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Kinematics of finite deformations 

P. ROUGEE (CACHAN) 

THE St-X-DtMENStONAL nonlinear space of all possible local configurations of continuous media at 
unrestricted strains is built. Its Rtemannian geometry is given. In this way the intrinsic Lagrangian 
strain rate and its a'\sociated stress tensor are defined independently of any strain mea'\ure and any 
reference configuration. Geometrical characterization of large change of shape is studied. 

1. Introduction 

DESPITE a very important research it appears, as it was for instance shown in NAGHDI 
(14] where a large discussion and a large bibliography on the subject may be found, 
that in finite plasticity, areas of disagreement are still far more important that areas of 
agreement. It appears in particular that important disagreements occur as soon as basic 
and fundamental kinematic considerations are given. Effectively, it is the kinematics of 
strain in large displacements of a continuous media which is not completely elucidated, and 
this is obviously a real impediment to the modelling of stresses and thus to the statement 
of constitutive laws. Let us see some elementary manifestations of this. 

In Eulerian (or spatial) approach, the strain rate D, symmetrical part of the gradient of 
the Eulerian field of velocity ll, and Kirchhoff's stress a I p where a is Cauchy's stress and 
p the mass density, associated in the specific internal stress power P by P = -(a I p) : 
D, are uncontested tools. But between Jauman's derivative, four possible convective 
derivatives and many other possibilities, which is the good choice when, for example, we 
have to take into account the stress rate in constitutive laws (TRUESDELL [25], TRUESDELL 
and NOLL [26], DOGUI and SIDOROFF [4])? Also, there is a question which is generally 
not put forward: of what configuration variable, and with what derivative rule, is D the 
time material derivarive? 

In Lagrangian (or material) approach, the basic kinematics tools are the strain mea
sures (GREEN and NAGHDI [5], HILL [7] and (8], CASEY (3]). But what is the influ
ence of the chosen reference configuration and, more important, what strain measure to 
choose? Moreover, is the multiplicity of possible non-equivalent strain measures not the 
proof that this physical concept issued of small displacement theory cannot be extended 
to large displacements? An indirect proof of this is that the stress tensors associated 
to strain measures, as the second Piola-Kirchhoff stress tensor J( associated to Green 
strain measure E, are always very bad models of stress. For instance, being considered 
a doubly-contravariant tensor, J( has no eigenelements and considered a one-co-one
contravariant tensor, its eigenelements are not related to those of Cauchy stress a (for 
instance, when a is an hydrostatic pressure, eigenaxes of J( are the strain eigenaxes! ). 
There is thus no Lagrangian way to exhibit the principal stresses and stress axes today. The 
only response to those questions are some strain measure invariance properties (HILL [8], 
KLEIBER and RANIECKI [9]). Note also that if the coherence with the Eulerian approach 
is performed globally for the specific internal power P by means of relations such as 

http://rcin.org.pl



118 P. ROUGEE 

(a I p): D = (R) PI): E where PI is the mass density in the reference configuration, it is 

not performed for either factor by means of relations (a I p) = f(J{ I PI) and D = f(E) 
with f for a single push-pull rule between space and matter (such as the four classical 
convective transports but which would be the same for the two factors). And this explains 
the incompatibilities between the Lagrangian and Eulerian approaches, which disappears 
only by taking very general constitutive laws, but too general to be physically meaningfull 
(CASEY and NAGHDI [3]). 

In order to overcome these difficulties we have proposed (ROUGEE [20, 21, 22]) a new 
intrinsic Lagrangian frame, mainly a kinematic variable and its associated stress variable . 
The kinematic variable is not a strain measure, always strongly dependent on the chosen 
reference configuration, but a variable m modeling the metric properties of the media 
themselves. We call it the (local) metric of the media but, and this is the key to our 
approach, it is not, as usual, a metric tensor. Moreover, it is not a variable lying, as a 
metric tensor or a strain measure, in a linear space. It lies in a nonlinear ~pace A!J whose 
geometry models the specific nonlinearity of the finite deformation kinematics. The strain 
rate will then be the metric rate rh, an element of the plane Trn tangent in m, to A!J, and 
on this well elucidated kinematics the modeling of stress and the statement of constitutive 
laws may be carried out, suitably in a Lagrangian (i.e. material) way as it has to be, 
without any of the difficulties previously pointed out, and in a perfect consistence with the 
Eulerian point of view. Note that our manifold M is the "six-dimensional configurational 
space" only evoked in (KLEIBER, RANIECKI [9]). 

In this paper, after some algebraic reviews in Sec. 1, our purpose is first to sub
mit our approach and to recall and explain the main results in Sees. 2 and 3. It is 
second to deal with finite strain "measures" in Sec. 4 and kinematics with elastic re
leased intermediate state in Sec. 5. In order to avoid artificial problems of invariance 
properties our approach is entirely intrinsic. Starting from the classical material body 
B we develop the mathematical model of matter without the help of any particular 
space frame, any reference configuration, any coordinate system, but we give its cor
respondence in such classical tools. Although we call them "tensors" as usual, almost 
all our variables are in fact linear maps precisely defined which we do not identify with 
their matrix in some basis. For any physical concept we carefully distinguish its mod
eling by a point x in a space _.,y - which implies that the mathematical structure of 
X is a significant part of the physical properties that we wish to postulate and express 
- from a simple characterization by a point y of a space Y - which does not imply 
a physical meaning for all the mathematical structure of Y. Being essential physical 
properties, the constitutive laws have to be first and before all expressed with variables 
as x. 

