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Coupled phenomena in porous media find increasing application in the field 
biology. The particular features of coupled processes that are relevant to biology 
and medicine are highlighted in this chapter. They are the coupling between 
ionization, ionic diffusion-convection, finite deformation and blood perfusion. The 
challenges are both in terms of deformation and blood perfusion. The challenges 
are both in terms of theoretical development, numerical analysis and experimental 
measurement. The present account focusses mostly on the theoretical framework 
and the numerical analysis. 
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BIOLOGICAL MIXTURES 229 

1. Solutions 

In this section we will discuss mixtures of a liquid in which a dissolved 
substance, also called solutions. As an introduction we will first consider 
mixtures of ideal gasses. Then we will consider solutions in which the 
solved particles are electrically neutral: the non-electrolytic solutions. Finally 
we consider the electrolytic solutions, in which the solved matter falls 
apart in charged ions and we have to take electroneutrality into account. 
Particularly concepts like electrochemical potential and (Donnan) osmosis 
will be discussed. 

Traditionally this is the field of the physical chemistry. We will follow 
the procedures that are usual in that field. The relations that are found 
here however, can also be derived from the general theory of mixtures, as we 
will show in section 2. The subject matter in this section has largely been 
taken from textbooks about physical chemistry applied to biological systems 
(Chang 1981, [8), Katchalsky 1965, (25], Richards 1980, [31]). 

1.1. Mixtures of ideal gasses 

We first consider a pure ideal gas. For a constant temperature the 
differential of the Gibbs free energy of the gas is : 

dG = Vdp (1.1) 

in which V is the volume of the gas and p its pressure. If we now increase 
the pressure of the gas from Po to p, the variation of the Gibbs free energy 
~G is written: 

~G = G - Go = fc dG = 1P V dp 
leo Po 

(1.2) 

For an ideal gas applies: 
pV = nRT (1.3) 
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in which R represents the universal gas constant (8.314 J · K- 1·mol-1) and 
n is the amount of gas in moles. Substitution of (1.3) into (1.2) yields after 
integration: 

p 
G - Go = nRT ln -

Po 
(1.4) 

This equation shows the Gibbs free energy of a gas with respect to the state 
of reference (p0 , Go). For the chemical potential of the gas it follows that: 

Jt = Po + RT ln !!_ 
Po 

(1.5) 

Let's consider a mixture of ideal gasses. We take an amount ni of gas I and 
an amount nil of a gas I I. Both gasses are subjected to a reference pressure 
po, and have the volumes VI and VII. During mixing of these gasses an ideal 
mixture with volume V and pressure p is created, for which: 

v 
p 

The partial pressures pi and pi I of the gasses in the mixture measure: 

in which the molar fractions x of the components are defined as: 

(1.6) 

(1. 7) 

(1.8) 

(1.9) 

Substitution of the pressures from (1.8) into (1.5) now yields for the chemical 
potential of the gasses: 

(1.10) 

We know that the mixing process as described above occurs spontaneously. 
We can also see this by calculating the mixing-energy. The total Gibbs free 
energy before mixing amounts: 

(1.11) 

For the total Gibbs free energy after mixing applies: 

(1 .12) 
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We can now derive for the mixture energy ~Gmeng: 

~Gmeng Gna- Gvoor 

(n1 + nii)RT{x1lnx1 + xlllnxii} ( 1.13) 

Because x1 as well as xii are smaller than 1, ~Gmeng < 0, which means that 
the mixing process occurs indeed spontaneously. 

1.2. Non-electrolytic solutions 

From the former we saw that for mixtures of ideal gasses the chemical 
potential depends on the composition of the mixture following (1.10). In 
general the chemical potential for mixtures of ideal media depends on the 
pressure p and the temperature T. We now define an ideal mixture as a 
mixture in which the following relation applies for the chemical potential of 
the components a : 

(1.14) 

We therefore assume that pa: depends the same way on the composition of 
the mixture as a mixture of ideal gasses does. For a mixture of ideal gasses 
we found the concentration dependency through the partial pressures of the 
gasses . In definition (1.14) we take the pressure dependency separately into 
account in the term pg(p, T). If the mixture has an equilibrium, we know 
that for every component: 

(1.15) 

If all components move freely through the mixture, this means, using 
(1.14), that there are no gradients in concentration. If this free movement 
is hampered, a concentration gradient generally will be present in the 
equilibrium. 

This last situation is demonstrated in the experiment, shown in Fig 1. 
In the right compartment there is a solution of ne moles of a substance e, 
for example a protein, in nw moles of a solvent w, for example water. In the 
solution the protein consists of neutral particles. In the left compartment 
only the solvent is present, water. The compartments are separated by a 
semi-permeable membrane, that only allows transport of water. Therefore 
equation 1.15 applies across the membrane for water, but not for the protein. 
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Initially there is no hydrostatic pressure difference between both 
compartments. For the chemical potential of the water applies: 

-w 
f-Lt 
-w 
f-Lr 

flo+ RTlnxl' =flo 
flo+ RTlnx~ <flo 

(because x[ = 1) 

(because x~ < 1) 

(1.16) 

(1.17) 

in which we indicate the chemical potential of the water with flw, in the 
left (index 1) and the right (index r) compartment and in pure (index 0) 
state. The chemical potential of the water therefore appears to be lower 
on the right hand side than that on the left hand side. This difference 

--------1--
! 

~ ~ 

---------- _'f_ 

water 

I 

I 
water+ solved matter 

Figure 1: Illustration of the phenomenon osmotic pressure. 

causes a net transport of water from the left to the right, which results in a 
hydrostatic pressure difference. The net transport reaches an equilibrium, as 
soon as the chemical potentials on the left and on the right are equal. In this 
equilibrium the hydrostatic pressure difference is equal to ~:rr, the osmotic 
pressure difference. We calculate the size of the osmotic pressure difference. 
The total differential of the Gibbs free energy G is: 

(1.18) 

in which the chemical potential flo: is defined as: 

-a G-o: ( 8G) f-L - - -
- - ana p,T,n/3 ,/3-::j:o: • 

(1.19) 

We now state for the volume V and the entropy S of the mixture: 

v _ (ac) 
- 8p T,na 

(1.20) 
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S __ (8G) 
- f}T p,no 

(1.21) 

The partial derivative of the chemical potential with respect to the pressure 
is: 

(1.22) 

which can be rewritten, using (1.20), into: 

(ap,a) = ( av) = vo: 
8p T,no 8no: T,p,n/3 ,{3:fo: 

(1.23) 

in which va: is the partial molar volume of the component a in the mixture. 
Applied to the water-component in the situation of Fig. 1, we find: 

(a-w) _!!:_ - v-w - ,-rw - - vo 
8p T,n"',ne 

(1.24) 

The last '='-sign can be justified for a dilute solution, in which the partial 
molar volume of the water is equal to that of pure water. We determine the 
difference in chemical potential of the water in both compartments, as a result 
of the pressure difference Pr - Pl, through integration of (1.24), considering 
that the partial molar volume of the water is independent of the pressure: 

1
Pr 

Jl"/!- Jlz = Vowdp = Vow(Pr- Pl) 
Pl 

(1.25) 

In equilibrium the chemical potential of the water left and right is the same: 

(1.26) 

Because Jlz = flo, the osmotic pressure difference ~7r is: 

RT w 
~ 7r = Pr - Pl = - 'V;w ln Xr 

0 

(1.27) 

It is usual to relate the osmotic pressure to the concentration of the solution, 
the protein. For this, we use: 

(1.28) 
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and the following expression for the volume V of the solution: 

(1.29) 

Substitution of these relations in (1.27) yields: 

(1.30) 

in which the concentration ce is expressed in moles·m-3 . This relation has 
also been discovered empirically by Van't Hoff, indicating that the basic 
assumption for an ideal mixture, defined in (1.14), applies for dilute solutions. 
We define the osmotic pressure of a solution as: 

1r = - l!:T ln x w, v;w 
0 

(1.31) 

which is well approximated by van 't Hoff's equation in a dilute solution: 

1r =cRT. (1.32) 

in which cis the concentration of the solved substances. Further, we specify 
expression (1.14) for the chemical potential of a component a, using (1.26): 

(1.33) 

with particularly for water: 

(1.34) 

In other words, the chemical potential consists of a pressure dependent part 
(the pressure potential) and a concentration-dependent part (the osmotic 
potential) for isothermal conditions. Deviations of the ideal situations are 
taken into account using the so called activity coefficient "/:t. The molar 
fraction x 0 is corrected to an 'active molar fraction', or activity a 0 : 

(1.35) 

The expression for the chemical potential then becomes: 

(1.36) 
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1.3. Electrolytic solutions 

In biology we often have to deal with solutions of ionized high-molecular 
proteins. In this paragraph we will consider solutions of a protein, (component 
e) and a low-molecular salt (component z) in water (component w). We will 
indicate the protein with P X z. We assume that in a solution of this protein 
an equilibrium will be established in which a protein molecule falls apart in 
a high molecular negative ion pz- and z small positive ions x+: 

(1.37) 

In general there are also ions present of a low-molecular electrolyte in such 
a protein solution, indicated with M Z. We assume that a solution of this 
electrolyte results in monovalent positive and negative ions: 

MX ~ M- +X+. (1.38) 

In this situation the M-- and the x+ -ion are called the 'co-ion' and the 
'counter-ion' respectively. 

