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1. Thermodynamics of single- phase materials 

1.1. Introduction 

Basic equations governing thermo-mechanical processes at the continuum 
scale compose of two sets of equations: conservations laws and constitutive 
relationships. Conservation laws are not specific to any material type and 
have a common form for solids, liquids, or gasses. In continuum mechanics, 
conservation laws are postulated as axioms of continuum theory. It is also 
possible to derive balance laws for single-phase materials by averaging a 
molecular description of materials (see e.g. Murdoch and Bedeaux, [15t). 
Conservation laws for multiphase systems have been also derived by means 
of averaging, either starting at the molecular level (see e.g. Murdoch and 
Kubik, [16); Murdoch and Hassanizadeh, (17]), or at the pore scale (see 
e.g. Hassanizadeh, [6, 7); Gray and Hassanizadeh, [12, 14]) . Constitutive 
relationships are specific to a given material type. They describe material 
behavior such as elasticity, viscosity, heat conductivity, diffusion, etc. 
Constitutive relationships have been often proposed as empirical equations. 
But, in continuum mechanics, a systematic procedure has been developed 
for obtaining constitutive relationships. This procedure was developed by 
Coleman and Noll, [4) . It is based on the exploitation of the second law of 
thermodynamics. 

In this article, we describe the basis of Coleman and Noll method 
of development of constitutive relationships for saturated porous media. 
Conservation laws for both single- and multiphase systems are considered 
as given. First, we illustrate the method of elastic solids and viscous fluids. 
Then , we give an account of obtaining constitutive equations for flow of a 
compressible fluid in a deformable solid and the dispersion of solutes in a 
porous medium. 
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182 S. MAJID HASSANIZADEH 

1.2. Kinematics 

1. 2.1. Motion and deformation 

Consider a body, composed of a single-phase material and occupying a volume 
V. Associated with the body is a measure called mass. The mass of a 
body is assumed to be non-negative, additive, and indestructible. A point 
of departure of continuum mechanics from discrete mechanics is to assume 
that the mass is absolutely continuous in the space occupied by the body. 
Therefore, it is possible to define a mass density p: 

dM dlv10 
P = dV = dVo O ::; p < 00 ' (l.la) 

such that 

M= lpdv, (1.1 b) 

where Mo is the initial mass of the body and M is the mass at a later time. 
The indestructibility of mass requires that !vi = M 0 . 

Each and every mathematical point is occupied by a material point. A 
material point is an infinitesimal element of volume at the scale of the 
continuum. Each point is a large collection of molecules of the matter 
constructing the body. A point has a mass and all other properties that 
will be defined and assigned to the body itself. 
The coordinate of a material point at time t = 0 is denoted by X. The motion 
of the body carries the material point to a new position with coordinate x, 
at a later time t. Because we assume that matter is continuous and remains 
continuous during displacement, there must be a unique correspondence 
between x and X. That is, a material point occupying the reference position 
X can not be found at two different positions at a later time. Also, no region 
of positive finite volume of matter will deform into a zero or infinite volume. 
Taking the parameter time into account, we can write: 

x=F(X,t) (1.2a) 

This is called motion and the transformation F denotes the motion. One may 
also define inverse motion: 

X= F-1 (x, t) (1.2b) 

The union of all X 's is called the "reference configuration'' and the union of 
all x's is called the "deformed configuration." The components of x and X are 
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denoted by Xk and Xk, respectively. Note that capital subscripts designate 
components of a tensor in the reference configuration, whereas small 
subscripts indicate components of a tensor in the deformed configuration. 

Displacement is the new position of a point, x, with respect to its old position, 
X . 

u = u(X, t) = x- X, (1.3) 

where u is the displacement vector. If different points of a body undergo 
different displacements (or more generally different motions), we will have 
deformation. Displacement tensor is given by the gradient of motion and is 
denoted by FkK or xk,K: 

(1.4) 

where GRAD denotes the gradient of a function with respect to the material 
coordinate. Note that this tensor is not necessarily symmetric. Some other 
measures of deformation are: 

C K L = FkK FkL Cauchy Deformation Tensor (1.5a) 

1 
EKL = 2 (CKL- <5KL) Lagrangian Strain Tensor (1.5b) 

These are obviously symmetric tensors. The determinant of the 
displacement tensor is called the jacobian of motion, j, defined as: 

(1.6a) 

If an initial material volume dVo is changed into dv as a result of motion, 
one will have, Eringen [5]: 

dv = jdVo. (1.6b) 

1. 2. 2. Velocity and acceleration 

Velocdy of a material point is the rate of change of position of that point 
with time: 

v = ax (X, t) I = Dx = au (X, t) I 
at x Dt at x 

(1.7) 

The second part of this equation follows from the definition of displacement 
vector u (equation 1.3), and the fact that X is independent of time. Next, 
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184 S. MAJID HASSANIZADEH 

acceleration of a point is defined as the rate of change of its velocity with 
time: 

(1.8) 

D 
Note that the symbol Dt denotes a material time derivative; i.e. it is the 

derivative of a material property of a point moving with the motion of that 
point (keeping X constant). For a material property '1/J, it is defined as: 

D'ljJ (X, t) = 8'1/Jl 
Dt at x 

(1.9a) 

If, however, '1/J is expressed in terms of spatial position x, then (1.9a) becomes: 

(1.9b) 

Then, one can show that, Eringen, [5]: 

n· J . 
Dt = J Vk,k (1.10) 

In addition to velocity and acceleration, we need to define a number of 
other basic properties. These are linear momentum, angular momentum, and 
kinetic energy: 

(Linear) Momentum: pv 

Angular Momentum: px x v 

Kinetic Energy: ~ pv · v = ~ pv2 

1.3. Fundamental axioms of physics: conservation laws and law of 
entropy 

The behavior of materials is described by a number of physical 
laws augmented by many (physically-motivated) assumptions. The most 
important set of laws are for mass, momentum and energy. These laws are 
valid for any type of material (solid, liquid, gas, or any mix of them). 
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1. 3.1. Conservation of mass 

Because mass is indestructible, the total mass of body defined in equation 
(l.lb) must be constant for all thermodynamic processes. Thus, one has: 

(l.lla) 

Next, we em ploy relationship ( 1. 6b) to write this integral in the material 
frame of reference such that the material derivative may be moved into the 
integral: 

Dl Dl. l[·Dp Djl l[ ·Dp . l D pdv=-D pJdv= J-D +p-D dv= JD+pJVk,k dv=O, 
t v t \t() \!() t t \t() t 

(l.llb) 

where equation (1.10) has been used to obtain the last term. Now, equation 
(1.9b) is used again to transform this integral to the deformed frame of 
reference: 

We can now write this equation in a local form: 

op 
&t + (pvk),k = r, 

which must be subject to the condition that: 

fv rdv = 0 

(1.12a) 

(1.12b) 

Often we assume that r = 0 identically everywhere and all times such that: 

(1.13a) 

Theories based on this assumption are called 'local theories'. For nonlocal 
theories one must use equations (1.12a) and (1.12b). 
An alternative form of mass balance equation may be obtained from the 
definition (l.la) of mass density which yields: pdv = podvo. Using equation 
(1.6b), this expression becomes: 

PJ = Po (1.13b) 
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186 8. MAJID HASSANIZADEH 