1. Review of some algebraic results 

For two finite-dimensional linear spaces E and F, L(E , F) denotes the linear space 
of linear maps of E into F. We note: L(E) for L(E, E), E* for the dual space L(E , R), 
( , ) E for the associated duality, A* E L(F*, E*) for the adjunct of A E L(E, F) 
defined by (A* j, u)E = (/, Au)F for any u E E and f E F*, Ls(E , E*) for the subset 
of A E L(E , E*) such as (Au , v)E is a symmetrical bilinear form, and L;(E , £•) for 
the subset of A E Ls(E, E*) such as (Au , u)E is definite positive. The last set is a 
six-dimensional open domain of Ls(E, E*) when Eisa three-dimensional linear space. 
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If E is a Euclidean space it is endowed with a scalar product F} characterized by a 

metric tensor 9E E L;(E, E*) such as u F! v = (gEu, v)E, and its dual space E* is also 
a Euclidean space with, identifying E** toE, the metric tensor 9E• = g£/ E L;(E*, E). 

If E and F are two Euclidean linear spaces, to any A E L(E, F) is associated its 

Euclidean adjunct (or transposed) AT E L ( F, E), defined by AT v F! u = v f Au for 
any u E E and v E F, or equivalently by AT= g£/A*gp. 

If E is Euclidean, L(E) is canonically a Euclidean space with the scalar product A : 
B = Tr(AT B), any A E L(E) is symmetrical if AT = A and skewsymmetrical if AT = 
-A, the corresponding subsets Ls(E) and La(E) of symmetrical and skewsymmetrical A 
are supplementary and orthogonal subspaces of L(E), the trace operator satisfies Tr A = 
1£ :A, and the deviatoric part Av of A is its orthogonal projection on the subset Lv(E) 
orthogonal to 1£ in L(E). 

2. Metric tensors and dual stress variables 

In continuous media mechanics the vicinity of a point P0 of the media is modeled by 
a linear space T0 which is the tangent linear space in Po to a manifold B modeling the 
whole body [MOREAU [13], NOLL (16]]. This T0 models the (little) "material segments" 
issued of P0 while its dual space ~~ models the (little) "material slices", the slice modeled 

~ 

by fo E ~~ being the set of points Q0 in the vicinity of P0 such as 0 ~ (Jo, ~,Q0)T0 ~ 1. 
Given a space frame £ of associated Euclidean linear space E with metric tensor g, 

and given a global placement p : ~' ---+ P of B in £, the associated local placement in ~> is 
the linear map a = dP / d~, = p'(~,) E L(T0 , E) which with correlated orientations of B 
and [ is always positive. The position of the slice .fo E ~~ is the set of spatial points Q E £ 

-----* ------* 
such as 0 ~ (.fo, a- 1 PQ)To = (a-* .f0 , PQ) E ~ 1, i.e. the slice a-* .fo E E*. Thus a 
is the local placement of material segments while a-* = (a- 1)* is the local placement of 
material slices. In a classical approach a reference placement p1 : ~> ---+ P1 with local 
placement a 1 = dPtf d~, E L(1(1, Et) is introduced (we note (E11 g1) for (E, g) when 
associated to P1 ), and the classical gradient of the displacement p0p} 1 

: P1 ---+ P is 
F = dPjdP1 = aa} 1

. 

Our first aim is to model, by a point m lying in a suitable space M, the local metric 
properties presented by the vicinity of ~~ in a spatial placement p. These properties 
are those of the material segments but also those of the material slices, and thus they are 
clasically described by the two scalar products obtained in 1(1 and ~) by carrying with a 
and a-* those of E and E*: 

Uo • Vo = (gaUo, aVo)£= (/Uo, Vo)To in 1(,, 

.fo ·Yo= (a-* .fo,g-la-*go)E = (.fo,/- 19o)T0 in~; 

with, putting r = Ls(Tt~, ~nand r = Ls(~), 1(,), 

(2.1) 1 = a*ga E F+ and ,-1 E r+ 

as associated metric tensors. 
By time derivation of (2.1) we obtain 

(2.2) 
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120 P. ROUGEE 

with m = 41 and rn = - ~~- 1 that we take in the following as variables characterizing 
metric properties of T0 and~~ respectively, instead of 1 and ~-I and for reasons which 
will appear later. As a consequence, a E Ls(E) being Cauchy's stress tensor and p being 
the mass density, the specific internal stress power P = -% : D satisfies 

(2.3) - P = Tr(fl_n1.) = Tr( Orh) , 
- (J 
{} = a*g-a, 

p 

where the introduced variables fl._ E F and 0 E F appear as intrinsic Lagrangian stress 
variables, respectively, associated to metric rate variables 111 and m. We thus obtain two 
couples of associated Lagrangian metric and stress variables, (m., fl.) and ( rn , 0), the first 
of which has been used before in (NOLL (15], ROUGEE (19]). They are intrinsic, indepen
dent of any reference configuration, of any coordinate system, but unfortunately they are 
two and not only one. 