Since the time constant, corresponding to the establishment of a local 
electrostatic equilibrium, is very short, we can assume that at every moment 
electroneutrality applies. 

1.3.1. The electrochemical potential of an ionic component 

In the former the chemical potential of a component a was defined as the 
partial molar Gibbs free energy. This means that we considered the change of 
the Gibbs free energy if we added one mole of component a to the mixture, 
during which we kept the amounts of the other components constant. For a 
solution of an electrolyte, for example the salt M Z, the movement of cations 
or anions is not exclusively controlled by the chemical potential, as was the 
case for the water in the porous medium (19). Reason for this is, that the 
charged particle is also sensitive for an electric-potential field. One mole of a 
monovalent ion has a charge equal to the constant of Faraday, F. The force 
that works on an ion in an electric-potential field ~ is: 

FV~ (1.39) 

Therefore, we do not use the chemical potential for an ionic component but 
the electro-chemical potential, of which the gradient does not only contain 
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the mechanical and chemical forces, but also the electric forces: 

(1.40) 

Here, za is the valence of the ion, from which it follows that for a salt in 
water the chemical potential is: 

We see that the activity of the salt is, 

that the reference-potential is, 

-z -+ -
f-Lo = f-Lo + f-Lo ' 

and that the partial molar volume is, 

vz =if++ -v-. 

(1.41) 

(1.42) 

(1.43) 

(1.44) 

We now define the activity coefficients for the ions !'+ and 1'-, in analogy to 
(1.35), as: 

(1.45) 

in which x+ and x- represent the (equal) molar fractions of the anion and 
the cation. We can now derive the activity of the salt az: 

(1.46) 

in which we defined the average activity coefficient of the salt !'± as: 

(1.47) 

and used x+ = x = x. The activity coefficients can be determined 
experimentally from electro-chemical experiments. A theoretical foundation 
of the relations above is provided for strongly diluted solutions by Debye and 
Hiickel in 1923. In this course we consider the relations as empirical ones. It 
is obvious that the relations for the chemical potential of a salt as mentioned 
above do not apply for a pair of ions, present in a porous medium with 
fixed charges, because in that case the co-ionic charge and the counter-ionic 
charge do not neutralize one another and therefore one cannot speak of a 
salt (=electric neutral molecule) in a solution. 
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1. 3. 2. The Donnan-effect 

The Donnan-effect occurs in a saturated electrically charged porous solid. We 
consider two neighbouring points in the charged porous medium. Between 
these two points there is a difference in fixed charge concentration. The two 
points are now considered to be two containers, between which water and ions 
(M-en x+) can move freely. The fixed charges (pz-), however, cannot move 
from one container to the other. In other words, the containers communicate 
through a semi-permeable medium (Fig. 2). To fix our thoughts and without 

- - - - - - - - l - -

.6.1t : 

- - - - - - - - - -
_t 

-

water 
I 

pz-
I water 

M- x+ I M- x+ 
I 

Figure 2: Illustration of the Donnan-effect. 

loss of generality, we assume that the left container has no fixed charge. An 
equilibrium is established, in which no net transport of particles through the 
membrane takes place. This equilibrium is characterized by the condition, 
that the (electro )-chemical potential for substances, that are able to pass the 
medium freely, is equal in the left as well as the right container: 

Pi = 
-a 
1-Lt a=+,-

Using (1.36) we can write these relations as: 

Po+ RTlnaz + Plvw =Po+ RTlna~ + Prvw, 

p~ + RTlna[ + pzVa + zaF~z = 

(1.48) 

(1.49) 

(1.50) 

p~ + RTlna~ + PrVa + zaF~r a=+,-. (1.51) 

Now, we first consider the ionic equilibrium. As the solution is dilute, the 
contribution pVa is negligible with respect to the term RT In a a. With this 
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the summation of (1.51), for a=+,-, reduces to the condition: 

(1.52) 

Using (1.46) this leads, after conversion to concentrations, to: 

(1.53) 

Beside this condition, the condition of electroneutrality for the solution in 
the left as well as the right compartment should be kept. Deviation from 
electroneutrality would lead to - relative strong - electric forces, restoring 
electroneutrality almost immediately. Therefore: 

c[ 

c; + zc~, 
(1.54) 

(1.55) 

in which ce is the concentration of the macromolecule to which z fixed charges 
are attached. For the concentrations of M - - and x+ -ions in the left and right 
compartment a combination of (1.53) - (1.55) yields: 

_ 1 ( e 
Cr = 2 ZCr + (1.56) 

c =- -zc + _ 1 ( e 
r 2 r (1.57) 

In a dilute solution we are allowed to equate the activity coefficients rz± and 
1"{-. We now see that the concentration c+ of the x+ -ions is different between 
left and right, as is the concentration c- of the M- -ions. This difference in 
concentration is called the Donnan-effect. We also see, that the Donnan-effect 
decreases for an increasing salt concentration. 

The osmotic pressure difference between the left and the right 
compartment .D.1r can now be determined from the equilibrium for the water. 
Therefore, we rewrite (1.51) as: 

RT aw 
b.7r = p - Pl = - -=-ln __:r_ r yw w' az 

(1.58) 
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If we suppose that the activity coefficients for water are equal left and right, 
we can switch to molar fractions: 

xr = 
cw c+ + c-

l = 1- l l 
w + - w + -cz + cz + cz cz + cz + cz 

(1.59) 

c~ = 1 _ ct + c;: + ci 
~+4+~+~ ~+4+~+~ 

(1.60) 

Because the water concentration is much higher than the other 
concentrations, we can use the first order approximation ln(1 + x) ~ x and 
we will find: 

ci +cz 
cr (1.61) 

This expression can be simplified further, because c[ ~ c~ = 1/Vw ~ 1/V0w, 
which gives: 

" - RT( + + - - e) u7r- cr - Cz + cr - Cz + cr (1.62) 

In many cases the valence z of the protein is very high and therefore the 
contribution of the protein concentration ce is neglectable, compared to the 
concentrations of the small ions. If we define the osmotic pressure, in this 
case, as: 

(1.63) 

we find the former expression for the osmotic pressure difference back. In the 
non-ideal situation equation 1.63 is extended with an osmotic coefficient r: 

(1.64) 

From equation (1.51) also the Donnan-potential difference between the left 
and right compartment follows: 

RT at RT a;: 
~r - 6 = -ln+ = -ln~ 

F ar F az 
(1.65) 

1.3.3. Donnan osmosis in biological tissues 

The semi-permeable membrane exists in many forms in nature: for example as 
a cell membrane, as a layer endothelial cells (covering the inner side of blood 
vessels), or as elastic lamina (a layer that is found in the wall of arteries). 
The transmembrane potential observed across the membrane of a living cell 
is a Donnan-potential. However, one should realize that many biological 
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tissues function as a semipermeable medium leading to the Donnan-effect 
(and to osmosis) as a continuous osmotic pressure gradient across the tissue. 
Therefore the Donnan-effect occurs in, for example, cartilage, where the 
huge, ionized proteoglycan molecules are tangled in a network of collagen 
and elastine fibers. The charge of the proteoglycan molecules is caused by 
the negative carboxyl groups (Coo-) and sulphate groups (S03). It will 
be clear from the former, that not the concentration of big molecules ce, 
but the concentration of negatively combined charge zce, is an important 
characteristic quantity of the material. This concentration is often called fixed 
charge density cfc. We come across several small ions in biological tissues like 
Na+, K+, Ca2+ en Cl- . 