1.3.2. General form of conservation equations 

Equations of conservation of mass, momentum, energy and entropy can 
be written in a general form as given below for a generic thermodynamic 
property 'lj;: 

a~'l/J + (p'l/Jw.) ,e - ie,e - pf = pG , (1.14) 

where it is the non-convective (or the conductive) flux of 'lj;, f is its external 
supply, and G is the rate of net production of 'lj;. Specific choices for 'l/;, it,f, 
and G will yield various conservation equations: 

For mass: '1/J = 1; ie = 0; f = 0; G = 0 

For momentum : '1/J = vk; ie = tke; f = 9k; G = 0 

For energy: '1/J = E + ~vkvk; ie = Qe + tkevk; f = h + gkvk; G = 0 

For entropy : '1/J = S; ie = <Pe; j = b; G = r 
For angular momentum : '1/J = EkmnXmVn; ie = EkmnXntne; f = EkmnXm9n; G = 0 , 

where tke is the stress tensor, 9k is the external supply of momentum (e.g. the 
gravity vector), E is the internal energy density, qe is the heat vector, his the 
external supply of energy (e.g. through radiation), Sis the internal entropy 
density, ¢e is the entropy flux vector, b is the external supply of entropy, 
r is the rate of net production of entropy, and Ekmn is the permutation tensor. 

1.3.3. Second law of thermodynamics 

It is evident from the above that the rates of net production of mass, 
momenta, and energy are zero; as these quantities are known to be 
conservative. Entropy of the system, however, is not conservative. The 
second law of thermodynamics requires that the rate of net production of 
entropy, r, must be non-negative for all possible thermodynamic states. The 
mathematical expression of this law is given as: 

(1.15) 

This is an extremely important restriction and it will be shown that this 
requirement plays an important role in developing constitutive relationships. 
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1.4. Constitutive theory; general axioms 

1.4.1. Philosophy 

In proposing conservation laws, no reference was made to the constitution 
of the matter. Thus, it is not surprising that conservation equations, 
supplemented by boundary and initial conditions are inadequate to fully 
determine the thermodynamic state of various systems, except possibly 
for non-conducting rigid materials (mechanics of rigid bodies). Therefore, 
constitutive equations are needed to describe the behavior of materials to be 
studied. 

The "general behavior" of a medium (or system) is the response of that 
medium to internal and/or external changes. Thus, in the formulation of 
constitutive equations, one should have an a priori (even though crude) 
knowledge of the range of phenomena to be studied and the expected behavior · 
of the material. 

In continuum mechanics, materials are identified with their constitutive 
equations. Conversely, a given set of constitutive equations is a model that 
characterizes certain materials. Nothing but experience and experiments 
can verify whether a constitutive model can properly describe a particular 
material within a range of thermodynamic states of interest. 

These remarks must not imply that the constitutive theory is arbitrary 
and unsystematic. On the contrary, there are certain mathematical and 
physical principles which must be satisfied. These are commonly presented 
as axioms of constitutive theory. In this section, these axioms are briefly 
described. For a detailed treatise of the constitutive theory see, for example, 
the work of Eringen, [5]. 

1.4.2. Axioms of causality and determinism 

Axiom of causality states that certain properties of the system may be 
chosen as self-evident observable effects in every thermomechanical behavior 
of the body. The remaining system properties and quantities (other than those 
directly derivable from the observable effects) are considered to be causes. 
The causes are postulated to be dependent on the observable effects (axiom of 
determinism). 

For our constitutive equations, we identify the observable effects motion and 
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temperature, x(X, t) and B(X, t), as the independent constitutive variables. 
Then, other properties, namely, stress, heat, energy, and entropy are chosen 
to be dependent constitutive variables. 

The axiom of determinism states that the values of thermodynamic 
constitutive functions (tke, qk, E, S) at a given material point X and a given 
time t are determined by the history of the motion and temperature of all 
material points of V at all past times. Thus, a typical constitutive equation 
should read: 

.PI = .P [x(X', t'), II(X', t'), X, t] X' E V and 0 ::; t' ::; t , 
X,t 

(1.16) 

where X' denotes all points of the body Vand t' denotes all past times; thus 
not only the point X and the time t, at which 'ljJ is determined. 

1.4.3. Axioms of neighborhood and memory 

For many thermodynamic processes, one can safely assume that the values of 
independent constitutive variables at distant material points (i.e. far from X) 
and at distant past (compared to the present timet) do not affect appreciably 
the values of dependent constitutive variables at X and t. In order to be able 
to formalize this statement, let's expand x and B in a Taylor series around 
the material point X: 

(1.17a) 

A similar equation can be given for B (X~, t'). Thus, a dependence 
on X (X'' t') ' e (X'' t') may be replaced by a dependence on 
Xk (XK, t')' Xk,K (XK, t')' B(XK, t'), e,K(XK, t') and higher order 
derivatives. Neglecting derivatives of higher than the first order in the 
constitutive equation, (1.16) may be replaced by: 

'1/JI = '1/J (xk (XK, t'), xk,K (XK, t'), e (XK, t'), e,K (XK, t'), xK, t) 
Xt 

' (1.17b) 

Similarly, we can expand Xk (XK, t'), xk,K (XK, t'), B (XK, t'), and 
B,K (XK, t') in a Taylor's series around time t and then neglect terms of 
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higher than first order. For example, we get: 

Xk (KK, t') = Xk (XK, t) + aax~ I [t'- t] + ... 
t t'=t 

= X k ( K K' t) + v k (X K' t) [ t' - t] + . . . ' (1.18a) 

Xk,K (KK, t') = Xk,K (XK, t) + a~K lt'=t [t'- t] + .. . 

= Xk,K (XK, t) + Vk,K (XK, t) + ... , (1.18b) 

where the definition of the velocity vector is used in getting the second parts 
of these equations. Thus, a dependence on Xk (XK, t') may be replaced by 
a dependence on Xk (XK, t), vk (XK, t), and Xk,K (XK, t') may be replaced 
by Xk,K (XK, t) , Vk,K (XK, t) and higher order derivatives. Once again, 
neglecting derivatives of higher than the first order in the constitutive 
equations will allow us to replace the general form (1.16) with the following 
simpler relationship: 

(1.19) 

where an overdot denotes a material time derivative. By simplifying the 
general form (1.16) to this simpler relationship, we have already taken a 
number of important steps in restricting our constitutive model to be valid 
only for certain classes of materials. Materials described by such constitutive 
equations are called simple materials. 

1.4.4. Axiom of objectivity 

This axiom stems from the physical consideration that the behavior of a 
material cannot depend on the motion of the observer. If our frame of 
reference undergoes a rigid translation b( t), a rigid rotation Q ( £), and if 
the time origin is shifted by a constant a, then, the position vector x in the 
new reference frame and the shifted time i = t - a will become: 

x(i) = Q(i)x + b(t) (1.20) 

subject to QQT = QTQ = I, where I is the unit tensor. A carret 
denotes a transformed variable. Now, according to the axiom of objectivity, 
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the constitutive functions must be form-invariant for all proper orthogonal 
transformations Q(t), all translations b(t), and any constant a. This means 
that all constitutive variables must be objective. 

