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Dynamic stability of plates with boundary conditions 
depending on membrane forces 

A. TYLIKOWSKI (WARSZAWA) 

IN THE PAPER the stochastic stability problem is solved for rectangular plates with elastically SUpPOrted 
edges. The plate is compressed by in-plane wide-band Gaussian forces. It is assumed that resiStances 
to rotation of plate edges increase linearly as the mean values of in-plane forces increase. Results 
are graphically presented for cylidrical bending of a plate which is simply supported and the support 
stiffens under compression. 

1. Introduction 

THE INVESTIGATION of the stochastic stability of rectangular plates under time-dependent 
in-plane forces has been considered in literature during the past twenty years. Most 
papers were concerned with idealized simply supported or clamped edges (cf. [1, 2, 
3]). Based on the results obtained for simply supported edges some other more real­
istic stochastic dynamics problems can be treated. The plate is still assumed to have 
elastically supported edges against rotation. The spring constant, however, may vary as 
the plate rotates. If the plate is subjected to a compressive load P, the support con­
dition may also depend on P. This behaviour has been demonstrated for compressed 
columns [4], where the resistance to rotation increased as P increased. This variation 
has a significant effect on the dynamic behavior and buckling load of structural elements 
[5, 6]. 

The effect of such support stiffening on a rectangular plate dynamic stability is exam­
ined in the present paper. The spring constant of the boundaries is assumed to increase 
linearly with the mean value of in-plane forces. Both isotropic and antisymmetrically 
laminated cross-ply plates are analyzed. Numerical results and figures are presented for 
cylindrical bending of a plate, the first edge of which is simply supported and the second 
one exhibits resistance to the rotation increasing with P. 

2. Problem formulation 

We introduce a probability space (F, ~' P) and assume that a transverse displace­
ment of the plate and in-plane forces are measurable with respect to a-algebra ~. For 
convenience we will omit the symbol i E r in a description of stochastic processes, e.g. 
w(j, x, t) = w(x, t). 

The flexural vibrations of a rectangular elastic thin plate compressed by in-plane time- · 
dependent forces are described by the governing partial differential equation 

phW,tt + 2f3phw,t + Kw + (Nox + Nx(t))w,xx + (Noy + Ny(t))w,yy = 0, 
(2.1) 

(x, y) E [} = (0, a) x (0, b), 
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where K is a linear self-adjoint operator representing elastic forces, Nx and Ny are 
uniformly applied in-plane forces, pis the plate density, {3 is the damping coefficient. The 
rectangular plate has the length a in the x direction, with b in the y direction and total 
thickness h in the z direction. A comma denotes a partial derivative of the main symbol 
with respect to the index. 

The purpose of the present paper is to derive criteria for solving the following problem: 
will the deviations of plate surface from the unperturbed state (equilibrium state) be 
sufficiently small in some mathematical sense in the case when in-plane forces are time­
dependent. The plate dynamically buckles when the in-plane forces get so large that the 
plate does not oscillate about the unperturbed plane state and a new increasing mode 
of oscillations occurs. To estimate the perturbed solution of Eq. (2.1) we introduce a 
measure of distance II • II of the solution of Eq. (2.1) with nontrivial initial conditions 
from the trivial one. 

In the present analysis the direct Lyapunov method is proposed to establish cri­
teria for a uniform stochastic stability of the unperturbed state (trivial solution) of rectan­
gular plates treated as the infinite-dimensional system subjected to the in-plane wide-band 
Gaussian stochastic forces. The crucial point of the method is a construction of a suitable 
Lyapunov functional, which is positive for any motion of the analyzed system. Then the 
measure of distance can be chosen as the square root of functional 

llw(·, t)ll = V 112
• 

The boundary conditions corresponding to elastically supported edges have the fol­
lowing form: 

(2.2) 

w(O, y, t) = 0, 

w(a,y,t)=O, 

w(x,O,t)=O, 

w(x, b, t) = 0, 

mx(O, y, t) + kw,x(O, y, t) = 0, 

mx(a, y, t)- kw,x(a, y, t) = 0, 

my(x, 0, t) + kw,y(x, 0, t) = 0, 

my(x, b, t)- kw,y(x, b, t) = 0. 

We rewrite Eq. (2.1) as the Ito partial differential equation with two independent 
Wiener processes modeling the stochastic components of the in-plane forces 

dw = w,tdt, 

(2.3) dv = - ( 2,8w,, + :h /Cw + foxW,xx + /oyW,yy )dt 
+axW,xxdWx + O'yW,yydWy, (x, y) E il, 

where fox = Nox I ph, /oy = Noy I ph, ax and a y are the intensities of Wiener processes. 