For studying the properties of biological tissues, synthetic model materials 
are developed, consisting of ionised polymer chains (de Heus, 1994). The 
Donnan-osmotic effect can be used to determine the fixed charge density 
cfc in these materials. The model material ('the right compartment') is 
therefore exposed to an external solution of a known concentration ('the left 
compartment'), after which the osmotic pressure in the material is measured. 
In Fig. 3 the measured osmotic pressure is plotted against the external salt 
concentration. From a combination of the relations (1.53) - (1.57) and (1.62) 

0.4-r----------------------, 

02 0.4 0.6 0.8 12 1.4 
C[mol/1] 

Figure 3: Measured relation between the osmotic pressure and external salt concentration 
(D.) in a synthetic material. The drawn line represents relation (1.67), with parameter 

values <I>= <I>*= 0.93, f = 1 and cfc = 0.24 · 103 mol·m- 3
. 

we can eliminate the concentration of free ions in the model material, which 
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will result in: 
(1.66) 

in which c = ct = cz is the (known) concentration of ions in the external 
solution, and f is a short notation for the relation between the activity of 
salt in the external solution and that in the material f = 1f /1~. We have 
to realize, that several approximations have been introduced when deriving 
expression (1.62). A more elaborate derivation leads to: 

(1.67) 

with osmotic coefficients <I> and <I>*. The unknowns in this relation can be 
determined by fitting the experimental data. From Fig. 3, we see that the 
relation between the measured concentration and the osmotic pressure can 
be described well using relation ( 1. 6 7). 

1.4. Chemical potential and mass transport 

In the former it is stated, that the direction in which thermodynamic 
processes go, is dependent of differences in chemical potential. We will now 
specify this statement for the flow of a dissolved substance in a solution. The 
'derivation' is meant to give better insight and not to be mathematically 
precise. 

As an introduction we consider a simple one dimensional system, 
characterized by a mass m and a friction coefficient k, to which a force f is 
applied, that is related to a potential fl. The system model for such a system 
reads: 

f = Vjl = ma + kv, (1.68) 

in which v and a are the velocity and the acceleration of the system. 
Some time after the force is applied to the system a stationary state will 
be established, in which the acceleration equals zero, so the velocity v is 
proportional to the gradient of the potential jl: 

1 
v = -Vjl 

k 
(1.69) 

Similarly the flow of a constituent a in a solution can also be considered. If 
we state again, that the friction term is linear in velocity, we find: 

(1.70) 
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in which Lo: is a second order tensor. Substitution of expression (1.33) for 
the chemical potential yields: 

(1. 71) 

If a pressure gradient is absent, we recognize the law of Fick for diffusion 
of constituents caused by a concentration gradient. In the absence of a 
concentration gradient the equation reduces to the law of Darcy for flow 
of a fluid through a porous medium caused by the influence of a pressure 
gradient. The tensor Ko: therefore represents a permeability tensor, while 
Do: is a diffusion tensor. If we deal with an isotropic system, these tensors 
reduce to Ko: I and Do: I, respectively. 

Questions 

1. What is the osmotic pressure of a physiological ionic solution? 
2. A piece of cartilage has a fixed charge density cfc of 0.1 moleq/ 1, a 

porosity of 0.7, a Young's modulus of 100 kPa and a Poisson's ratio of 
0.3. These values are measured for an equilibrium with a 0.2 mol/1 NaCl 
solution. The sample is put in a 0.15 mol/1 NaCl solution. What is the 
volumetric swelling of the sample? Consider all activity coefficients equal 
to 1. 
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2. Quadriphasic mixture theory: A gel model of 
tissue 

Since antiquity swelling has been known as a primary symptom of disease. 
This deals deals with finite deformation theory of a four-component mixture. 
The four components are: an electrically charged solid, a fluid, and a cationic 
and anionic component. The model is suitable to describe time-dependent 
deformation of gellike tissues including swelling. 

2.1. Introduction 

In [19] we presented a biphasic model of biological tissue. This model 
basically assumes that the tissue is a sponge saturated with a viscous fluid. 
Anyone who has worked with biological tissue will agree there is something 
realistic about this, although many body fluids look more like a gel than a 
fluid. This is true, e.g., for intracellular fluid, interstitial fluid and for synovial 
fluid. Part of those fluids are bound by hygroscopic macromolecules and 
are not free to move as assumed in biphasic mixture theory. Cartilaginous 
tissue is a tissue in which this gel property is dramatic. The pressure in 
the intervertebral disk of an unloaded spine, e.g., exceeds 0.1 MPa showing 
that strong forces are attracting fluid in the disk. If the disks of the spine 
were biphasic, they would very soon loose their fluid content ( = 60 to 90 
% of their volume), cause the spine to shorten under its daily load and 
be unable to perform their function. In fact hygroscopic macromolecular 
networks ensure that the fluid component of biological tissue remains under 
compression and the fibrous solid remains under tension irrespective of the 
loads applied on the tissue. The functionality of this lies in the inability 
of fibers to take up compression and the fluid to take up uni- or biaxial 
tensile loads. The physiological relevance of the hydrophylic nature of the 
solid component of biological tissues is clearly illustrated by the close 
correlation between water content of the human body and age. Maintenance 
of youthfulness is closely associated with the maintenance of hydrophylic 
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nature of macromolecular networks within the tissue. Smoothness of skin is 
achieved by tensile prestressing the skin. Loss of fluid content of cutaneous 
and subcutaneous structures necessarily implies wrinkling of the skin. The 
load bearing capacity of cartilage strongly depends on the gellike fluid inside 
the cartilage layer to transform the compressive load into a tensile fibre 
stress . In the literature, finite deformation formulations are found in [17] 
in the isothermal case, in [18] in the non-isothermal case, in [14] for a dual 
porosity model. Some experimental work aiming at verifying some aspects 
of the theory are found in [10] for intervertebral disk, in [26] for hydrogel, 
in [15] for a dual porosity model of intervertebral disk in [16, 20] for electro
osmosis experiments. An efficient numerical scheme to deal with isothermal 
finite deformation of single porosity gels is give by [37]. 

2.2. Basic assumptions 

We distinguish a solid (superscript s ) , a fluid (superscript f ) , a cationic 
component (superscript +) and an anionic component (superscript - ). As is 
usual in porous media mechanics we consider trapped fluid (e.g. intracellular 
fluid) to belong to the solid because the fluid is not free to move. Part of 
the solid is assumed to be ionized. In case of cartilage or intervertebral disk 
this might be the proteoglycan network which is negatively charged (they 
contain coo- en S03). The fixed charge density cfc is expressed per unit 
volume of fluid . The cationic component is assumed to consist of only one 
monovalent cation (e.g. Na+) with molar mass M+, molar volume if+ and 
concentration c+ per unit fluid volume. The anionic component is assumed 
to consist of only one monovalent anion (e.g. Cl-) with molar mass M-, 
molar volume v- and concentration c- per unit fluid volume. We assume 
all phases intrinsically incompressible, i.e. the intrinsic density 

a= s,j,+,- (2.1) 

is constant. 

2.3. Conservation laws 

Excluding mass transfer between phases, the mass balance of each phase 
is then written as: 

a:ta + V · (qPva) = 0, a= s, j, +,- (2.2) 
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in which qP is the volume fraction and v 0 the velocity of phase a. As we 
assume saturation, we find 

(2.3) 

Differentiation of equation (2.3) and substitution of the mass balance 
equations (2.2) yields the differentiated from of the saturation condition: 

V · V 8 + L V · ( ¢!3 ( vf3 - v 8
)) = 0 (2.4) 

!3=!,+,-

We refer current descriptors of the mixture with respect to an initial state 
of the porous solid. If we introduce volume fractions 

(2.5) 

per unit initial volume, we can rewrite the mass balance equation (2.2) as 
follows: 

Ds<I>a 
-- + JV · [¢0 (v0

- v 8
)] = 0 

Dt 

The electroneutrality condition requires : 

c- = c+ +etc 

(2.6) 

(2.7) 

m which Cf3 is the current molar concentration per unit initial mixture 
volume: 

cf3 = J¢1 cf3 f3 = +, -, fc 

As the fixed charges are linked to the solid, we know that 

Dscfc 
J5t=O 

Differentiation of (2. 7) with respect to time yields: 

or, after substitution of eq. (2.6), 

(2.8) 

(2.9) 

(2.10) 

(2.11) 
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in which v.B are the partial molar volumes of the ions.Neglecting body forces 
and inertia, the momentum balance takes the form: 

a= s,J,+,- (2.12) 

which after summation over the four phases, yields: 