To illustrate these concepts, let's consider some of the variables in the 
constitutive relationship (1.19). First, we can show that x is not objective. 
This can be verified by choosing the following admissible transformations: 

Q = I; b = -x; and a = 0 

Then, (1.20) yields: 

x(t) =X- X= 0 

which means that a dependence of constitutive functions on x is not 
permissible. 

To investigate the consequences of the objectivity axiom, the transformation 
rule for velocity is needed. This can be obtained by taking the material time 
derivative of equation (1.20). Using the definition of velocity, we'll obtain: 

• • v(i) =Qx+Qv+b 

It is obvious that velocity is not an objective quantity. Therefore a 
dependence of constitutive function on velocity is not permitted. Further, 
it can be shown that Xk,K should be replaced by Cauchy deformation tensor, 
C K L, or Lagrangian strain tensor, E K L, and Vk,K should be replaced by 
dktXk,KX£,L where dkt is called "deformation rate tensor" and is defined by: 

1 
dkt = V(k,l) = 2 ( Vk,l + V£,k) (1.21) 

Finally, it must be noted that a dependence of constitutive relationships on 
time t is not admissible. This is because if we impose a shift of time only 
(i.e. Q = I, b = 0; and a = t), then the value of constitutive function will 
change only because of the choice of the origin of time. These considerations 
would require the relationship (1.19) to take the following form: 

(1.22) 

We should note that these consequences of objectivity axiom are valid for 
single-phase materials only where only one motion and one velocity field 
exist. 
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1.4 .5. Axiom of admissibility 

The constitutive equations must not violate conservation laws and the second 
law of thermodynamics. This axiom has some very important consequences 
for the form of constitutive equations. Those consequences will be illustrated 
for a number of simple materials in the following section. 

1.5. Constitutive theories for some single- phase systems 

1. 5.1. Thermodynamics of deformable elastic solids 

First, balance laws and the second law of thermodynamics are given: 

Dp 
Dt + pvk,k = 0 or pj =Po, (1.23) 

(1.24a) 

or 

(1.24b) 

(1.25) 

DE 
P- - tkf.Vf. k - qk k - ph = Q , 

Dt ' ' 
(1.26) 

DS 
pf = p Dt - 'Pk,k - pb 2: 0 . (1.27) 

This form of the second law, (the entropy inequality (1.27) is obtained by 
multiplying continuity equation (1.23) by S and subtracting it from (1.15). 

As a special constitutive relationship, it is normally assumed that the external 
supply of entropy is proportional to the external supply of energy, with the 
constant of proportionality being the inverse of temperature: 

b=~ 8>0. (1.28) 

http://rcin.org.pl



192 8. MAJID HASSANIZADEH 

Furthermore, it is helpful to use Helmholtz free energy m constitutive 
relationships: 

A= E- BS (1.29) 

1 
Multiplication of energy equation (1.26) by 0 and subtraction of results from 

equation (1.27) yield: 

p [DA DB] 1 1 
pf = - 0 Dt + S Dt + 0tkt.dkt. + ¢k,k + (} 2 qkB,k 2: 0. (1.30a) 

where 
(1.30b) 

Commonly, in thermodynamics it is assumed that ¢k vanishes identically. 
Note that this is a constitutive assumption that may be relaxed if one wishes. 
Here, we follow suit and in the remainder of this presentation, we assume that 
¢k may be identically set to zero. As a result, the entropy inequality takes 
the following form: 

pf = -- - + S- + -tkt.dkt. + -qkB k > 0 p [DA DB] 1 1 
B Dt Dt B ()2 , -

(1.31) 

Balance laws introduced above constitute five equations for 16 unknowns 
(p, Vk, tkf., E, qk, S, and B). Therefore, we are short of 11 equations. These 
are provided by constitutive equations for tkf., E(or A), qk, S. The external 
body force and the external supply of energy are assumed to be due to gravity 
and radiation, respectively, which are both considered to be known. 

Next, constitutive assumptions are introduced. By definition, an elastic 
material is such a material whose response functions do not depend on 
the rate of deformation. Also, the material behavior is considered to be 
independent of the time rate of change of temperature. Therefore, instead 
of equation (1.22), the following set of constitutive relations is proposed: 

(1.32a) 

(1.32b) 

( 1.32c) 
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Note that p is not included in the list of independent variables because 
from (1.13b) and the definitions of EKL and j (equations (1.5b) and (1.6a), 
respectively) one has: 

1 
j = (2det EKL + 1)2 (1.33) 

According to the axiom of admissibility, these constitutive equations must not 
violate balance laws and the second law of thermodynamics. Thus, we should 
substitute relations (1.32) into the entropy inequality (1.31) and determine 
necessary and sufficient conditions to ensure that the entropy production rate 
remains non-negative for all thermodynamic states. For the first term in the 
inequality, use the chain rule of differentiation to obtain: 

DA 8A DEKL 8A DO 8A DXK 8A DO k 
Dt = aEKL --vt + ao Dt + axK J5t + ao,k D; 

(1.34) 

Note that DXK I Dt is zero because XK and tare independent of each other. 
Also, from definitions of EKL and dkt, we can show that: 

(1.35) 

Therefore, substituting from (1.34) and (1.35) into the entropy inequality 
(1.31) we obtain: 

[
aA l DO [ 8A l 8A DO k 1 pf = -p - + S -+ tkt- p--FkKFtL dkt+---' +-qkO,k ~ 0 
80 Dt 8EKL 80 k Dt 0 

I (1.36) 

This inequality has the following form: 

(1.37) 

where .-\ 1, .-\2 , .-\3 , and .-\4 are functions of EKL, 0, o,k, and XK only. They 
are independent of DO I Dt, dkt, and DO,kl Dt by virtue of our constitutive 
assumptions (1.32). This means that the net entropy production pr is linear 
in DO I Dt, dkt, and DO,kl Dt. The necessary and sufficient conditions for 
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the inequality (1.37) to hold for all possible thermodynamic states (i.e. all 
possible values of EKL, B, B,k, DB/Dt, dkt, and DB,k/Dt) are: 

..X1 =0, ..X2 =0, >.3 =0, >.4 2:0 

Therefore, we obtain the following relations: 

aA =O 
ae,k (1.38) 

(1.39) 

(1.40a) 

where parentheses in the subscripts designate the symmetric part of the 
tensor, defined by 

(1.40b) 

The residual entropy inequality becomes: 

(1.41) 

These results mean that Helmholtz free energy is a functional of E K L, (}, 

and XK only. The same holds for tkl· Note that if B,kwere excluded from 
the list of independent variables in equations (1.32), then we would have 
obtained qk = 0 for all states. That is, a material whose thermodynamic 
state is not affected by the existence of temperature gradients must be a 
non-heat-conducting material. 