Before solving this problem, let us connect these tools to more classical ones, first 
by introducing a time-independent reference configuration PI· Metric variables rn and 
m being points in linear spaces r and r, they lead to specific intrinsic strain measures: 
the finite variations Lhn = rn - 1n 1 and Llrn = m - 1ni. Let E and E' be the 
classical Lagrangian-Green and Almansi strain measures, and /( and /(' be their as
sociated stress variables (/( is the second Piola-Kirchhoff stress tensor), all elements of 
Ls(Et): 

E = !(c- l E ), E' = ~(IE- c-1
), 

(2.4) 2 
/( = p-l?_p-T A''= pT?_p 

C = U2 = pT P, P = aa}I , 

J( . A'' . ' 
PI p ' PI p , 

-P =-: E =-: E 
PI PI 

It is easy to see that 

E = g) 1a1* Lhna1 1
, E' = a 1Ll1na;gh 

/( {} * /( -I -*-{} -I 
- = ai_al 9h - = 9t ai at ' 
PI PI 

(2.5) 

which shows that classical couples ( E, /() and ( E', J{') are the representations of our 
couples ( m, fl._) and ( 1n, 0) through some constant maps associated to, and thus depending 
on, the chosen reference configuration. 

Moreover, introduce a Lagrangian coordinate system a and its associated local bases: 

S0 = dfo = [So" S02 , S03 ] with Soi = ~~1 , S 1 = d:1 = a 1S0 , time-independent in 

T0 and £ 1 respectively, and S = ~ = aS0 the time-dependent convected basis in E . 
a a 

In Euclidean spaces E and EI = E, any second order tensor of any kind as g, g -t, E, E', 
/(, ... has four systems of components associated to the bases S in E and SI in £ 1, as 
for instance 9cxf3• gcxf3, gcx f3 = 9{3 cx = b$ for g, and with rules as E cx /3 = 9cx-r EJ, .. . But 
not in T0 which is not a Euclidean space ( 1 is only a time-dependent variable and not a 
material constant as g is a spatial constant): we have only components Xcx f3 for tensors x 

in r as 1. m, 0, and xcxf3 for ~- 1 , m, fl._ in r. Making use of the related bases 50, S1, S 
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we can see that 
1 . 1 

l af3 = 9af3, (Ll rn)a{3 = E af3 = z(9a{3- 9l af3 ), (m,)a{3 = -z9:X{3 = Daf3, 

1 1 . 
1 -t af3 = 9af3, (Lln~ )af3 = E'af3 = Z(g af3 _ g~f3 ), (rh )af3 = _ Zg af3 = n af3 , 

g_af3 = (}P\l' ) a{3 = (~p) af3' 0 (](') (a) 
af3 = Pt af3 = P af3 ' 

(2.6) 

which presents a beginning of unity for both Lagrangian and Eulerian approaches as 
regards matricial calculus, and also emerges as some usual formalism making use of 
components 9af3 and gaf3 of the spatial metric. This formalism is common, but its phys
ical meaning is obtained only after a toilsome byroad: g is a physical constant, thus 
variations of 9af3 and gaf3 reflect only variations of the convected basis S (note that 

fft(9a{3 ) -::f ( ¥t) af3 = 0) which themselves reflect variations of the studied metric prop-

erties. On the contrary, variations of laf3 reflect only variations of 1 because So is 
time-independent. And to say for instance (MARSDEN [12], SIMO [23]) that a strain en
ergy which in Lagrangian coordinates appears as function of laf3 = 9af3 is a "function of 
space metric tensor" is physically incomprehensible. 

A last remark is that although E and](, lying in L 5 (Et), have four kinds of compo
nents, one often uses only Eaf3 and ]\'af3 . This is a way to work in fact with our more 
intrinsic variables ( 11~, g_) not depending on the reference configuration. 

3. The manifold Jvl of metrics m and associated stress tensor 

3.1. Definition of M 

We have obtained intrinsic couples for associated metric and stress variables, (1n , g_) 
and (n1-, 7J), but first they are two and second any of them is completely satisfying. The 
main proof of this is that, as elements of spaces r and r_, m, g_, m and o have not 
eigenelements. Note that this is nevertheless an improvement because when working with 
classical couples as ( E, ]( ), E and ]( have eigenelements but these are not related to those 
of their Eulerian analogue D and a I p. For instance, the eigenaxes of the Piola-Kirchhoff 
stress tensor ]( when a is an hydrostatic pressure a = -plE, and also those of E when 
D = a l E , are exactly the strain principal axes! There is thus no direct Lagrangian way 
today to obtain principal values and axes of strain rate and stress. 

Another remark is that in (2.6) right members are components x af3 or Xa f3 of some 
geometrical spatial elements g, D and a I p, while left members are the only component 
systems of two different material elements 1 and ~-t, m and m, g_ and 0. This denotes a 
non-intrinsic character of these Lagrangian elements and also puts the question of what 
happens for the mixed components xa f3 and Xaf3 of g, D and a I p. 