V · u = V · u 8 + V · uf + V · u+ + V · u- = 0 (2.13) 

if use is made of the balance condition: 

(2.14) 

uo: is the partial stress tensor of constituent a, 1ro: is the momentum 
interaction with constituents other than a. Balance of moment of momentum 
requires that the stress tensor u be symmetric. If no moment of momentum 
interaction between components occurs, the partial stresses uo: also are 
symmetric. In this paper we assume all partial stresses to be symmetric. 
Under isothermal and incompressible conditions, the entropy inequality for 
a unit volume of mixture reads: 

(2.15) 

in which wo: is the Helmholtz free energy of constituent a per unit volume 
constituent. We introduce the strain energy function 

(2.16) 
o:=s,/,+,- o:=s,/,+,-

as the Helmholtz free energy of a mixture volume which in the initial state 
of the solid equals unity. 1/Jo: is the Helmholz free energy of constituent a 
per unit mixture volume. Rewriting the inequality (2.15) for the entropy 
production per initial mixture volume - i.e. we multiply inequality (2.15) by 
the relative volume change J- we find: 

ns 
- DtW+Jrr: Vvs 

+JV · L [(v.B- v 8
) • u.B- (v.B- v 8 )'l/J.B] 2: 0. (2.17) 

.B=J,+,-

The entropy inequality should hold for an arbitrary state of the 
mixture, complying with the balance laws, incompressibility, saturation and 
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electroneutrality. There are two ways to comply with these restrictions. One 
is substitution of the restriction into the inequality, resulting in elimination 
of a field variable. The other is by introduction of a Lagrange multiplier. 
The balance laws and the incompressibility condition (2.1) are accounted 
for by means of substitution. The differentiated forms of the saturation 
condition (2.4) and of the electroneutrality (2.11) are accounted for by 
means of a Lagrange multiplier. From the inequality 2.17 we see that the 
apparent density and the momentum interaction 1f is already eliminated 
from the inequality. In other words the conditions of incompressibility and 
the momentum balance have already been substituted into the second law. 
Therefore, restrictions still be fulfilled are the mass balances, saturation and 
the electroneutrality. The differentiated form of the saturation condition (2.4) 
is substituted by means of a Lagrange multiplier p: 

Ds 
--W + Jueff : Vvs 

Dt 

+J L [u,B + (pql- '1/J,B)I] : V(v,B- v 5
) 

,6=/,+,-

+J L (v,B- v 5
) • (-V'ljJ,B + pV¢1 + V · u,B) ~ 0. (2.18) 

,6=/,+,-

in which the effective stress uef f is defined as 

uef f = 0" + pi (2.19) 

Introducing the restriction (2.11) into inequality (2.18) by means of a 
Lagrange multiplier A, yields: 

Ds 
- Dt W + Jueff : Vvs 

z,B A 
+J L [u,B + ((p + -,6 )4>,6- '1/J,B)I] : V(v,B- v 5

) 

,6=/,+,- v 
+J L (v,B -vs). 

,6=/,+,-

z,B A 
[-V'l/J,a + (p+ ,a )Vqi + V · u,a] ~ 0. 

v 
(2.20) 

in which z,B is the valence of constituent {3. We choose as independent 
variables the Green strain E, the Lagrangian form of the volume fractions of 
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the fluid and the ions cpf3, and of the relative velocities vf3s = p-l · ( vf3 - v 8 ), 

f3 = J, +, -. We apply the principle of equipresence, i.e. all dependent 
variables depend on all independent variables, unless the entropy inequality 
requires otherwise. We apply the chain rule for time differentiation of W: 

aw 
(Jueff- F. 8E . Fe) : Vvs + 

"' { aw . ns vf3s 
~ 8vf3s Dt 

f3=f,+,-

.+J[uf3 + (pPqi- 'lj;f3)J] : V(vf3- v 8
) 

+J( vf3 - v 8
) • (-V'ljJ{3 + pPV qi + V · uf3)} 2: 0. 

in which J..Lf3 are the electrochemical potentials of fluid and ions: 

1 _ aw 
J-L - acpJ + P 

. + _ aw A 
J..L - acp+ + P + v+ 

aw A 
11.---- +p-
r' - acp- v-

(2.21) 

(2.22) 

Comparison of the above equations to the classical equations of 
electrochemistry (1.36-1.40) indicates that the Lagrange multiplier p can 
be interpreted as the fluid pressure and A as the electrical potential of the 
medium multiplied by the constant of Faraday. Eq. (2.21) should be true for 
any value of the state variables. Close inspection of the choice of independent 
variables and the inequality (2.21 ), reveals that the first term of (2.21) is 
linear in the solid velocity gradient V v 8

, the second term linear in E~ vf3s and 
the third term linear in the relative velocity gradients V(vf3 -v8

). Therefore , 
by a standard argument , we find: 

uef f = ~ F . aw . pc 
J 8E 

(2.23) 

aw =O 
ovf3s 

(2.24) 

uf3 = ( 'l/Jf3 - J..Lf3 qi)I (2 .25) 

leaving as inequality: 

L J( vf3 - v 8
) • (-V'ljJ{3 + J-L{3V qi + V · uf3) 2: 0. (2.26) 

{3=/,+ ,-
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Eq. (2.23) indicates that the effective stress of the mixture can be derived 
from a strain energy function W which represents the free energy of the 
mixture. Eq. (2.24) shows that the strain energy function cannot depend on 
the relative velocities. Thus, the effective stress of a quadriphasic medium can 
be derived from a regular strain energy function, which physically has the 
same meaning as in single phase or biphasic media, but which can depend on 
both strain and ion concentrations in the medium. According to eq. (2.25) the 
partial stress of the fluid and the ions are scalars. Transforming the relative 
velocities to their Lagrangian equivalents, we find in stead of (2 .26): 

L vf3s · [-Vo'I/Jf3 + pPVo¢!3 + Vo · uf3] ~ 0. (2.27) 
!3=/,+,-

in which V 0 = pc · V is the gradient operator with respect to the initial 
configuration. If we assume that the system is not too far from equilibrium, 
we can express the dissipation (2.27) associated with relative flow of fluid 
and ions as a quadratic function of the relative velocities: 

L Bf3'Y . v~'s 

~t=f,+ , -

(2.28) 

B f3'Y is a positive definite matrix of frictional coefficients. Substituting eq. 
(2.25) into eq. (2.28) yields Lagrangian forms of the classical equations of 
irreversible therrnodynamics: 

-¢!3VoJ-Lf3 = L Bf3'Y · v~'s (2.29) 
')'=/,+,-

The next sections illustrate that from the above equations several well-known 
physical theories can be derived. 

2.4. Diffusion Potential 

The electric flux through the mixture is 

i = F """ ¢~' z'Y v 'Ys 
L tfY 

')'=/,+ ,-

(2.30) 

i is defined as the current electric flux through a surface of the mixture which 
initially equalled a unit surface. If use is made of (2.29), we find 

i = -F L z'Y L Lf3'Y · Vf3VotL!3 (2.31) 
')'=/,+,- !3=/,+,-

http://rcin.org.pl



250 J.M. HUYGHE AND P .H.M BOVENDEERD 

in which L/3"'1 are the conductances: 

L/3"'1 = ¢ "Y qi ( B -1) /3"'1 

v13vY 
(2.32) 

B-1 is the inverse of the matrix of tensors [Bf3r]/3,"'f=f,+,- used in eqs. 
(2 .28-2.29). Substituting the standard expressions for the electrochemical 
potentials into eq. (2.31), we find: 

with 

i = (-F _L z"Y _L L13"'~ · (V
13

Vop + RTV0lna!3)) 
"'1-f,+,- /3-f,+,-

-Le · Vo~ 

Le = F 2 L L z"Yz!3L/3"Y 
"'f=f,+,- /3=!,+,-

(2.33) 

(2.34) 

the electrical conductance. At uniform temperature and pressure, when i = 0, 
the electrical potential gradient is given by: 

-Vo~ = RT L T/3 · Volna/3 
/3=J,+,-

with T/3 the reduced electrical transport tensor of component {3: 

T/3 = FL-; 1 • L z"'~L13"'~ 
"'(=/,+,-

(2 .35) 

(2.36) 

in analogy to the reduced electrical transport number introduced by 
Staverman [32]: An integrated form of (2.35) is 