Next, the entropy inequality and constitutive relationships are examined 
under equilibrium conditions. First, we define equilibrium to be the state 
for which we have: 

(1.42) 

where le denotes evaluation at equilibrium. From (1.41), it is evident that at 
equilibrium pr will attain an absolute minimum value. The necessary and 
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sufficient conditions for pr to be at absolute minimum are: 

(a) :;k I.= 0 

(b) aft~() I must be positive semi- definite 
,k ,l e 

Applying these conditions to (1.41), we obtain: 

Qkle = 0 

8qk I . ·t· . d fi . 
80 

IS posi IVe semi- e mte. 
,f. e 

(1.43) 

(1.44) 

(1.45) 

(1.46) 

Finally, a linear constitutive theory is developed. Let's expand A and Qk in 
a Taylor's series around EKLand o,k· 

(1.47) 

8qk I 8qk I Qk = -ae- EKL + 
80 

o.~. + ... 
KL o ,1. o 

(1.48) 

Substitution of (1.47) in (1.40a) yields 

(1.49a) 

In the linear theory, one can replace EKLwith the finite strain tensor ekl: 

8A I tki = P -
8 

+ O'kf.mn (0) emn = (tki)o + O'kf.mn (0) emn 
€kf. 0 

(1.49b) 

Assuming that there exists a stress-free state, we can set (tki)o to zero so 
that (1.49b) yields: 

(1.49c) 

http://rcin.org.pl



196 S. MAJID HASSANIZADEH 

This is an extension of the Hooke's law of elasticity (in fact thermoelasticity). 
For an isotropic solid, aklmn must be a fully isotropic tensor. The most general 
form of a fourth-order isotropic tensor is: 

(1.50) 

Upon substitution into (1.49c), we obtain Hooke's Law of linear elasticity: 

(1.51) 

where v and E are elasticity moduli. Similarly, the linearized relationship 
(1.48) for qk becomes: 

(1.52) 

For an isotropic solid, Lktm and ""ki must be isotropic. The most general 
form of isotropic third and second rank tensors are Lklm = 0 and ""ki = ""6kt· 

Therefore, the following relation for qk in an isotropic solid is obtained: 

qk = ""B,t where"" > 0 (1.53) 

where the restriction on"" follows from the equilibrium condition (1.46). This 
is the Fourier's law of heat transfer. 

1.5.2. Thermodynamics of a viscous fluid 

Balance laws and the entropy inequality are the same as those given for 
a solid. However, what makes a fluid distinct from a solid is that it does 
not have a shape of its own. Any deformed configuration, leaving the density 
constant, can be thermodynamically the same as the reference configuration. 
Therefore, one cannot make a distinction between a reference state and a 
deformed state. That means that the distinction between material and spatial 
frame of reference disappears. Then, Xk,K becomes 6k,K and j becomes 1 and 
one cannot talk about Dj / Dt any more. Therefore, Xk,K (or EKL) disappears 
from the list of independent variables and one must use the density p as an 
independent variable. Furthermore, from experience we know that a viscous 
fluid behaviour is sensitive to the velocity gradient or the deformation rate 
tensor. Thus, one can suggest the following set of constitutive equations for 
a thermo-viscous fluid. 

(1.54a) 

http://rcin.org.pl



CONTINUUM DESCRIPTION OF THERMODYNAMIC PROCESSES IN ... 

A = A (p, dke, o, o,k) 

Qk = Qk (p, dke, 0, o,k) 

s = s (p, dke, o, o,k) 

197 

(1.54b) 

(1.54c) 

(1.54d) 

Once again, we substitute these relations into the entropy inequality (1.31). 
For the first term in the entropy inequality, we apply the chain rule of 
differentiation to obtain: 

DA 8A Dp 8A Ddkz 8A DO 8A DO k 
Dt = 8p Dt + 8dkz Dt + 80 Dt + 80,k Dt 

(1.55a) 

The term Dp/ Dt in this equation can be evaluated from mass balance 
equation ( 1. 23): 

Dp 
Dt = - pvk,k = - pdkz8kz (1.55b) 

where the definition (1.21) of dkl has been used. Substitution of (1.55b) in 
(1.55a) and the result in (1.31) will yield: 

pr =- p [ ~; + s] ~~ + [tke + p2 ~; 6ke] dke 

8A Ddke 8A DO k 1 
+ Pad Iit + P ao Dt + oq,ko,k ~ 0 (1.56) 

ki ,k 

Because of our constitutive assumptions (1.54), it is obvious that pf is linear 

in ~~, Dtie , and Drit . Therefore, coefficients of these terms must vanish 
identically and we obtain the following results: 

A= A (p, 0) 

S=-aA 
80 

and the residual entropy inequality becomes: 

pr = [tke + p2 ~; 6ke] dkf + ~qkO,k 2: 0 

Define the equilibrium states to be the ones for which we have: 

(1.57a) 

(1.57b) 

(1.57c) 

(1.58) 
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Equilibrium conditions (1.43) and (1.44) must apply here too. As a result of 
the first condition of equilibrium, we obtain: 

(1.59a) 

where p = p2 ~: is identified as the thermodynamic pressure. We also obtain: 

(1.59b) 

which means there is no heat flux at equilibrium. If we define viscous stress 
tensor Tki = tki + p6kl, then, (1.59a) implies that Tktle = 0; i.e. there is no 
viscous stress at equilibrium. 

A linear theory of viscosity can be developed along the lines that were 
followed for an elastic solid. The results will be: 

(1.60a) 

(1.60b) 

But a simple fluid is by nature isotropic. Therefore, /-Lkimn and other material 
properties in these equations must be isotropic tensors: 

/-Lkimn = /-L16kl6mn + /-L26km6in + /-L36kn6tm 

Kkim = Lktm = 0 

Therefore, equations (1.60) become: 

(1.61) 

(1.62) 

(1.63) 

tki = - p6kt + "Admm6kt + 2J.Ldkt with J.L 2: 0 and 2/-L + 3). 2: 0(1.64) 

qk = K,O,k with K 2: 0 (1.65) 

where ). and /-L are coefficients of bulk and dynamic viscosity, respectively. 
The restrictions on >., J.L, and "' are consequences of the second condition of 
equilibrium (1.44). 
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1.5.3. Thermodynamics of a viscoelastic fluid 

There are a number of models for various types of viscoelastic fluids. One 
possible model is defined by the following set of constitutive equations 

(1.66) 

Similar relations may be written for A, Sand q. Note that both strain tensor 
and deformation rate tensor are among the list of independent variables. 
Exploitation of the entropy inequality will give us: 

(1.67) 

Qk = 0' (1.68) 

(1.69) 

(1.70) 

Note that the stress tensor has an elastic part as well as a viscous part, as 
it should be for viscoelastic materials. Equilibrium conditions and a linear 
theory can be developed in the same way that was done for a fluid and a 
solid. 
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2. Thermodynamics of multiphase systems: porous 
media 

2.1. Kinematics 

Consider a porous medium composed of a deformable rock skeleton 
saturated with a compressible fluid. At the microscale, the scale of the 
pores and grains, the fluid and the solid are modeled as continua with 
thermodynamic phase properties defined continuously over the domain 
occupied by the phase. The fluid and the solid phases are considered to be 
separated at the microscale by sharp interfaces. The interfaces are assumed 
to be devoid of thermodynamic properties, such as mass, momentum, and 
energy. 

In this work, indices f and s are employed to designate the fluid phase 
and the solid phase, respectively. At the macroscale, a two-phase system is 
modeled as a superposition of two continua: fluid and solid. At every spatial 
point and at any instant in time, macroscopic properties are defined for each 
of the two continua which interact and exchange properties. Throughout 
this work, any reference to a phase is actually made to a macroscopic phase 
continuum. Macroscopic quantities are defined at the scale of a representative 
elementary volume (REV) characterized by a length scale much greater than 
that of a pore but much less than that of the full system. All quantities 
introduced are macroscopic. A full description of a multiphase system has 
been developed by Hassanizadeh and Gray, [6, 7], when interfacial properties 
are absent, by Gray and Hassanizadeh, (12], for interfacial properties, and 
by Gray and Hassanizadeh, (14] when common line properties as well as 
interfacial properties are considered. Here, we simply employ the macroscopic 
quantities and balance laws that are defined and/ or derived in Hassanizadeh 
and Gray, [7]. 