To overcome these difficulties we start from the remark that m E F+ and m E r- give 
two intrinsic linear representations of the set M of all a priori possible local metrics, because 

r+ and r- are open subsets of linear spaces r and r, but which are not compatible 
because the map m ~ m = - ~m- 1 is not linear. In order to save such a linear 
modelization, may we choose one of them? This is implicitly stated when, as it is usual, 
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we decide to work exclusively with (E, J(), and is sometime argumented by a supposed 
tensorial nature of stresses (MARSDEN, HUGHES [ 12]), supposition which can be discussed: 
are forces vectors or covectors when making power with velocities? Our opinion is, on the 
contrary, that we may not choose between m. and m .. The first describes angles and lengths 
of material segments while the second describes angles (of dihedrons) and thickness of 
material slices. To be noted, in classical approach with a reference configuration the 
essential and symmetrical parts respectively played by Green and Almansi strain measures 
E and E' have already been pointed out HILL [8), HAVNER [6) but not fully exploited. 
Note also that if many other strain measures between two configurations may be defined, as 
the important logarithmic measure ~ log C in some way middle point between E and E', 
this does not happen with metric parameters not making use of a reference configuration 

(note in particular that m and m have not eigenelements, m 2 or em have no sense, ... ). 
Thus, keeping these two incompatible linear representations on equal terms, they appear as 

being 011~r two privileged charts of a necessarily cun,ed space lv! whose particular geometry they 
state. The two metric parameters rn = !1 and m = -~~-I have then to be considered 
representatives in these two charts of a point of M that we shall denote m and call a 
metric of T0 • And starting only from the known change of intrinsic charts m = - !m - 1, 

the geometry of A1, which appears first as a six-dimensional manifold, has been studied in 
ROUGEE [20, 21, 22]. We only recall, and explain, in this section, some essential results. 

3.2. Tangent linear space Tm and stress variable 

As a manifold, kl admits in each of its points m a six-dimensional tangential linear 
space Tnt. Denoting JL or drn an element of Trn, and for any map f : lvf --+ ..-Y denoting 
dx for f'(m,)dm if f(rn) is denoted .1:, this tangent plane admits the four linear intrinsic 
representations: 

(3.1) JL = drn 

/ Jl=am=d(n~,) 
1:: = dm, = d(m) = ~- 1 p;l- 1 

( /i = dm = 1-1/i = 1:!_1 

~ 1!. = dm ==II:!_= Jll- 1 

E r = Ls(T(, ~n, 

E F = Ls(~~' To), 

E F = Ls(T(, m.), 

E [ = Ls(T(j, m), 

where 1 and ~- 1 are those of the considered point nl and where (1(~, m) and (T(j, m) are 
the Euclidean spaces obtained by endowing 1(1 and T(j with metric tensors 1 and ~-I. The 
two first ones are classically obtained by differentiating the two intrinsic charts. They give 

two m-independent images r and r of Trn while the images F and [ given by the two last 
are m.-dependent six-dimensional linear subspaces of L(T(,) and L(~n. Let Ls denote the 
algebraic structure of category of spaces L 8 (E) with forE a three-dimensional Euclidean 
space (allowing all classical algebraic calculus with symmetrical Euclidean tensors: scalar 
product, unity lE, trace, invariants, eigenelements, ... ). Because the map 'ji --+ fl is a 
L 5 -isomorphism, Tn~, is a L 5 -space, which for convenience may for instance be identlfted to 
the rn-dependent space L 8 (1(, rn) by means of map JL --+ 'ji. 

If m is the metric induced by a spatial placement a, Trn appears as the Lagrangian 
homologue of the Eulerian space of the so-called symmetrical tensors on the configuration a 
(the same m and thus the same Trn for two placements a 1 and a2 such as the displacement 
a 1az- 1 is a spatial isometry), the corresponding transport rule being the L 8 -isomorphism 
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A : Trn ___,. L 8 (E) defined by 

(3.2) J.l = A(Jl) = ajia- 1 = g-•a-*p;a- 1 = g-•a-* ea*g = a!:!:.a*g. 

Taking a reference configuration a., and putting a = Fa1 we have also 

p; = a~g 1 (FTJ...LF)a} 1 , l!:_ = a} 1(F-1J...LF-T)g} 1a}*, 

ji = a} 1(F-1 J...LF)a., J!: = a;g1(FTJ...LF-T)g} 1a}*, 

which shows that the four Lagrangian tensors pT J...LF, p-t J...LF-T, p-t J...LF, pT J...LF-T, 
classically obtained on the reference configuration by classical convective transports of 
J.l E L s (E), are the representations of our four images p;, Jl, ji, Jl of Jl E Tm, through 
some constant maps a 1 and aj g1 associated to the chosen ~fereiice configuration as in 
(2.5). And (3.2) implies that, prolonged by the inverse of the four maps (3.1), these four 
classical convective transports lead to the one and only image Jl: A is thus, for symmetrical 
second order tensors on the configuration a, and from our intrinsic point of view, the one and 
only convective transport from the Lagrangian (or material) representation to the Eulerian (or 
spatial) representation (Fig. 1 ). 

FIG. 1. Linear representations of Tm. 