6 - 6 = - R:I' 12 

L [nodso · T 13 · Volnal3] 
/3=!,+,-

(2.37) 

in which n 0ds0 is an infinitesimal segment of the path from 1 to 2, 
transformed back to the initial configuration. In the special case of a 
onedimensional non-deforming medium (2.37) is the classic isothermal 
diffusion potential derived by Nernst [28],(29] and later by Staverman (32]. 
Note that the uncharged water is also included in the summation. 
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2.5. Electrokinetic Relationships 

The volume flux through the mixture is, in its Lagrangian form: 

j = L cf>'v's (2.38) 
i=f,+,-

or, if use is made of (2.29) and (2.32), we find 

j =- L "tfY L L(31 · V(3VoJ-L(3 (2.39) 
i=f,+,- (3=/,+,-

Substituting the standard expressions for the electrochemical potentials into 
eq. (2.39), we find: 

j =- L "tfY L Lf31 · (Fzf3voe + RTV0lnaf3)- Lp · V 0p (2.40) 
i=f,+,- (3=J,+,-

with 
Lp = L L -vr vf3 Lf3' (2.41) 

i=f,+,- (3=J,+,-

If no gradients in chemical activities are assumed, eqs. (2.33) and (2.40) 
reduce to electrokinetic relationships: 

in which 

j = - LP · V OP - Lpe · V 0~ 

i = - Lpe · V oP - L e · V o~ 

Lpe = F L L "tfY z(3 L(31 

i=J,+,- (3=J,+,-

(2.42) 

(2.43) 

(2.44) 

As a result of the symmetry of the eqs. (2.42) and (2.43), a threedimensional 
form of the four Saxen's relations can be found: one connecting streaming 
current to electro-osmotic pressure, 

(i)vo~=o · (VoP)j=o = (i)vo~=o · (Voe)j=o 

one connecting streaming potential and electro-osmotic flow, 

(2.45) 

(2.46) 

one connecting second streaming potential and second electro-osmotic 
pressure 

(2.47) 

one connecting second streaming current and second electro-osmotic flow, 

(2.48) 
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2.6. Reconstruction of the biphasic theory of Biot 

The biphasic theory, [4], is obtained from the previous by skipping all the 
term relating to the presence of fixed charges and ions. Conservation of mass 
follows from (2.4): 

(2.49) 

Conservation of momentum is obtained by substitution of eq. (2.19) into eq. 
(2.13): 

V · ueff- Vp = 0 

while the stress-strain relationship is given by (2.23) 

ueff = ~F. 8W . pc 
J 8E 

(2.50) 

(2.51) 

in which the strain energy function W depends only on local deformation. 
Darcy's law follows from eqs. (2.29) and (2.22): 

q/vfs = -K. Vo(p+ aw) 
a~t 

(2.52) 

in which the term g~ is interpreted for immiscible mixtures as the matric 

potential. Equations (2.49-2.52) are the biphasic equations. 

2. 7. Recapitulation 

2. 1.1. The equations 

In short, the quadriphasic equations are as follows: 
The momentum balance of the mixture (2 .13) in which we substitute eq. 
(2.19) : 

V·ue-Vp=O 

The mass balance of the mixture (2.4) : 

V · v 8 
- V · q/ ( vf - v 8

) = 0 

The mass balance of the ionic constituents (2 .6): 

(2.53) 

(2.54) 

(2.55) 
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The reversible constitutive relationships (2.23) : 

and (2.22) 

( )
-1 aw c 

Ue= detF F · aEs ·F 

1 aw 
J-L = a~'+ P 

+ _ aw A 
J-L - a~+ + P + v+ 

aw A ,,----+p-,.... -a~- v-

253 

(2.56) 

(2.57) 

The dissipative constitutive relationships, containing Darcy's law and Fick's 
law (2.29) : 

-¢13VoJ-L13 = L B!3'Y . v"~8 

-y=f,+,-

The incompressibility of the solid : 

( 1 - q/) det F = 1 - </>b 

The fixation of the fixed charges to the solid (2.9) : 

q/ cfc det F = ¢bcbc 

(2.58) 

(2.59) 

(2.60) 

The reversible constitutive relationships are described by one function : 
the strain energy function W. The dissipative constitutive relationships are 
described by a symmetric semi-positive definite matrix B. W depends on the 
deformation of the solid, the volume fraction of the fluid ~!, cations ~+ and 
anions~-. Equation (2.54) says that the volume change of the porous solid, 
expressed as the divergence of the solid velocity v 8

, is caused by in or outflow 
of fluid. This flux depends in turn on the gradients of chemical potential of 
the fluid, and of the electrochemical potentials of the ions according to eq. 
(2 .58) . 

Equations (2.55) are the mass balance of cations and anions, in which 
the relative ionic velocities V 0 

- v 8 = F · V 08 are expressed as a function of 
gradients of (electro )chemical potentials by eqs. (2.58) . 
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2. 7. 2. Boundary conditions 

As for single-phase materials momentum balance of the boundary is 
compulsory: 

(2.61) 

with n de outer normal along the boundary. From eqs (2.58) we can infer 
. that the following jump conditions should hold along the boundary : 

[if! t-tf] = 0 

[if+t-t+] = 0 

[V_t-t_] = o 

because the fluxes across the boundary cannot be infinite . 

2.8. Example of a constitutive relationship 

(2.62) 

(2.63) 

(2.64) 

We take the example of a material complying with linear isotropic 
elasticity and Donnan-osmosis (Fig. 2). In this case the strain energy function 
W takes the form : 

W= t-tof Nf + t-to+ N+ + t-to-N-- RTf ( ~: + ~=) ln(Nf) + 
N+ ( J+N+ ) + RT v+ ln v+ - 1 + (2.65) 

+RT~= (zn 1-:-- - 1) + ~~trEtrE + t-tsE: E 

in which r is the osmotic coefficient, J+ the activity coefficient of the cations, 
f- the activity coefficient of the anions, As and I-ts the Lame constants. From 
eqs. (2.56) and (2.57) we derive expressions for the stress and the (electro) 
chemical potentials : 

Ue = -JF · (AsltrE + 2~-tE) ·Fe 

Ill = t-tof (T) + p- RTf(c+ +c-) 
+ _ + RT J+ N+ .X 

1-l -I-to (T) + p + y-rlnv+(Nf)r + y+ 

- _ - RT f- N- _ ~ 
1-l -I-to (T) + p+ V_lnV-(Nf)r v-

(2.66) 

(2.67) 

(2.68) 

(2.69) 
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In eq. (2.67) we identify the chemical potential in the same way as in 
section 1. It is the difference between the mechanical pressure p and 
the osmotic pressure 1r given by eq. (1.64). The eqs. (2.68-2.69) are 
consistent with the expression (1.41) for the limiting case of a dilute solution 
(r-+ 1 and Jf3-+ 1). 
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3. Multiporosity model for blood perfusion 

A multiporosity description of finite deformation of a porous solid is 
developed using the theory of mixtures. Unlike existing multiporosity models 
from the literature this formulation includes anisotropy of interfaces between 
porosities. Each porosity is dealt with as a separate component. Fluid flow 
between porosities are mass exchange term between components. Rather 
than accounting for a discrete number of porosities a continuous spectrum of 
intercommunicating compartments is introduced. Conservation laws for mass 
and momentum have been derived and additionally appropriate formulations 
for the constitutive behaviour of the constituents are proposed. A finite 
element description of the hierarchical mixture model has been implemented. 
2-D, axi-symmetric and 3-D elements can be used in finite deformation 
analysis. An example of application is blood perfused biological tissue. A 
simulation of a blood perfused contracting skeletal muscle is presented. 

3.1. Introduction 

In this theory the various solid and fluid components of the tissue are 
modelled as interacting continua. An important fluid component in biological 
tissue is blood. It is responsible for the nutrition and drainage processes 
that are essential for the tissue. Blood flows through a hierarchical system 
of blood vessels: the vascular tree. This tree consists of one or a few 
large arterial vessels from which smaller vessels bifurcate and diverge into 
numerous capillaries which assemble to converging venous vessels. Because 
of this hierarchical architecture blood flow cannot be adequately described 
by biphasic mixture theory: the state of the blood strongly depends on the 
position in the hierarchy. For example, the velocity and pressure of the 
capillary blood are much lower than of the arterial blood. The pressure 
difference between arterial and venous vessels is essential as the driving 
force for the blood flow. Huyghe et al. (1989) developed an extended form of 
Darcy's equation in which this dependency of the fluid flow on hierarchical 
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position was included. In addition the hydraulic permeability matrices are 
shown to be related quantitatively to the microstructure of the vessel tree of 
the tissue. 