At the macroscale in a multiphase system, a body is actually a 
superposition of a number of sub-bodies (equal to the number of phases). 

http://rcin.org.pl



CONTINUUM DESCRIPTION OF THERMODYNAMIC PROCESSES IN . . . 201 

All basic notions introduced for a single-phase body, such as mass, distance, 
deformation, motion, velocity, acceleration, momentum, energy, etc., can 
be employed for each and everyone of these sub-bbdies. However, we do 
not need to consider them as new definitions and postulates, because they 
can be derived from their microscopic counterparts. Ideas presented here 
can be extended to the case of multi-component multi-phase systems (see 
Hassanizadeh, (10]). 

To account for the microstructure of the system at the macroscale, the 
volume fractions of the two phases (c-f and c-8 )are defined. Thus, c-f is the 
fraction of the REV occupied by the /-phase, which is also known as the 
medium porosity, c-. Then, the volume fraction of the solid phase, c-8

, is: 

(2.1) 

The two phase continua, fluid and solid, each undergo independent motions 
as a result of thermodynamic processes. The solid phase motion is defined 
as a transformation F 8 (X 8

, t) that changes the reference configuration xs of 
the solid at time t = 0 to a new configuration x at time t, such that: 

(2.2a) 

The velocity of the solid phase is then defined to be: 

(
8F

8
) v 8 = -- = V

8 
( x, t) at xs 

(2.2b) 

In writing v 8 as a function of x rather than xs, it is assumed that 
transformation (2.2a) is reversible; i.e., there is an inverse motion. This 
will be true if, and only if, the jacobian of the transformation, defined by 
]

8 = det (GRADF8
), is nonzero where GRAD denotes differentiation with 

respect to the reference frame X s. This is commonly assumed to hold in local 
theories of continuum mechanics (see, e.g. [3]). 

To characterize the motion of a fluid phase, a different approach is 
taken. As explained earlier, a fluid does not have a reference configuration, 
certainly not at the macroscale where a fluid is treated as a continuum with 
properties defined as averages of many "packets of fluid". Therefore, we do 
not define a displacement for the fluid. Instead, the motion of the fluid phase 
is characterized by its velocity field vf (x, t). 
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2.2. Fundamental theorems of conservation 

2.2.1. Conservation of mass 

The differential balance of mass for a phase a becomes: 

where 
D0 a 
-=-+v0 ·V 
Dt at 

a= J,s (2.3a) 

(2.3b) 

and fll: is the exchange of mass between fluid and solid phases and is subject 
to: 

(2.3c) 

2.2.2. General form of conservations laws 

For the description of thermo-mechanical processes in a saturated porous 
medium, two sets of macroscopic conservation equations are necessary: one 
for solid and one for the fluid. Equations of conservation of mass, momentum, 
energy, and entropy may be cast in the following general form: 

flOcO 01/JO ... 
___ P __ +Eo povk'lj;k - ik k - Eo Po fa - io - Eo poGo = 0 

Dt I I 

(2.4a) 

subject to: 
(2.4b) 

where if is the transfer of property 'ljJ from the solid phase to the fluid phase 
due to microscale processes. Other symbols are defined similarly to those for 
single - phase materials. 

2.2.9. Second law of thermodynamics 

Here, the question is which one of the following are correct: 

Eapora 2:: 0 (2.5a) 

or: 
(2.5b) 
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We work with the latter one. For a discussion of equations (2.5)_, see 
Hassanizadeh and Gray, [6]. As for single-phase materials, the entropy fluxes 
<pf and <p8 are assumed to be solely due to heat input; and the entropy external 
source terms are assumed to be only due to external energy source terms. 
Thus, for each of the phases, the following relations hold: 

(2.6a) 

(2.6b) 

where (l~ is identified with the experimentally-measured temperature 
function. In developing the constitutive equations, it is convenient to employ 
the Helmholtz free energy function instead of the internal energy. The 
Helmholtz free energies are defined by 

(2.6c) 

2.3. Constitutive theory for a porous medium 

Balance equations presented in the previous section are not sufficient to 
fully characterize a multiphase system. These must be supplemented with 
equations which describe the constitutive behavior of individual phases, and 
interfaces. In developing these constitutive equations, certain mathematical 
principles and physical considerations must be observed. These principles 
are commonly formulated as axioms of constitutive theory. Eringen, [5), has 
proposed eight axioms, described in Section 1.4, to serve as the basis for 
the development of constitutive equations . Here, we adapt and extend these 
axioms for the case of two fluid phases in a porous medium. For a detailed 
description of those axioms, see Hasanizadeh and Gray, [9). 

2.3.1. Axiom of causality 

Independent variables in constitutive relationships for a saturated porous 
medium are considered to be the following self-evident observable effects: 
motions of fluid and solid phases, mass density of fluid and solid phases, 
temperatures of the two phases, and porosity of the porous medium, denoted 
by: 

Fs vf pf ps ()f ()s c , , , , , ,t;;. (2.7a) 
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Note that in the constitutive theory for a solid phase, only the motion and 
temperature were considered to be independent quantities. Mass density 
was not considered to be an independent quantity because it was related 
to the solid phase motion through the mass balance equation. However, in 
the case of multi phase systems, because an exchange of mass between phases 
is possible, the motion of the solid phase and the continuity equation are 
not sufficient to determine its density. Additionally, in the case of saturated 
porous media, the porosity is believed to affect the state of the system and 
should be included in the list of self-evident observable quantities. All other 
thermomechanical quantities that appear in the entropy inequality, and are 
not derivable from the independent variable listed in (2.7a), are considered 
to be dependent constitutive variables. Constitutive equations are required 
for these quantities. 

2.9.2. Axiom of determinism 

Dependent variables of constitutive relationships are identified to be 
members of the following set: 

{s} - {AI As I s I s ! s T~f ~I ~ Q~f} - , ,1],1],t,t,q,q, ,e,e, (2.7b) 

According to the axiom of determinism, each of the quantities in the list 
(2.7b) may be proposed to be a function of all quantities in the list (2.7a) at 
all points of the system and and at all past times. However, such a general 
dependence on independent variables is often too extensive and may not be 
necessary for all constitutive functions : Simplifications may be introduced 
guided by other axioms of the constitutive theory formulated below. 

