.0912) 
2 [A=99.00 .. 152.00] [As>133.50] [W<9.00] 

Tob1-outhypo 
# rule 

(t:38, u:38, f:O, n:45, q:4.38701) 

1 [AB>640.00] [RR<2276.00] 
(t:1359, u:1359, f:O, n:588, q:36.0892) 

FIGURE 8. Excerpts from the AQ19 output script. 

Type. I the target attribute 

No:label. 
A:continuous. 
As:continuous. 
AB:continuous. 
XY:continuous. 
RR:continuous. 
Ro:continuous. 
W:continuous. 
FD:continuous. 
Der:continuous. 
Type:Nob1,Qob1,Tob1,Tob2,Tob3,Tob4,Tob5,Tob9. 

attributes excluded: Ro,Der. 

1,1356,109,742,938,1385,1057,40,1063,2,Tob1 
2,1311,200,652,1833,5662,2685,30,1233,31,Tob1 
3,6751,102,668,1147,1305,1342,96,1088,2,Tob1 
4,1112,108,802,929,1247,1000,34,1063,1,Tob1 
5,137,182,750,667,4714,1004,9,0,9,Qob1 
6,30,100,1000,1000,5,1000,3,0,0,Qob1 

2502,2126,582,727,6000,10149,2922,20,1076,178,Tob1 
2503,556,172,570,2000,3869,1635,22,1089,11,Tob1 
2504,15,226,1000,2000,6,1000,0,0,0,Tob1 

FIGURE 9. Definitions file (above), and excerpts from See5 data script (below). 
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See5 [Release 1.15] Wed Oct 09 21:27:00 2002 

Class specified by attribute 'Type' 
Read 2499 cases (11 attributes) from demo.data 
Decision tree: 
w <= 13: 
: ... w <= 6: 

: ... XY <= 1100: Qob1 (710/315) 
XY > 1100: 
: ... XY <= 1412: Tob1 (23/8) 

XY > 1412: 
: ... Ro > 1030: Qob1 (3) 

Ro <= 1030: 
: ... AB <= 833: Qob1 (3/1) 

AB > 833: Tob1 (64/35) 
w > 6: 
: ... As > 222: 

: ... XY > 1769: 
: ... RR <= 7718: Nob! (3) 

RR > 7718: Tob1 (4) 
XY <= 1769: 
: ... RR <= 3449: Nob! (4/2) 

Evaluation on training data (2499 cases): 
Decision Tree 

Size Errors 
72 494(19.8%) << 

(a) (b) (c) (d) 

32 100 53 1 
2 445 91 
7 223 1453 4 
1 5 55 

1 
1 

1 
Time: 0.2 sees 

aaaa 

(e) (f) 

3 
19 

1 
1 

(g) (h) 

FIGURE 10. Excerpts from See5 results script. 

<-classified as 

(a): class Nob! 
(b): class Qob1 
(c): class Tob1 
(d): class Tob2 
(e): class Tob3 
(f) : class Tob4 
(g): class Tob5 
(h): class Tob9 
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the describing rule were removed from the collection (this corresponded to 
introducing corrections into the image), it was verified by filtering the whole 
database in MS Excel, that improvement in estimation of the spacing fac­
tor L, and other air voids system characteristics was on average about 3%, 
while the manual removing of wrong objects from image was giving improve­
ment about 10%, (with respect to the results of the measurements without 
any object filtration). 

It was observed that in case of good quality of measured concrete sample 
influence of wrong objects on test results is small, but if the quality of ma­
terial is poor the influence of the erroneous object increases, which justifies 
the procedure. Such filtration of features is designated mainly to removal 
of cracks, which occurred in practical situation and produced errors during 
automatic measurement of the air void parameters. 

5.2. Other possibilities 

The examples discussed below are not related to materials science inves­
tigations. Still less they are related to image analysis in concrete. The papers 
on application of image analysis in concrete materials, like e.g. (38), or the 
other papers in the same special issue of CCR, do not concern artificial in­
telligence approach. The methods of AI described outside of the concrete 
technology area seem, however, to be general, so they could be applied also 
to structural analysis of materials. 

One such example concerning lA is detecting and characterization of in­
terior defects in hardwood logs by automatically labelling features in com­
puter tomography ( CT) images, where ANN classifier was trained to label 
each non-background pixel of the image. The obtained accuracy was above 
91-;-95% (41, 42). 

Another example concerns identification of a person by recognition of his 
or her iris pattern, that is a strongly individual feature. Although the problem 
is basically that of qualitative lA the pattern of iris is not known in advance, 
so the system must create by itself standards to compare. The whole pro­
cedure of processing the iris image, its normalization, extraction of features 
by wavelet transform, as it was done in (23), can be presented as a model 
procedure. The feature vectors were there used for training of LVQ neu­
ral network, (Learning Vector Quantization), to recognize cases encountered 
previously during training. It seems possible that similar procedure could be 
applied for identification of textures, e.g., in identification of aggregates in a 
cross section of a hardened concrete sample. 