They verified this relationship for Newtonian flow through a rigid vascular 
tree (22, 21, 41]. Because in biological tissue alterations in blood perfusion 
can occur due to deformations of the tissue (12], the focus of this section 
is to illustrate the concepts developed in (22] into a finite deformation 
theory of saturated porous media. Aifantis (1977) introduced the concept of 
multiporosity for deforming media that are characterized by several distinct 
families of flow paths. A special case of this concept, in which only two degrees 
of diffusivity were included, was applied to fissured rock formations, in which 
most of the fluid volume is located in the low hydraulic permeability pores 
of the rock, and most of the hydraulic permeability is associated with the 
fissures (44]. Two different types of permeabilities are included in these models 
: one is an intracompartmental hydraulic permeability involving flow within 
a compartment, the other is intercompartmental hydraulic permeability 
involving flow between compartments. In the present approach mixed terms 
between intra- and intercompartmental hydraulic permeability occur in 
addition to those occuring in Aifantis [1]. These mixed terms account for 
anisotropy of the interface between compartments. In other words, Aifantis 
[1] implicitly assume the interfaces to be isotropically oriented. The tissue is 
modelled as a mixture of one solid and one fluid where the fluid represents the 
blood. The fluid is subdivided· into a number of compartments, each of which 
represents the blood on a different hierarchical position in the vascular tree. 
Blood flow through the vasculature is described as communication between 
the fluid compartments, which corresponds with the physiological definition 
of perfusion: the volume of blood passing a given level in the vascular 
hierarchy per unit of time and per volume of tissue. Vessel walls, modelled 
as an elastic solid-fluid interface, are included as a local contribution of the 
pressure difference between solid and fluid to the mixture's elastic energy. 
Although this mixture description is specifically developed for biological 
materials, its applicability to technical materials is not excluded. 

In the derivation of the mixture model conservation laws of mass and 
momentum have been formulated and corresponding constitutive behaviour 
has been derived from constitutive theory (40]. Elsewhere the same finite 
deformation multiporosity equations are derived through averaging of a 
Poiseuille-type pressure flow relationship at the level of the individual blood 
vessel (23, 24]. 
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An integrated finite element description of the total mixture model has 
been developed and implemented in the DIANA software package [5]. The 
implementation was subjected to several test procedures, one of which was 
comparison of the finite element solution with the analytical solution for a 
confined compression test [38]. As an illustration of the possibilities of the 
model a simulation of contraction of a perfused skeletal muscle is performed. 
Further examples of computations are found in the literature, including 3D 
analyses (39], comparison with animal experiments [42] and a model study 
(43]. 

3.2. Conservation Laws 

In technical literature we find porous media theories dealing with 
solids saturated 'with different fluid constituents [3]. Bowen (1980) has 
derived equations from mixture theory for v incompressible immiscible fluids 
saturating one incompressible solid. The equations of conservation of mass 
are formulated for each constituent and in case of intrinsic incompressibility 
of each constituent, their quasi-static local form can be denoted as: 

a=1, ... ,v (3.1) 

in which (l~ is the volume transfer from constituent a to the other 
constituents. Assuming no volume loads and no inertia, the balance of 
momentumreads : 

Q = 1, ... '1/ (3.2) 

where cjP is the volume fraction, v 0 the velocity, u 0 the Cauchy stress 
tensor and 7r0 are the momentum interaction of constituent a with other 
constituents. The exponent a refers to the constituent number and tis time. 
Balance of mass for the total mixture requires: 

(3.3) 

Likewise for the balance of momentum: 

(3.4) 
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Furthermore no moment of momentum interaction between the constituents 
is assumed, so that o-0 is symmetric. 

A hierarchical mixture can be thought of to consist of one solid constituent 
and a fluid constituent that is divided into a continuous series of fluid 
compartments. Each fluid compartment resides on a specific position i:n the 
hierarchy of pores of the solid. The fluid in a compartment flows spatially 
through the solid (spatial flow) and communicates with compartments on 
neighbouring hierarchical positions (hierarchical flow). The position in the 
hierarchy is quantified by a dimensionless parameter xo, which is assumed 
to run from 0 to 1, and the communication between the fluid compartments 
is described by the fluid volume interaction term()! appearing in Eq. (3.1). 
A fluid compartment defined by the hierarchical range [xo, xo + dxo] has a 
volume fraction J>! dx0 in which J;! represents the fluid volume fraction per 
unit hierarchical parameter xo. Generally in this paper a tilde will be used 
to indicate that a quantity depends on xo and, if the quantity is volume 
specific, is defined per unit xo. The exponents s and f refer to solid and 
fluid, respectively. The mass balance for one fluid compartment is: 

a¢1 -1 - 1 _ -1 -1 -1 -1 
8tdxo + V · ( ¢· v )dxo - <P(xo) Vo(x0 ) - <P(xo+dxo) Vo(xo+dxo) (3·5) 

in which the right hand side represents the volume interaction with the 
neighbouring compartments. v6 is a measure of the rate at which fluid flows 
from one compartment to the next, and is defined as the material time 
derivative of x 0 with respect to the fluid: 

-! _ Dfxo 
vo- J5t. (3.6) 

It can be shown that J>! v6 corresponds to the traditional, physiological 
definition of regional blood perfusion [11, 22). Dividing Eq. (3.5) by dxo 
yields for infinitesimal dx0 the local fluid mass balance: 

-! -J-f 
8</J + V . ( J>f i/) = Of = - 8( </J Vo) . 
&t 8xo 

(3.7) 

Assuming no mass interaction between solid and fluid, the mass balance for 
the total mixture (3.3) is rewritten: 

1 

e• = j iJI dxo = o . 
0 

(3.8) 
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Because the actual hierarchical fluid volume fraction ¢! is defined per unit 
xo, saturation of the mixture is expressed as: 

1 

</>' + j ¢/dxo = </>' + q,l = 1 , 

0 

(3.9) 

which can be used in combination with Eqs. (3.7) and (3.8) to rewrite solid, 
fluid and total mass conservation as: 

-a::+ v. ((1- q,f)v') = 0 (3.10) 

a¢/ -~ J 
{}t + 4 V · ( </J 4-V ) = 0 (3.11) 

1 

V · ((1- q,f)v') + j ( 4 V · (¢/ 4-vf))dxo = 0, (3.12) 

0 

where 4 V is a four-dimensional operator and 4vf a four-dimensional vector: 

-J_[v(/] 
4v - :vi . (3.13) 

Because the fluid related quantities depend on xo, the momentum balance 
of the total mixture is written as: 

1 

V · .,.• + j V · o-f dxo = 0 

0 

(3.14) 

where the balance condition for momentum interaction, Eq. (3.4), has been 
used: 

3.3. Constitutive Laws 

1 

11"
8 + j ;rl dxo = 0. 

0 

(3.15) 

In the derivation of requirements for the constitutive behaviour the first 
and second laws of thermodynamics are used. The first law, conservation of 
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total energy, reads - under quasi-static conditions - for constituent a of a 
unit volume of mixture : 

(3.16) 

where uo: is the total internal energy, wo: is the external work, Qo: is the heat 
supply of phase a and Eo: is the energy gain of a due to interaction. The dots 
above the variables denote their material time derivatives. Assuming intrinsic 
incompressibility and quasi-stationarity for each constituent, Eq. (3.16) can 
be written for the solid and fluid constituents in a volume V of mixture with 
surrounding surface A: 

0 (f ¢sus dV) + f ¢susvs · n dA = f vs ·us · n dA + 
at V A A 

J ¢srs dV + Jhs · n dA + J Es dV + J 1rs · vs dV , (3.17) 
V A V V 

~(f J!(jf dV) + f J!(jfiJf · n dA + f _g_(J;f(jJ:vt) dV = 
u~ V A V uxo 

Jvf ·o-f· n dA + f .J:-(v6a6) dV + f J;!rf dV + Ji/ · n dA + 
A V uxo V A 

f -Jb-(h6) dV + jf/ dV + J-n-f · vf dV , (3.18) 
v uxo v v 

where ro: is the internal heat supply, ho: the external heat su/ply and Eo: 
the direct energy supply of constituent a due to interaction. a0 is the fluid 
stress at the interface between neighbouring hierarchical levels and h6 the 
heat supply between neighbouring hierarchical levels. Note that Eq. (3.18) is 
expressed per unit of xo, and that internal energy variation of the fluid due 
to volume interaction is included in the third term. Applying Gauss' theorem 
gives for the local conservation of total energy of the solid and the fluid: 

Bt,(¢sus) = -V. (¢susvs) + V. (vs. us)+ ¢srs + 
V · h 8 + E8 + (tr 8 

• v 8
) , (3.19) 

£(¢f{jf) = -V. (J;f(jfiJf)- a~o (J;f(jf:v6) + V. (vf. o-f)+ 

-ib-(:uto-6) + J;Irf + v. i/ + -ib-(h6) +f.!+ 7rf. :vi', (3.20) uxo uxo 
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which is rewritten using the material time derivative of U, and the local mass 
and momentum balances Eqs. (3.10) and (3.11): 

(3.21) 

(3.22) 

In Eq. (3.22) we made use of the four-dimensional gradient operator 4 V 
and fluid velocity 4vf (Eq. (3.13)) and the analogously defined external heat 

- f 
supply 4h : 

(3.23) 

The local balance condition of the energy interaction of the mixture requires 
that no energy is created by the interaction: 

1 

<5 + 1r
8 

• v 5 + J(fl + irf · i/)dxo = 0. 