2.9.9. Axiom of restricted dependence 

Based on the known and observed behavior of various components of a 
multiphase system, a restriction of the dependence of constitutive functions 
on independent variables is allowed. 
This axiom allows us for utilization of information available from general 
experience with various elements ofa multiphase system at an early stage of 
development of constitutive equations. A specific application of this axiom 
is to the dependence of free energy functions . Given the fact that various 
phases are actually separated at the microscale, the free energy of one phase 
is not expected to depend on the state variables (such as temperature, 
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density, volume fraction) of another phase. Furthermore, the dependence of 
free energies on certain independent variables may be limited based on past 
experience in the development of the constitutive theory. Note that these 
discriminations are always subject to experimental verification at a later 
stage. In particular, the following formulation of constitutive relationships 
for free energies are proposed: 

(2.8a) 

AI (X8
, t) = AI [PI (x', t') , ()I (x', t') , c (x', t') , X 8

, t] (2.8b) 

Note that except for the solid phase motion, all other observable variables 
are written as functions of the spatial coordinate x'. This is allowed because 
of the reversibility of the motion. The axiom of restricted dependence is in 
contrast to, and replaces, the axiom of equipresence (see [5)) employed in the 
constitutive theory of single-phase materials. 

2.3.4. Axiom of objectivity 

As explained in part I, according to the axiom of objectivity, the 
constitutive functions must be form-invariant for all proper orthogonal 
transformations Q ( t), translations b ( t), and any constant a. Thus, for 
example, for a typical constitutive function, we must have: 

where: 
F8 (xs', i') = Q (t') F 8 (xs ', t') + b (t') (2.10) 

As a special transformation of the frame x, consider the case that: 

Q(t') =I, b(t') = -F8 (X8 ,t') and a=O (2.11) 

Then, the following transformation rule for F 8 
( xs', t') is obtained: 

(2.12) 
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It can be readily shown that (2.12) remains invariant for any transformation 
of the spatial frame of reference. Thus, the axiom of objectivity requires 

that the constitutive equations must depend on F 8 
( xs 1

, t') in a special 

way, namely the combination on the right side of (2.12). Thus, for example, 
equation (2.8a) must be replaced with: 

A 5 (X 5 , t) = A 5 [Ps ( x', t') , 05 
( x', t') , F5 (X s ' , t') - F5 (X s, t') , c ( x', t') , X S, t J 

(2.13) 

To complete the development of a constitutive theory and then mo­
del a system, a frame of reference must be selected. Based on practical 
considerations and the fact that the solid phase provides the structure of 
the domain through which the flow takes place, the solid phase motion is 
chosen as the reference motion in this development. 
To further investigate the consequences of the objectivity axiom, the 
transformation rule for velocity must also be investigated. This can be 
obtained by taking the time derivative of equation (2.10): 

v8 (X 8 
1

, t1
) = Q ( t1

) F8 (X 8 
1

, t1
) + Q ( t) V 8 (X 8 

1

, t1
) + b ( t') (2.14) 

Also, for the fluid velocities, where no reference configuration is defined, the 
transformation rule is assumed to be given by a similar relationship: 

.yf ( X8 
1

, i') =Q (t1
) F8 

( X 8 
1

, t1
) + Q (t) vf ( X 8 

1

, t') + b (t') (2.15) 

It is obvious that neither v8 
( xs 1

, t1
) nor vf ( X8 

1

, i') is objective. However, 

their difference is, as we obtain: 

{ .yf (X 8 
1 

, i 1
) - v8 (X s 

1

, i 1
) } = Q ( t) { vf (X 8 

1

, t') - v 8 (X 8 
1

, t') } 
(2.16) 

Now, consider, for example, the momentum exchange term Tf . This 
quantity may depend, among other variables, on the motions of the fluid 
and solid phases: 

Tf (X8 ,t) = Tf (vi (x',t') ,v8 (x',t1
) , ••• ,X8 ,t) (2.17a) 
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Here again, the velocity is written as a function of the spatial coordinate x'. 
The axiom of objectivity requires (2.17a) to be replaced with: 

Tf (X8
, t) = Tf ( { vf (x', t')- v 8 (x', t')}, ... ,X8

, t) (2.17b) 

Also, as showed in Part I, the axiom of objectivity leads to the result that 
constitutive equations must not be a function of time, t. 

2.3.5. Axiom of smooth neighborhood 

The values of independent constitutive variables at distant points do not 
affect appreciably on the values of constitutive functions at a given point of 
interest. 
The general constitutive relationships allow the possibility that the values 
of state variables at distant points may affect the behavior of the system at 
point X (or X 8

). However, for many materials and in commonly-encountered 
thermodynamic processes, only points in the immediate neighborhood are 
found to appreciably affect the value of dependent constitutive variables at 
a point of interest. A hierarchy of higher-order theories may be developed 
depending on the degree of dependence on farther points. This may be 
formalized by expanding the independent constitutive functions around the 

point X (or X 8
). So, for example, the function F 8 (xs 1

, t') is expanded in a 

Taylor series around point xs to obtain: 

F 8 (x81 ,t') = F(X8 , t')+ (xsl -xs) ·GRADF8 (X8 ,t')+ 

~ [ (X8 I- X 8 )(X8 I- xs)] :GRAD GRADF8 (X8
, t') + ..... (2.18) 

2 

where ": 11 denotes a double inner product between two tensors (in this case 

between ( xs 1

- xs) ( xs 1

- xs) and GRAD GRAD). This formulation 

suggests that a dependence on ps ( xs 
1

, t') may be replaced by a dependence 

on F 8 (X8
, t') and its gradients. The larger the number of higher order 

gradients included, the greater the influence of distant points on the behavior 
of the system at point X s . Similar arguments hold for a function such as 
(} (x', t'), which may be replaced by (} (x, t') and its gradients. As an example, 
consider the application of this principle to equation (2.13). Substitute from 
(2.18) into (2.13) (note that F (X 8

, t') cancels out), and keep first order 
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gradients of all terms only. Then the functional relationship for As takes 
the form: 

A 8 (X8
, t) = A 8 

[ p8 (x, t'), \7 p8 (x, t'), 88 (x, t'), \788 (x, t'), 

GRADF8 (X8
, t'), e-(x, t'), \le-(x, t'), xs J (2.19) 

Corresponding results are obtained for other constitutive functions that 
depend on the displacement vectors of the solid phase and/ or the fluid-solid 
interfaces. As another example, consider the constitutive equation (2.17a). 
The application of the axiom of smooth neighborhood results in: 

Tf (X 8
, t) = Tf ( { vf (x, t') - v 8 (x, t')}, \lvf (x, t'), ... , X 8

, t) (2.20) 

where the gradients of v 8 have not been included. 

2. 3. 6. Axiom of smooth memory 

The values of independent constitutive variables at the distant past do not 
affect appreciably the values of constitutive functions at the present time. 
This axiom is the counterpart of the axiom of smooth neighborhood. It 
regards the influence of the past history of the system on its present behavior. 
To investigate the consequences of this axiom, the independent variables 
must be expanded in a Taylor series around time t. This is done with a 
fixed frame of reference, selected here to be fixed to the solid phase motion 
as mentioned earlier. Thus, for example in equation (2.19), the dependence 
on GRADF8 (X8

, t') may be replaced by a dependence on GRADF8 (X 8
, t), 

its time derivative, which is GRADv8 (X 8
, t) or \7v8 (x, t), and higher order 

derivatives. The larger the number of higher order time derivatives included 
in constitutive relationships, the larger the influence of the distant past on the 
present behavior of the system. In a similar fashion, independent variables 

• 
such as 8 (x, t') will be replaced by 8 (x, t), (} (x, t), etc., where the overdot 
denotes the time derivative. The application of the axiom of smooth memory 
to constitutive relationships (2.19) and (2.20), when dependence is limited 
to first derivatives, leads, respectively, to: 

A8 (X 8
, t) = A• [p• (x, t), \1 p• (x, t), ;s (x, t), o• (x, t), \188 (x, t'), 

0· (x, t), GRADF· (X 8
, t), c(x, t), \lc: (x, t), E (x, t), x•] 

(2.21) 
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Tf (X 8
, t) = Tf [pf (x, t), \1 pf (x, t)) (x, t), IJf (x, t), \l(Jf (x, t), 

;! (x, t) 'vf• (x, t) '\lvf (x, t) '£ (x, t) '\lc: (x, t) '~ (x, t) 'x•] (2.22) 

where vfs (x, t) denotes the relative velocity of fluid with respect to the solid. 
Note that the dependence of Tf on other variables has been added. Similar 
relationships apply for other constitutive functions. 