Taking a Lagrangian coordinate system, each space r, I_, F and [ has its specific 
basis which, carried by (3.1), give four bases for Tm, as for Ls(E) with the convected 
basis in E. Moreover, with these related bases, Jl and J.l = A(Jl) have exactly the same 
four component systems 

II -Jl II Hij = _Hij = llij, 
rij = ij = r-ij' r r r-

Hi - Jii . - II . i - IIi 
rj - ,..., J - r;::,J - r-j 

thus achieving identity for matricial calculus, between our Lagrangian and the Eulerian 
approaches, initiated in (2.6). 
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During a deformation process, m, follows some trajectory curve on }vf. The metric 

rate v = m = ~ E Tm is such as, from (3.1): 

_ dm 1 . 1 _1 • _ 1 1 1 
v = dt = 21 ' 1l = 21 II ' v = 21 -

1
i'' Q = 2i'1'-l 

The associated stress variable is the element 8 of Tm such as, for any rh E Tm, the specific 

intemal power P = -~ : D = -Tr(~A(m)) is equal to -8 : m. Because the scalar 

product in Tm is 

J.L1 : J.L2 = Ji1 : /12 = Tr(/it/12) = Tr(]I1 ~2), 
it is easy to verify that the images of this 8 by the two first maps (3.1) are precisely the 
two elements 7J and fl. introduced in (2.3). Thus: 

- a 
8 = a*g-a, 

p 
8 -1a -1 -• _=a -g a , 

p 

- a 
8 = a- 1-a, 

p 

The Eulerian images by the generalized convective map A of these coupled variables 
(rh, 8) are exactly, as results of (2.2), (2.3), (3.2), the classical Eulerian couple (D,!!. ). We 

p 
have thus, between the Eulerian and our Lagrangian approachs, the expected total coherence: 

a a 
(3.3) -P=-:D=8:rh, A(1h)=D, A(8)=-. 

p p 

Note first that A being a L 9 -isomorphism, rh and D and also 8 and !!. have the same 
p 

eigenvalues and eigenvectors homologous by a. The problem of a Lagrangian approach of 
principal values and axes for strain rate and stress is thus solved. Second, the two factors 
of P in (2.3), (2.4) were also some Lagrangian images of D and a/ p but not by the 
same convective map for the two factors as in (3.3). Third, as expected, D appears as the 
Eulerian image of the derivative of a configuration variable, but which is our m, E Jvf and 
not a more classical tensorial variable. 

After these algebraic relations between all kinds of tensors, Eulerian and Lagrangian, 
classical and in our new space Tm, let us introduce differential calculus. 

3.3. Differential calculus on M 

The scalar product in Tm makes lvf a Riemannian manifold whose metric tensor is 
given by 

1 
(3.4) ds2 = d1n: d1n = Tr(chndrn) = 4 Tr(d/1'- 1d1'1'-t) = (C-1clE): (C- 1dE) 

= (CdE'): (CdE') =dE: dE'. 

The associated length of the trajectory of m, because m : m = D : D, is exactly equal to 

the classical cumulated scalar strain ftt
1

2 II D II dt. The associated covariant derivative of a 

vector field J.L in a direction dm, v = V dmJ.L, is characterized by any one of the following 
relations giving its images by (3.1) (the first is obtained by working in the chart m --+ m 
and applying classical formula [PHAM MAU QUAN [18], and leads to the other): 

Tl = d]I + 2(dmm]I + ]Imdm), 1!.. = d~ + 2(dmm~ + ~mdm), 

(
3

.S) v = dji + dmji- jidrn = (d/i)s-m, ~ = de- dme + edm = (dt9s-m' 
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where the index s-m. indicates the m-symmetrical part. The associated time derivative 
V' JL/ dt of a variable {llying, as 1h or 0, in the time-dependent space Tm during the defor
mation process, is closely related to the Jauman derivative J.lJ of its Eulerian image by 

(3.6) 1-J.=A(Jl) * 1-J.J=A(::). 
This indicates that, for symmetrical Eulerian tensors J.l E Ls(E), Jauman's derivative is 
exactly the convective derivative associated to our single convective transport A. This gives a 
meaningful Lagrangian sense to Jauman's derivative of symmetrical second order Eulerian 
tensors. 

These results, and other joining horizontality above lvl and isotropic maps, lead to 
a physically meaningful intrinsic Lagrangian statement of some constitutive laws usually 
stated in a Eulerian way, from perfect gas law to elastoplastic laws without released 
configuration {BOEHLER (1 ]). For instance, an isotropic hypoelastic law will be stated by 

¥t = A Tr1hl + 2JL1h, and the variable E E Tm defined by(} = A Trcl + 2JlE appears 

as satisfying the flow rule V' E / dt = m, which makes it a cumulated (in Tm) tensorial 
deformation Fariable {ROUGEE [22]). 

3.4. Height and shape of a metric 

Manifold 111 is intrinsically structured by integral curves S of the field of unity elements 
l m of Tm., and by their orthogonal five-dimensional submanifolds H. Submanifolds H 
are subsets of metrics in which the media have the same specific volume. Processes of 
deformation in such a submanifold H are isovolumic processes. We denoted by H(r) 
the submanifold corresponding to specific volume T = p-1• The curves S are subsets 
of metrics in which the media have the same angular properties. During processes of 
deformation following such a curve .5', the variation of metric properties is only a uniform 
lengthening of material segments and thickening of slices without change of angles. Thus 
it is a change of "height" without change of "shape". We denoted by S(m) and H(m) 
the curve Sand manifold H containing the metric m. The tangent spaces in rn to S(m) 
and If ( Tn) are subspaces of spherical and deviatoric elements of TnL 

Choosing some specific volume To as a unity and thus H (To) as the origin of H 
manifolds, any 1n E !vi is characterized by its coordinates f = S(m) n H(To) which 
models its shape (the angular properties) and 11 = Jm, the curvilinear abscissa of rn on 
S'(m.) with f as an origin, which models its height. These intrinsic coordinates are given 
by: 

(3.7) 
1 T 0 v =-Log- m, = fT2/3 = je2/ 3v. 