Still another example concerns selection of attributes to analysis, de­
scribed by Parkinson (32). The results of an experiment show that magni-
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fication, image orientation and threshold settings may have little effect on 
the estimate of fractal dimension. Trabecular bone submitted to image anal­
ysis has a lower limit below which it is not fractal (.A < 25 J.tm) and the 
upper limit is 4250 J.tm. There are three distinct fractal dimensions for tra­
becular bone (sectional fractals), with magnitudes greater than 1.0 and less 
than 2.0. It has been shown that trabecular bone is effectively fractal over a 
defined range of scale. Also, within this range, there is more than 1 fractal 
dimension, describing spatial structural entities. Fractal analysis is a model 
independent method for describing a complex multifaceted structure, which 
can be adapted for the study of other biological systems. This may be at 
the cell, tissue or organ level and the approach complements conventional 
histomorphometric and stereological techniques. The same approach seems 
very appropriate for materials science investigations. 

The paper by Adeli [1], on AI methods has been published as concerning 
image analysis for civil engineering applications, but it seems to be a typical 
example of limiting the artificial intelligence approach to recognition of the 
known elements of the reality. It was a qualitative lA approach, and so are 
most of the available examples, where a complex algorithm using ANNs and 

TABLE 7. Examples of AI software for data analysis. 

Program Algorithms Remarks 

1. Mat Lab various types of ANNs: BP, only complete, quantitative 
Neural- RBF, SOM, etc. attributes 
Networks 

2. Beton Fuzzy ARTMAP network only complete, quantitative 
attributes 

3. aiNet pseudo ANN, predictions by only complete, quantitative 
selection of optimal estimator attributes 

4. AQ19 ML inductive inference pro- large possibilities of fine tun-
gram ing 

5. See5 ML-decision tree classification user friendly 
program 

6. Mat Lab nonlinear regression, PCA, mainly complete, quantitative 
Statistics cluster analysis, etc. attributes 

7. GradeS tat Grade Correspondence Anal- data preparation and evalua-
ysis, outliers identification tion 

8. SPSS most statistical algorithms, rather costly 
K-means cluster analysis, Fac-
tor Analysis, etc. 

9. Rosetta Rough Sets analysis freeware; too many specific 
rules generated 
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GA tools were applied to recognize digits, and nothing else than ten digits, 
{ 0, 1, 2, ... , 9}, were expected in the images database. It should be observed 
that the applied feed forward and momentum backpropagation algorithms 
seemingly had very low convergence rate, at least if compared with the ex­
periments of the present author using ART family ANNs architectures. 

The concept of direct application of ANN s in more basic processing of 
images is rather modestly described. The idea of image compression, self 
organizing maps for image segmentation, and edge detection by artificial 
neural networks has been discussed by Brannbacka [4), without going into 
details. 

There are various modern computational methods available, as a support 
in image analysis. A selection of commercial and non-commercial tools is 
presented in Table 7. 

6. Conclusions 

There are numerous techniques originating in artificial intelligence that 
can be used in automatic image analysis (lA). This concerns especially ar­
tificial neural networks, machine learning and certain advanced statistical 
methods of data preparation and analysis. The reception of all these tech­
niques in materials science is still very limited, even more so it is in case of 
testing concrete and similar composite materials. 

The starting point for application of any artificial intelligence method in 
lA, applied to structural investigations of materials, seems to be a properly 
formatted database constructed from the direct results of the computer based 
image processing. Such database, to be used in the supervised learning, must 
be completed by information external to the image, e.g. from the human 
operator, that is from an expert. Most probably the database will be based 
on the binary representation of the image, but the information from high-level 
analysis of numerical images, e.g. by wavelets, seems to be really promising. 
Because of limited knowledge of the relations between the structure and 
various properties of concrete materials it seems too early yet to consider 
seriously the direct employment of ANNs in similar analysis, like it brought 
a success in medical radiology. 

In two-dimensional representations of concrete materials the results of 
numerical image transformations (shades of grey image transformations) are 
often not very obvious to the investigator. Using advanced automatic image 
analysers the analysis can be done consciously or subconsciously (applying 
some heuristic argumentation) by shape descriptions, binary image convex­
ity, values of distance functions, etc. The evaluation of the efficiency of a 
certain transformation results then often only from the previous experience. 
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However, all such information can be processed with help of automated pro­
cedures, e.g. of machine learning. 

Automatic feedback from the binary representation analysis to the level 
of numerical image processing seems possible, but so far such feedback was 
very little reported. It can follow the lines of the procedure suggested In 
Fig.6. 

In general AI can be of assistance: 

• in case when there is knowledge hidden in examples, i.e. in a certain sub­
set of records (instances, cases), originating in automatic image anal­
ysis, of certain sort, to be analyzed against the counter examples in 
another subset of records of another sort; discrimination of different 
sorts mentioned is external to the image, i.e. it is an information from 
the outside of the database; this is the field of possible application of 
machine learning techniques; 

• in case when there is a hidden model of a certain phenomenon charac­
terized by interrelation between numerical variables; this is the field of 
possible application of artificial neural networks. 

Additionally, statistical methods of structure recognition can and should 
assist in appropriate database configuration, in ordering the attributes, se­
lecting more appropriate derived attributes, helping in tuning of the param­
eters of the ANNs. In the latter case genetic algorithms techniques may be 
applicable. All these concepts belong to the so called 'soft methods', closely 
related to artificial intelligence. 
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