2.3. 7. Axiom of admissibility 

All constitutive relationships must be consistent with the principles 
of conservation of mass, momenta, and energy, and the second law of 
thermodynamics. 
This axiom requires that in the formulation of constitutive equations, the 
basic laws of continuum mechanics must not be violated. For example, certain 
independent variables may be shown to be actually dependent on each other 
when conservation laws are examined, in which case one of the two variables 
should be eliminated from the list of independent variables. Also, restrictions 
on the allowable functional dependence of a variable such as in (2.21) or 
(2.22) on independent variables are obtained through imposition of inequality 
(2.7a), the second law of thermodynamics. 

The consequences that this axiom may have on constitutive relations 
depend on the particular choice of the functional forms and entails lengthy 
algebraic manipulations (e.g. Ingram and Eringen, [5]; Bowen, [13]; Gray and 
Hassanizadeh, [13]). 

2.3.8. Axiom of geometric closure 

The decomposition of the densities of the phases, from mass per total 
volume to mass per geometric region introduces the variable E into the 
formulation . Closure of the system of equations requires that a relationship 
for the porosity variable in terms of the other independent system variables 
be introduced. 
In the mechanics of single-phase continua, one may consider the mass balance 
equation as an equation for the mass density, the linear momentum equation 
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as a relation for the deformation vector of a solid or the velocity vector of a 
fluid, and the energy equation as an equation for the temperature. In the case 
of multiphase systems, in passing from the microscale to macroscale a new 
set of primary variables related to the microscale geometry is introduced. 
Examples are porosity, saturation, and interfacial area density. However, 
no additional balance laws are obtained. Therefore, a deficit of primary 
equations exists. This is commonly referred to as the closure problem. 
To resolve the closure problem, an additional constitutive equation is needed. 
This is proposed in the form of a relationship among intrinsic mass densities 
and porosity. Taking the axiom of restricted dependence into account, the 
following equation is proposed: 

~ [Ps (x',t') , pf (x',t') ,08 (x',t') , of (x',t') ,E (x',t') ,xs] = 0 (2.23) 

This equation may be considered as a constitutive relationship for c. Now, if 
axioms of objectivity, smooth neighborhood, and smooth memory are applied 
to this functional relationship, one obtains: 

~{pf (x, t), \7 pf (x, t), ;1 (x, t), IJ! (x, t), \i'IJf (x, t), 81 (x, t), p8 (x, t) , 

• • 
V' p8 (x, t), p8 (x, t), 08 (x, t), V'08 (x, t'), 08 (x, t) , 

c:(x, t), V'c (x, t) ,E (x, t), x•} = 0 (2.24) 

where only first-order derivatives have been kept. This equation can be solved 
to obtain a relationship for E. 

2.4. Single - phase flow in non - reacting rigid porous media 

2.4 .1. Balance laws 

Consider a medium composed of an inert fluid phase and a rigid solid phase. 
Balance laws are given by equation (2.4a) except that there would be no 
mass exchange: 

(2.25a) 
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(2.25b) 

a aDaEa ta da a a aha QAa 0 c p -- - kf. kf. - qk k - c p - = Dt • 
(2.25c) 

(2.25d) 

subject to 

(2.26a) 

N 

L(Tkvk + Qa) = 0 (2.26b) 
a 

(2.26c) 

We now assume that the solid and fluid are in local thermal equilibrium such 
that 

(2.27) 

Combining equations (2.6a) through (2.6c) and (2.25a) through (2.27) and 
substitution into the second law of thermodynamic, inequality (2.5b ), we 
obtain the following inequality: 

Per=- f f [D' AI sJD'O] - s s [DS AS ssnso] 
c P Dt + Dt c p Dt + Dt 

+ t£ed£e + t~ed~e- T{ v£
8 + ~ ( q{O,k + q:o,k) ~ 0 (2.28) 
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2.4.2. Constitutive equations 

Assuming the solid phase to be rigid means that p8 remains a constant and 
diet = 0. Then, from the solid's equation of mass balance, we obtain £ 8 p8 = 
constant, which means that£= (1- £ 8

) is also constant in time. That is, one 
does not need to include £ as an independent variable. Therefore, we employ 
the following set of constitutive equations: 

a= J,s (2.29) 

Note that we have left out any dependence on £, p~k' EkL, d££ and O,k· 

Therefore, we are considering the fluid to be nonviscous (no d££), the 
medium to be non-heat-conducting (no O,k) and the solid is rigid (no EkL). 
Substitution of equation (2.29) and the like in (2.28) yields: 

(2.30) 

Applying argument similar to the case of single-phase materials, about 
linearity of (2.30) in iJ' d££, and o,k, we obtain: 

(2.31a) 

(2.31b) 

1 _ ( 1)2 aAI 
p - p f op (2.31c) 

(2.3ld) 
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and the residual entropy inequality becomes: 

pr = - ( tf - pf c ,k) v£ s ~ o (2.31e) 

Note that although c,k is a constant of the medium, it may be nonzero if the 
medium is inhomogeneous. Define equilibrium to be the state for which 

Therefore, at equilibrium we will have 

rfi. = r/c,k (2.32a) 

Let's propose a linear relationship for i'f that would be valid near 
equilibrium: 

(2.32b) 

Because of (2.32a), we obtain: 

Tf = pf c~k - Rkev{ s (2.32c) 

~~I where Rkt = - ~s . Substitute this result in (2.31e) to get: 
ovl e 

(2.33) 

Applying the second condition of equilibrium requires ~
2 

pr f = Rkt to be 
avl savl s 

positive semi-definite. From this, we also obtain the interesting result that 
Rkt, and therefore the permeability tensor, is symmetric. Now, substitute 
(2.31a) and (2.32c) in the equation of motion of the fluid to get: 

(2.34a) 

Neglect the acceleration term and denote the inverse of Rkt by Kkt to obtain 
Darcy's law: 

(2.34b) 
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2.5. Single - phase flow of a viscous fluid in a heat - conducting 
deformable solid 

In this case, because the solid is deformable, the volume fraction c 
may also vary. However, c is not needed to be included in the set of 
independent variables if Ei:e is already included. This is because the solid 
phase is nonreacting and, thus, the balance of mass of the solid becomes 
c8 p8 j 8 = cgp0. Then because the jacobian j 8 can be obtained from Ei:e, 
knowing j 8 and p8

, we can calculate c. We select the following set of 
inqependent constitutive variables: 

Application of the second law of thermodynamics yields: 

where 

s s f ~ s 0 A 
8 

ps ps s f ~ s 
tke = -c P uke + P oEs kK tL = -£ P Ukt + Etke 

KL 

1 _ ( ')28Af p- p -, 8p 

r{ = P' c ,k + r{ 
where etict is the effective stress tensor of the solid phase. 