V3 To' 

By logarithmic derivation this gives dm = df + dv ~ which implies that the spherical 

part of dm is dv ~ and its deviatoric part dmv is such as dmv = df. We have also 

(3.8) d1m : (P1n = d1 f : d2 f + d1 vd2v 

which implies that the coordinate map rn ---.:, (v, f) is in fact an intrinsic isomorphism of 
the Riemannian manifold 111 on the Cartesian product R X H ( r 0). 
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As a remark, note that for a purely mechanical perfect gas the constitutive law a = 
-kp1E gives, in our material model, 

() = -kim, P = -8: rh = kim : rh = kv. 

The vector field m --+ () E Trn is thus the only horizontal vector field on .Af (k is a constant), 
and the intemal energy is equal to kl/. 

4. Geodesics of Nl and strain measures 

In this section our purpose is to study the way to model or characterize the finite 
deformation when passing from a first metric m 1 to a second m.2. If M was a linear space 
it would be associated to m 1 and m.b a vector Lhn = m 2- m 1 which would be an intrinsic 
modeling of the change of metric properties, allowing for some algebraic operations such 
as addition of two successive finite deformations, (m3 - mt) = (m2 - rnt) + (m.3 - m 2), 
or some comparison as (m2 - m.t) = 2(m4 - m.3 ). Note that in this case rn2 - m.1 

also characterizes the oriented arc of geodesic G(m., m.2) joining m 1 to m 2. But M is 
a curved space, m 2 - m 1 has no sense, and strain measures as Llm. = rn 2 - mh Llm., 
E, E', ... are only obtained through non-intrinsic procedures giving incompatible linear 
representations: to add the Lhn or to add the Lhn in two successive finite deformations 
are not equivalent procedures. The only concept which remains, because A1 is a Riemanian 
manifold, is that of oriented geodesic joining rn 1 to m 2, but without any way of comparing 
two geodesics G(mt, m 2) and G(m3 , m 4) (except their lengths). 

Parametrized by its curvilinear abscissas taking values 0 in m 1 and 1 in m 2, G(m., 111-2 ) 

admits as an equation the map s --+ 111- solution of 

\7 (d111-) = 0 <=> \7 (dm) = .!!_ (dm) = 0 <=> dm. = m_ 1 dm = cste 
ds ds ds ds ds ds ds ds 

and satisfying the boundary conditions rn(O) = rn 1, rn( 1) = rn 2• Putting f = ddr; (0) and 

A = ~ ( 1) this leads to the equation 

(4.1) with 
- 1 -1 -
f = 2 Log(/1 /2) = A. 

As it was introduced, f is the "geodesic coordinate of pole m 1" of m 2, Ym1 ( m2), 
i.e. the vector of Tm1 which is tangent in m 1 to G(m1, rn 2) oriented from rn 1 to m2, 
and whose norm is equal to the geodesic distance between 111- 1 and m 2. It is the best 
tool when lying in 111- 1 and making use of geometrical elements associated to m., we have to 
characterize the position of m 2 relatively to m 1 and thus in some way the finite deformation 
from m 1 to m 2. In the same way, A is equal to -9m2(m1): it has the same norm and 
orientation as f but it is tangent to G( 111- 1, rn2) in m 2. It is the best tool to characterize the 
finite deformation from the final point m2 as point of view {Fig. 2). 

Let now m 1 and m 2 be the metrics associated to two spatial placements a 1 and a2 , 

and Ai : Tmi --+ Ls(Ei) be the associated intrinsic convective maps. We have: 

A 1(f) = a1la;- 1 = a 1 [~ Log(')'! 1'1'2)] a;- 1 = ~ Log(an! 1'1'2a!1
) 

1 -1 -* * -1 1 -1 T -1 = 2 Log(g a1 a2ga2a 1 ) = 2 Log((a2a1 ) a2a1 ) 
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FIG. 2. Strain parameters f. and .A. 

and thus, with notations of (2.4) with a2 = a, 

(4.2) 
1 

At(f) = Z LogC =Log U and 
1 

A2(A) = -LogE= Log V. 
2 

for A, obtained in the same way, with B = V 2 = F FT. 
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Parameters e and A are thus intrinsic Lagrangian homologue of classical logarithmic strain 
measures Log U on initial configuration a1 and Log V on final configuration a2• This ex
plains the success of these measures (HILL [7], HAVNER [6], PERIC and OWEN [17]). In 
finite deformations strain measures are only particular characterizations of deformations, 
and not intrinsic modeling as in small displacement. But used as modeling, the logarith
mic measures are the least bad. Note also that if M was a linear space we would have 
9m 1 (mz) = -9m2(mt) = mz- mt. 

By putting 

1 n ) en = -(c - lm , ... 
2n 

in T1n 1 (defined by analogous relations u = ee, ... in L3 (T0 , m 1)), and 

V = eA b v2 ' = , ... 
in Tn£2, we obtain other Lagrangian parameters characterising the deformation from one 
or the other of the two points of view, whose images by A1 or A2 are the classical strain 
parameters U, C, En = 2~ (Cn - 1E1), ••• in Ls(Et) and V, B, ... , in Ls(Ez). These 
parameters are also defined by 

f = ~ = ~ Log(1'} 11'z), u = v = (1'1-
11'2)

112
, c = b = 1'}11'2, ... 