0 

(3.24) 

The second law of thermodynamics, the entropy inequality, is introduced: 

dS > dQ 
- T (3.25) 

which relates the change of entropy of the mixture, dS, to the supplied heat 
dQ at a temperature T. For a volume V of mixture with surrounding surface 
A and constant temperature T in each constituent this is written as: 

1 

/t(J ¢888 dV) + J ¢8S8v8 
• n dA + J[/t(J ¢! §! dV) + 

V A 0 V 

J ¢! §fvf. n dA + J 4-.(¢! §J:v6) dV]dx0 2:: 
A Vuxo 

JP':j:s dV + Jhin dA + 
V A 

1 - -J -! 

J[JPi1 
dV + Jh in dA + J c&(!:f) dV]dxo. 

0 V A V Xo 
(3.26) 
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By applying Gauss' theorem and making use of the material time derivative 
of S, the local form of Eq. (3.26) can be written as: 

¢snsss + f(J>f Df §! )dxo > 
LJt 0 ----rJt -

1 

~(¢8r8 + V · h 8 + J(J>frf + 4 V · 4)/)dxo) . (3.27) 
0 

Substituting the local energy equations for solid and fluid, Eqs. (3.21) and 
(3.22), into the local entropy inequality, Eq. (3.27), yields: 

D sss 1 - DiS-f nsus 
¢sLJt + J(¢1 ----r5t )dxo ~ ~(¢s15t- us : (Vvs) + 7rs. vs 

0 

+ l[J;I %11 
-o-f : (VVf)- &~o (a{v&) + irf · t;f]dxo) (3.28) 

1 
in which the total energy interaction E8 + J €1 dxo was eliminated by means 

0 
of Eq. (3.24). Introducing Helmholtz' free energy F = U - TS for each 
constituent, and substituting momentum balance Eq. (3.14) yields: 

Expressing Eq. (3.29) per unit of undeformed volume of mixture and 
transforming the material time derivative of F f yields: 

For compactness of notation, the four-dimensional fluid stress tensor 4uf 
and solid velocity vector 4v 8 have been used, which is written in matrix 
notation: 

- f - [ o-6 0 ] 
4U - 0 (rf (3.31) 
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Again rewriting the material time derivatives of F gives: 

Because of incompressibility of the solid, ns }:Its) = 0. Substituting the 
Lagrangian form of the equation of conservation of fluid mass (Eq. (3.11)): 

in Eq. (3.32) yields: 

1 -
J[-~ + JV · (u8 

• V8
)- fi'! J 4V(J/(4-vf- 4V8

))-

0 
ut 

(3.33) 

J¢! ( 4vf- 4v 8
) • 4 V fi'! + J 4 V · ( 4uf · 4vf)]dxo 2: 0 , (3.34) 

where the strain energy function W = J¢8 ps + J¢! fi'! has been introduced. 
1 

By using the total stress defined as u = u 8 + J if! dx0 , Eq. (3.34) can be 
0 

written as: 

1 -

Ju : (Vv 8
) + J[- D~l[ - J 4 V · (¢! ( 4-vf- 4V 8 )Ff) + 

0 

JV · (( 4vf- 4v 8
) • 4uf)]dxo 2: 0 . (3.35) 

Expressing the free energy of the fluid per unit mixture volume as {;f = ¢! F f, 
introducing the well known effective stress ueff = u + p1 [33] and adding 
the total mass balance Eq. (3.12) with a Lagrange multiplier p, Eq. (3.35) 
can be written as: 

1 -

Jueff : (Vv 8
) + J[- D~l[ + 

0 

J( 4uf- {;f 41- p¢! 41) : 4 V( 4vf- 4V8
) + 

J( 4Vf- 4V8
) • ( 4 V · 4uf- 4 V{;f + p 4 V ¢f)]dxo 2: 0 (3.36) 

where 41 represents the four-dimensional unity tensor. We choose as 
independent variables the Green-Lagrange strain tensor E, the Lagrangian 
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form of the fluid volume fraction J J! and the relative velocity 
4vfs = 4F-1 

· ( 4vf - 4v 8
). For convenience of notation we introduced the 

four-dimensional tensor F: 

(3.37) 

in which F is the deformation tensor. Applying the principle of equipresence 
1 

and the chain rule for time differentiation of W and defining W = J W dx0 , 
0 

yields the inequality: 

aw 1 aw- ns - f s 
[Jueff- F · 7JE ·Fe] : Vv 8 + J[-~ · Dv 

0 a4v t 

+J( 4uf + (jj/ J! -{;f) 41) : 4 V( 4-vf - 4V 8
) 

+J( 4vf- 4V8
). (- 4 v;j;J + p/ 4 v¢! + 

4 V · 4uf)]dxo ~ 0 (3.38) 

which should be true for any value of the state variables. The definition of 
the chemical potential of the fluid 

_
1 

_ aw 
1-L - 8(J¢f) + p . (3.39) 

has been used in Ineq. (3.38). The fourth term of the left-hand side of Ineq. 
(3.38) represents the dissipation due to fluid flow. The first term is linear in 
the solid velocity gradient, the second linear in the accelerations and the third 
linear in the relative velocity gradients. Therefore, by a standard argument, 
we find the constitutive relations: 

leaving as inequality: 

1 

ueff = -JF. YcJf. pc 

aw _ 0 a4-vfs -4 

4o-f = ( ;j;f - p/ Jf) 41 

J J[(4vf- 4v 8
) • (-4v;j;J + 

0 

p/ 4v¢J + 4V · 4uf)]dxo ~ o. 

(3.40) 

(3.41) 

(3.42) 

(3.43) 
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If we assume that dissipation associated with fluid flow is a quadratic function 
of the fluid velocities we find: 

(3.44) 

Substituting the constitutive expression Eq. (3.42) of the fluid stress 4uf 
into Eq. (3.44), yields the extended Darcy equation: 

(3.45) 

which can be written in a more common form (22]: 

(3.46) 

in which the four-dimensional hydraulic permeability tensor 4K reads: 

(3.47) 

and which is consistent with earlier forms derived by formal averaging (24]. 

3.4. Numerical Implementation 

The hierarchical mixture model has been implemented in the finite 
element software package DIANA. The displacement of the solid u 8

, the 
hydro~tatic pressure p and the fluid pressure p/ have been chosen as the 
degrees of freedom. Three equations are used: 1 the momentum balance (3.2), 
in which the constitutive equation for the effective stress (3.40) is substituted, 
2. the solid mass balance ( 3.10), and ~ the fluid mass balance ( 3.11), in 
which the extended Darcy equation (3.46) is substituted. The weighted 
residual method has been applied to the resulting system of non-linear 
coupled differential equations. After spatial discretization of the degrees of 
freedom the weighting functions are chosen according to Galerkin's method. 
Special attention was paid to the discretization of the fluid pressure p/, 
which depends on both spatial position x and xo. Its spatial discretization 
was achieved analogously to the hydrostatic pressure's discretization, while 
an extra linear discretization in xo direction was used. A more detailed 
description of the finite element formulation and implementation is given 
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in [38]. The resulting total element matrix equation is: 

[ 
,.;JL 
s J 

0 

[ 

u K!~ 
m tJ 

0 

0 

with: 

0 

I"/ ~JN l s n 
f.J.!BKN 
f kn 

0 

267 

+ 

= 

(3.48) 

<5uJ: iterative correction of displacement component in direction j of node L, 
<5pM: iterative correction of hydrostatic pressure in node M, 