Constitutive functions are subject to the residual entropy inequality: 

(2.35) 

(2.36a) 

(2.36b) 

(2.36c) 

(2.36d) 

(2.36e) 

(2.37a) 

(2.37b) 
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(2.38) 

Define the equilibrium state such that: 

(2.39a) 

Then, from the first condition of equilibrium we obtain: 

(2.39b) 

A linear theory for f{ yields 

(2.40) 

Substitution of equations (2.36d), (2.37b), and (2.40) into the equation of 
motion of fluid yields: 

(2.41) 

Or after rearrangement: 

(2.42) 

It is apparent that in order to obtain Darcy's law one has to neglect 
inertial terms, (macroscopic) viscous terms, and the effect of temperature 
gradients. It is also interesting to note that from equations (2.36d) and 
(2.36e), neglecting viscous stress, one has the following well-known equation 
for total stress in the porous medium: 

(2.43) 

This equation was first suggested by Terzaghi. 
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2.6. Transport of a dissolved solute in a porous medium 

2. 6.1. Balance laws 

Consider a medium composed of one fluid phase and one solid 
phase. The fluid phase is made of two components: pure water 
(designated by superscript w) and a solute (designated by superscript i), 
which are miscible at the microscopic level. Assume that both the solid 
phase and the fluid components are non-reacting, are locally in thermal 
equilibrium, and do not conduct heat. Also, consider the solid phase to be 
rigid so that porosity is constant in time. 
Balance laws are given for mass and momentum of pure water and solute 
components, and for energy of the fluid phase as a whole and the solid phase. 

Water mass balance: 
(2.44) 

Solute mass balance: 

(2.45) 

Water momentum balance: 

(2.46) 

Solute momentum balance: 

Di i J · vk · f · · ~ · 
E p"' -- - tl:e e - E p"' 9k - Tf. = 0 

Dt ' 
(2.47) 

Fluid phase energy balance: 

Efpf{)Ef +EfpfvfEJ -tf vf -Efpfhf -Qf =0 8t k ,k ki i,k (2.48) 

Solid phase energy balance: 

8E8 ~ 
Es ps __ + Es psvf:Esk- t~evk e- Es pshs- Qs = 0 

8t ' ' 
(2.49) 

Because we are commonly interested in the mean motion of fluid phase and 
the dispersive motion of the solute, we recast equations of conservation of 
mass and momentum accordingly and obtain the following equations: 
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Fluid Mass Balance: 
nJ pf J 
--+pfv =0 

Dt k,k 

where 
pf = pw +pi 

pf v£ = /v~ + pwvk' 

Solute Mass Balance: 

where 

Fluid Momentum Balance: 

Dfvf 
Efpf __ k _ tf _ Efpfgf _ tf = 0 

Dt ki,i k k 

Solute Momentum Balance: 

(2.50a) 

(2.50b) 

(2.50c) 

(2.51a) 

(2.51b) 

(2.51c) 

(2.51d) 

(2 .52a) 

( 
i wi w ) f f i ( i w) 

tki,i- wwtki,i - E P W 9k- 9k 

- ( i'~- t;:) = o (2.52b) 
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The expanded form of the entropy inequality will read: 

DIAl ( ) D
8
A 8 

p() r = -€1 pi __ + t1 + cl pi wiui ·ui d1 - c8 p8
--- t8 d8 

Dt kt k t kt Dt kt kt 

-T/ v£• + [ (t~,- :: tJ:,) - £! pf w' (A'- Aw} hkt] u~.t 

- [ (T:- T;:) + £! pf w' (A'- Aw) ,k +(A'- Aw) (£1 pfw') ,k + tJ:, (::) ] u~ 
,l 

-(EfpfSI +£
8 p8 S8

) z;;: + ( q£ ;q: -£1pfw'S'v1') O,k ~0 
(2.53) 

2. 6. 2. Constitutive equations 

We select the following sets of dependent and independent variables: 

D d t . Af As Ai AW ti sf ss TA f TA i TAw epen en . , , - , ki' Qk, , , k, k - k 

Consequences of the axiom of admissibility will be ([11 ]) : 

(2.54a) 

(2.54b) 

(2.54c) 

(2.54d) 

(2.54e) 
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where 

where 

f _ ( !)28Af 
p- p -! {)p 

*i . aAJ *i *i ( J i ) 
J-L= I-Ll - 1-Lw = -

8 
. ; Thus : 1-L=J.L p , w , B 

wl 

The residual entropy inequality becomes: 

(2.54f) 

(2.54g) 

(2.54h) 

(2.54i) 

(2.55) 

Substitution of equations (2.54e), (2.54g), (2.54i), and (2.54j) in the equations 
of motion of the fluid and the solute yields 

Dfvf ( ) efpf __ k + ef Pf _ pfgf _ ff = 0 
Dt ,k k k 

(2.56a) 

(2.56b) 

Neglect inertial terms and assume that the only body force present is the 
gravity, 9k · Then, these equations become: 

(2.57a) 

(2.57b) 

http://rcin.org.pl



220 S. MAJID HASSANIZADEH 

From (2.55), we can say that at equilibrium we should have: 

(2.58) 

Recall that f{ and ~k are still general functions of pf, wi, w~k' v£8
, u1, and e. 

Let's propose a linear relationship for f{ and "1-k: 

(2.59) 

(2.60) 

*i 
Now, substitute these relations into equations (2.57a) and also expand 1-L,k 

using chain rule to obtain 

! ( f J ) _ Rf fs nf i c P,k - P 9k - - keve + keue (2.61) 

(2.62) 

Solve these equations for v/8 and u1 to obtain: 

f s _ Kf ( f J ) nf f Df i vk - - ki P,e - P ge - keP,e - kew,l (2 .63) 

ff i i i i i if i (! f) c P w uk = Jk = -Dkew,e- BktP,e- Kke P,e- P 9e (2.64) 

For low concentration situations, these equations reduce to the classical 
Darcy's law and Fick's, respectively: 

(2.65) 

J i Di i 
k =- kew,e (2.66) 
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2.7. Transport of a large concentration solute in a porous medium 

This is the same as the previous example, only the solute is considered 
to be present at a high concentration at parts of the system. This means 
that large concentration (or mass fraction) gradients exist. In fact, balance 
laws and basic constitutive equations will be the same as those developed 

in Section 2.6 until equations (2.59) where f£ and ;\ are assumed to be 

linear functions of v£8 and u~. This is because large mass fraction gradients 
may lead to large dispersive fluxes u~ (or J~). Therefore, the assumption of 

linearity for ~ k does not hold when large mass fraction gradients are present. 
Instead, (2.60) should be replaced with: 

(2.67) 

where the coupling with the fluid flow velocity is neglected. After substitution 

*" of this relation into equation (2.57b), expansion of J.l,k using chain rule, and 
with simplifying assumption, we obtain an non-Fickian dispersion equation 
valid for large-concentration solutes: 

(2.68) 

where {3 is the coefficient of nonlinear dispersion. 
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