2 

and it may be seen that u = v is an isometry of (7(" n£1) on (1(" m 2). All these elements 
lie in Ls(11" n£t) n L 3 (1(" m 2). They have, and thus£, u, c, en, ... in Tm 1 and A, v, 
b, ... in Tm2 too, the same eigenvectors defining the Lagrangian principal deformation 
axes. These are thus intrinsic while principal deformation values, depending on the choosen 
strain measure, are not. 

A path above G(mt, 1n2) in tangent bundle T A1, jj(s) E Tm(s), is horizontal if it 

satisfies ~f = 0, i.e. if ¥1+ ~ji,-ji~ = 0 which with (4.1) gives ji(s) = e-s1ji(O)e 31. 
As a consequence, the parallel transport above G(m1, m 2) is the L 3 -isomorphism G : 
Tm.1 ----* Tm2 defined by 

(4.3) Jl>2 = G(ltt) ¢} jlz = :u- 1jitu 

and we note that A = G(f), v = G(u), b = G(c), ... Putting F = a2a!1 = RU = V R 
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and ~i = Ai (J-Li) it may also be seen that 

(4.4) ftz = G(ltt) ¢:> ~ = R~1 R-1 • 

The Eulerian image of the parallel transport above G(m2 , m 1) is thus the rotation of 
the symmetrical tensors by the rotation R (while, as seen in [ROUGEE [22], it is by the 
rotation of the corotational space frame for the parallel transport above the trajectory of 
a deformation process). 

Let us now see what occurs with heights and shapes of m 1 and m 2• The field rn -----* lm 

is horizontal: Vl = 0. It follows that curves 5' are geodesics of M. This also results 
from the fact that the coordinate map m ---+ (v, f) is a canonical isomorphism of the 
Riemannian manifold AJ on R x H(T11 ). Another result is that the projection, by curves 
S, of the geodesic G(mt, m 2) on H(To) is the geodesic G(fh f 2 ) joining in H(To) the 
shapes f 1 and f 2 of m 1 and m 2 • Also, the decomposition of f. in spherical and deviatoric 

parts, f. = fs + fv, is such as fs = (vt - Vz)lm 1 and fv = f f where f. f = 9ft (fz) is 
the geodesic coordinates of pole f 1 of fz. An analogous decomposition may be written 
for A. A finite deformation from m 1 to m 2 presents thus two additional and independent 
components. First, a change of height, i.e. a change of surface H from H(m 1) to ll(m2), 

whose measure is the distance Llv = v2 - JJ1 between these surfaces, independent of 
the choice of T0 . This measure has the good additivity properties, when composing the 
deformations, resulting from the linearity of the factor R in R x H ( T0). Second, a change 
of shape, passing from curve S(ntt) to curve 5'(rn2), which after choice of To as a specific 
volume unity, may be characterized by a deviatoric element f. 1 ofT ft. or by its analogue 
A f in T fz, or by any other strain parameter built of them as previously. 

Let us now see what happens when, choosing a reference configuration a1, we work 
with a particular measure of the deformation between this reference configuration and 
the studied variable configuration rn = mz, for instance En E Ls(Et). The map a 1 is a 
constant isometry between (7(" m.t) and Eb and thus A1 is a constant L 5 -isomorphism 
between the tangent space Tnt 1 in rn 1 and the space Ls(Et) of symmetrical tensors on 
the reference configuration, which may be used to identify these two spaces. To work 
with En as a representative of the studied metric 1n., and consequently with t; n as strain 
rate, is thus equivalent to substituting en and en in Tnt} to m E M and Th E Trn. 
Thus it is equivalent to substituting to M its tangent plane in m 1 by means of the projection 
map m -----* en. For the set of all possible local metrics, a non-intrinsic linear model is 
then substituted to the actual nonlinear model l\1. This is acceptable only in case of 
small deformation. First, because for the logarithmic measure f = e0 we have from 

--1- -
(4.1) m = 11lteml f. which by differentiating at point e = 0 gives dm = de, and thus 

(-#b) = lTmt for the derivative of the projection map m -----* e. Second, because it 
um m=mt 

is well known that in Tn11 identified with Ls(Et) the usual precautions in defining strain 

measures make these measures equivalent in case of small strain: (dden) = 1Tm1 ep ep =O 

(and equivalent to the classical strain tensor of small displacement theory). 

5. Kinematics with intermediate state 

In elastoplasticity with an intermediate elastically released state leading to the well 
known decomposition F = FeFp, an indeterminate rotation enters the definition of the 
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released state. It is thus only its metric properties, modeled by a point mp of M, which 
are useful in the concept of released state. We have thus for these media two points of 
A1 as time-dependent parameters: the actual metric m and the metric mp. The latter 
would be obtained if, stopping the process, the stress was locally and elastically released. 
Such a release of stress is only an abstract idea and is never performed, except for some 
instants and some points where eventually stress happens to be zero. The points 111 and 
mp go thus over two trajectories on NI, parametrized by time t. The first one describes 
the total deformation process while the second describes what we shall call the plastic 
deformation process. But there is no trajectory joining mp(t) to m(t). And because, 
as it was seen previously, there is no variable susceptible to model the elastic difference 
between mp and 1n, the physical concept of elastic part of the total deformation may not be 
constituted by giving only the two metric states 1np and m. Another aspect of this difficulty 
is that there is no intrinsic way to decide if, during the process and considering the metric 
rates rh and rhp, the elastic deformation stays or does not stay constant. In particular, 
denoting by fe and Ae the parameters f and A associated to 111 1 = 1np and m 2 = m, 

~~e = 0 does not imply that \ld~e = 0. There is not an elastic strain rate intrinsically 

associated to the total and plastic rates rh and ·rhp. Note also that rhp and s;f are in 

Tn1P while rh and ~t are in Tm., which does not make the composition of strain rates 
easy. 