<5P,~N: iterative correction of fluid pressure at hierarchical level n in node N. 
and a dot above a variable denotes its material time derivative. In this 
matrix equation symmetry is found in the submatrices ~B, j1 

B, ~K, j1 
K 

f 
and moreover jB[M = ~ BJ:K and ~BjL = fnKJJ. Thus a fully 
symmetric matrix equation is obtained after time integration of the damping 
contribution. This time integration is achieved by a third order Houbolt 
scheme [2]: 

3 

s(t) = hos(t) + L his(t- Ti) 
i=l 

- s -J s- u ,p, fL . (3.49) 

Linear and quadratic two-dimensional, axi-symmetric and three-dimensional 
isoparametric elements of the serendipity family can be used [34]. The non
linear equations can be solved by several regular and modified Newton
Raphson iteration techniques and a direct Gauss decomposition (35]. The 
implementation has been tested for several problems. Rigid body rotations 
and translations and analytical solutions of a one-dimensional confined 
compression experiment and a four-dimensional Laplace equation have been 
succesfully computed [38]. 
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3.5. Application 

A simulation of a perfusion experiment on an isometrically (at constant 
length) and tetanically (sustained) contracting skeletal muscle has been 
performed, using the finite element model. The muscle under consideration 
is a rat calf muscle (gastrocnemius medialis), of which the geometry has 
been roughly estimated from experimental measurements. This muscle is 
about 30 mm long and 6 mm thick. The mesh consists of 112 6-node wedge
shaped 3-D elements for the muscle belly, 22 3-node triangular plane stress 
elements for each aponeurosis and 2 3-node triangular plane stress elements 
for each tendon. The tendons and aponeuroses, tendinous sheets on the 
muscle surface, attach the tendons to the muscle belly. The tendons, each 
consisting of 2 triangular 3-node plane stress elements, and the aponeuroses, 
each consisting of 22 similar elements, are isotropic and linearly elastic, with 
a Young modulus of 1.5 106 kPa [36) and Poisson ratio of 0.3. The thickness 
of the tendons is 0.5 mm. The thickness of the aponeuroses runs from 0.5 
mm at the tendon to 0.01 mm at the other end. 

The passive material behaviour of the muscle tissue is based on 
a transverse isotropic, non-linearly elastic description of cardiac tissue 
according to Bovendeerd ( 1990). The direction of anisotropy ( e 1) corresponds 
with the direction of the muscle fibers , and the contribution of the local 
Green strain in the tissue to the elastic energy is: 

(3.50) 

where C = 0. 7 kPa, a = 5.0. The elastic energy is assumed to depend also on 
strain in vessel walls, which is associated with changes in vascular volume. 
The contribution of the vessel strain to the elastic energy is expressed as: 

(3.51) 

where the vessel compliance c represents the relation between the local blood 
volume fraction and local intra-extra vascular pressure difference: 

- EJ(J¢)) 
c = -~___;_-

8(i1/- p) 
(3.52) 

The values for c that were used in the simulation are listed in Table 1. Thus 
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the total strain energy function of the muscle material reads: 

W WE+Wc 

= C [ea(2Ef1 +E~2+E§3+2Ef2+2E~3+2E§1 ) _ 1] + ;C(J~f)2 (3.53) 

Contraction is described as an active second Fiola-Kirchhoff stress 
component in fiber direction depending on time: 

(3.54) 

where Smax = 100 kPa, .X 1 is the relative elongation in fiber direction, tr = 
0.05 s, and tis time (s). This contraction function is a rough approximation 
of the stress generation in tetanic contraction of rat gastrocnemius medialis 
muscle. 

arterial 
arteriolar 
venular 

100 
0.05 
0.02 

0.0025 
0.00025 
0.0025 

Table 1: Blood perfusion parameters. 

0.001 
0.01 
0.1 

Discretization of the hierarchical range is achieved by 3 linear segments, 
resulting in arterial, arteriolar, capillary and venous blood pressures in each 
spatial nodal point. The vascular segments are assumed to represent the 
arterial bed, arteriolar bed and the capillary-venous bed respectively. 

The hydraulic permeability tensor 4K and the vessel compliance c are 
prescribed for each compartment according to table 1, whereas they are 
constant in the whole geometry. For the sake of simplicity 4K, which is 
defined according to eq. (3.47), is diagonal, where k = k I. We assume that 
the main artery and vein penetrate into the muscle at the tip of one of the 
aponeuroses. At that position the nodal arterial input pressure is set at 10 
kPa, and nodal venous outflow pressure at 0 kPa. No force load is applied to 
the muscle. Due to these nodal boundary conditions a stationary blood flow 
pattern is reached after about 0.3 s. 

In Fig. 4a,b,c contours of arterial, capillary and venous blood pressures are 
given. Also hierarchic capillary flow (volume averaged blood flow through the 
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capillary compartment, which corresponds to the physiological definition of 
regional capillary perfusion, defined as volume of blood passing the capillaries 
per second and per volume of tissue) is given in Fig. 4d. The calculated values 
approximate experimentally measured values, which were found to be circa 
2.5 10-3 s-1 in resting skeletal muscle [13]. 

passive contracted 

e ... IE-I 
; .9.E-2 

.8E·2 
1.76-2 
1.6&2 
~ .5E·2 

b f • . 4&2 
.: •. 3£.2 

1
.2E·1 

• .IE-2 
10 

pressure 

Figure 4: Contours of blood pressures (MPa) and hierarchical flows (1/ms) in passive and 
contracting muscle. a: passive arterial blood pressure. b: passive capillary blood pressure. 

c: passive venous blood pressure. d: passive hierarchic capillary flow. e: arterial blood 
pressure during contraction. f: capillary blood pressure during contraction. g: venous 

blood pressure during contraction. h: hierarchic capillary flow during contraction. 

When the muscle is in the stationary perfusion state, contraction is 
started. After 0.1 s the contraction stress has reached its maximum value. Due 
to the contraction, a significant rise in intramuscular pressure (hydrostatic 
pressure in the solid) occurs, which is transmitted to the blood via the elastic 
vessel walls. The arterial blood pressure slightly increases (Fig. 4e). Capillary 
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and venous pressure however, increase drastically (Fig. 4f,g) . 
Moreover we find a strongly decreased hierarchical flow for the capillary 
blood (Fig. 4h), which is due to the decreased pressure difference between 
the capillary and venous compartments. 

3.6. Discussion 

Finite element analysis often aims at predicting failure of structures. 
Whereas failure of technical materials is mostly associated with excess 
of stress, biological material often fails due to disturbance of the supply 
of nutrients and drainage of waste matter. Finite element analysis of 
technical structures therefore focusses on stress analysis, whereas finite 
element analysis of biological structures ought to persue a broader scope 
of mechanical function, including remodelling processes and transport 
phenomena. Regional capillary perfusion, being a key quantity for transport 
through many biological tissues, we believe is essential to include as a field 
variable in the analysis of mechanical function of biological tissues. Moreover, 
tissue deformation and blood perfusion are mechanically linked (27, 30]. 
The model presented in this paper, specifically describes the mechanical 
interaction between blood perfusion and deformation of the tissue, and as 
such may provide a better insight in this interaction. 

In the simulation it is shown that in an isometrically contracting skeletal 
muscle, the rise in intramuscular pressure is transferred particularly to the 
capillary and venous blood compartments, which results in a decrease of 
the capillary flow (regional capillary perfusion), which is consistent with 
experiments reported in (45]. 

The hydraulic permeability tensor 4K contains much information about 
vessel distribution, vessel directions and vessel density for each compartment 
and each mesh-element. Because no values for 4k were available, it was 
made diagonal for the sake of simplicity. However, values for 4K can be 
derived from geometrical information of a vascular tree (22, 21, 41]. This 
information can for example be obtained by reconstruction of the vasculature 
by corrosion casting. For the large arterial and venous vessels, the vessel 
density of the tissue is very low and inhomogeneous which makes them 
relatively easy to reconstruct. Accurate simulation of the perfusion in these 
compartments however might need special attention, because the model deals 
with volume averaged quantities, which intrinsically assume homogeneity 
within the averaging volume. For the largest vessels a discrete approach may 
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offer a better accuracy. On the other hand the small vessels like arterioles 
and capillaries, which are tedious to reconstruct because of their huge density, 
can be described rather well by the volume averaged relations of the model. 
Today's techniques of X-ray micro computer tomography, offers an efficient 
measuring method of the 3D structure of the microvasculature of any tissue. 
The resolution achieved by this method is probably sufficient for all but the 
capillary level. 
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