Numerous supplementary particular choices, as non-equivalent choices between fe 

and A e as elastic variable, have been done to overcome this difficulty, leading to various 
theories. Unfortunately they are not physically justified and generally not recognized as 
being optional choices and thus questionable. We have given in ROUGEE [21] two such 
choices, geometrically argumented. We present here the case where an elastic microstruc
ture (as a crystalline structure) brings additional physics which allow for overcoming the 
difficulty. 

For such media we introduce two local three-dimensional linear spaces. First 1(1 

as before, with its space of metrics M, for the continuous media itself, and second 
111s with its space of metrics M s for the microstructure. This second space is a Eu
clidean space: it is endowed with a particular metric mos E M s, time-independent, 
which, with eventual geometrical elements as those describing the slide systems, models 
the crystalline structure in released state. Two parameters appear as essential for the 
statement of constitutive laws of these media. First, the actual metric m E M of the 
media as previously, and second a map p E L(T0 , 1(18) modeling the actual placement 
of the media with regard to the microstructure. This map p allows to carry on 1(18 

any scalar product defined in 1(1 and thus induces a map P of M on Ms characterited 
by 

(5.1) ms = P(m) ¢> m 8 = p-*mp- 1 

which by logarithmic derivative gives the following characterization of the tangential linear 
map P1(n1): Tn1--+ Tms 

(5.2) dms = P'(m)dm ¢> dms = pdmp- 1
• 

This last map is a L 8 -isomorphism because pis an isometry of (1(~, m) on (1(18 , m 8 ). As 
a result P is an isomorphism of M on M s for all their structure. The map P transforms 
a geodesic of M into a geodesic of Ms of the same length. The curves S and their or-
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thogonal surfaces H of M, and those Ss and Hs of !vis, are homologous. Polar geodesic 
coordinates in two homologous poles 1n1 and ms1 = P(mt) of two homologous metrics 
mz and ms2 = P(m2) are homologous by P'(rnt). 

Ftc. 3. Maps p and P. 

If rn E !vi is the actual metric of the media and m 08 E Nls the (time-independent) re
leased metric of the microstructure, 1n s = P( m) is the actual metric of the microstructure 
and 1np = p-t ( nl-os) is the released metric of the media (Fig. 3). The elastic part of the 
process is now well defined: it is the deformation process of the elastic microstn-~.eture, modeled 
by m. s moving on A!J s. The plastic part is modeled by p moving in the nine-dimensional 
linear space L (1(, I(,s)· This is a more general variable than the six-dimensional metric 
variable mp = p- 1(mos) that it induces. The global deformation process is the product 
of these two basic processes by means of (5 .1) which, by time derivative, leads to the 
following rate composition (written in Tm s) 

d = de + dp with de = 1hs ' 

(5.3) .........._ dp = _21 (""s-1(p'p-1)*""s + p'p-1) ' dp = - P(m) = (jJp- 1 )s-m~ r-r 1 1 

d = P'(m)1h ¢? d = pnt- 1mp- 1
, 

where dis the total metric rate rh carried in Tms by P'(m), de is the elastic strain rate 
and dp the plastic strain rate. The elastic deformation may be characterized by any of the 
deformation parameters fs e' Us e' ... , Ase' ... associated to the couple ( mslh 11ts) but 

VJse VA h 1 · · l · , ft, ... are not t e e asttc stram rate c. e = 11ts. 

Let a E L(I(, E) be the actual local spatial placement of the media, e the product 
ap- 1 E L(I(,s,E), describing the spatial placement of the microstructure, and A and E 
the associated intrinsic convective maps for symmetrical tensors. We have 

- 1 * - 1 * m = -a ga, ms = -e ge, 
2 2 

a= ep, 

('VIL E Tm) lls = P'(m)ll => A(p) = E(J.Ls) 

and by convective transport of (5.3) the Eulerian rate composition is: 

(5.4) 
D = De+ Dp with D = A(rh) = (aa- 1)s, De = E(ins) = (ee- 1)s 
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FtG. 4. Composition of placements. 

If a1 and e1 are two time-independent reference placements for the media and the mi
crostructure (Fig. 4), e1 being an isometry of (Ills, m 03 ) on (E, g), and putting F = aa! 1

, 

Fe = ee! 1
, Fp = e1pa!1

, we obtain the classical relations: 

F = FeFp, D = (F p-l)s, De= (FeFe- 1
) 8 , Dp = (FeF Ppp-l Fe- 1

) 8 • 

In the case where Ills is chosen equal to R\ p E L(I(, R3) is a basis operator. The 
parameter p and the reference configuration e1 are then the trihedron director and the 
isocline released configuration introduced and used in (MANDEL [10, 11], STOLZ [24]). 
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