Equation (2.3) possesses the trivial solution w = W,t = 0 and we are going to exam­
ine a uniform stochastic stability of the equilibrium state. The trivial solution is called 
uniformly stochastically stable if the following logic sentence is true: 

(2.4) 1\ 1\ V llw(·, 0)11 < r => P{ 1 : sup llw(·, t)ll > 6} < L1 . 
.d>O 6>0 r>O t>O 
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3. Isotropic plate 

We start our consideration from the isotropic plates. Neglecting the in-plane inertia 
term and applying the Kirchhoff hypothesis, Eq. (2.1) takes the form 

(3.1) phW,tt + 2{3phw,t - Mx,xx- My,yy - 2Mxy,xy + (AI{)x + N'x(t))W,xx 

+(N'oy + N'y(t))w,yy = 0, (x, y) E [}. 

Mx, My, Mxy denote the bending and torsional inner moments in the plate. Dividing 
Eq. (3.1) by ph and modeling the time-dependent components of in-plane forces Nx and 
N'y as Gaussian white noises, we have the following Ito-type system of stochastic partial 
differential equations of the first order with respect to time: 

dw = vdt, 

dv = - (2f3v - mx,xx- my,yy - 2mxy,xy + foxW,xx + /oyW,yy)dt 
(3.2) 

+axW,xxdWx + O'yW,yydWy, (x, y) E [}, 

where the reduced inner moments can be expressed by a transverse displacement in the 
form 

(3.3) 

mx = -d(w,xx + VW,yy), 

my = -d(w,yy + VW,xx), 

mxy = -d(1 - v)w,xy, 

D 
d=-

ph' 

and independent standard Wiener processes are denoted by Wx, Wy. In order to examine 
the uniform stochastic stability of trivial solution w(x, y, t) = v(x, y, t) = 0 we apply 
the direct Lyapunov method. The Lyapunov functional suitable to the uniform stability 
analysis has the form [2] 

(3.4) 

where T, Vp and Vs are the modified kinetic energy, potential energy and support energy, 
respectively 

T = J (v2 + 4f3vw + 4f32w2
) d{}, 

n 

Vp = J (-mxW,xx- myW,yy- 2mxyW,xy- !oxW~x- /oyW~x)d{}' 
n 

a b 

Vs = J k(w~y(x, 0, t) + w~y(x, b, t))dx + J k(w~x(O, y, t) + w~x(a, y, t))dy. 
() () 

The functional is positive definite since the integrand of the modified kinetic energy 
can be rearranged as a sum of squares, and the rest is the potential energy of the plate 
and the edges, which is positive if the constant compressive forces are sufficiently small. 
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Using the Ito calculus we evaluate the differential of functional 

(3.5) dV = J (2vdv+4{3wdv+4{3v2dt+8{32wvdt+dmxw,xx-dmyw,yy-2dmxyW,xy 
n 

-mxdW,xx- mydW,yy- 2mxydW,xy- 2/oxW,xV,xdt- 2/oyW,yV,ydt) d{} 

Remembering that 

a 

+2 J k(w,y(x, 0, t)v,y(x, 0, t) + w,y(x, b, t)v, 11(x, b, t))dx 
0 

b 

+2 J k(w,x(O, y, t)v,x(O, y, t) + W,x(a, y, t)v,x(a, y, t)) dy. 
() 

dmx = -d(v,xx + VV,yy)dt = mx,tdt, 

dmy = my,tdt, dmxy = mxy,tdt 

and substituting equations of motion (3.2), we rewrite the differential of the functional in 
the form 

(3.6) dV = J (2v(mx,xx + my,yy + 2mxy,xy)- 2/oxVW,xx- 2/oyVW,yy 
n 

+4{jw(mx,xx- my,yy- 2mxy,xy)- 4f3foxWW,xx- 4f3foxWW,xx 

-mx,tW,xx- my,tW,yy - 2mxy,tW,xy - fflxV,xx - fflyV,yy - 2mxyV,xy 

-2/oxW,xV,x - 2/oyW,yV,y + u;w~xx + u;w~yy) d{} dt 
a 

+2 J k(w,y(x, 0, t)v, 11(x, 0, t) + w,y(x, b, t)v,y(x, b, t))dx 
() 

b 

+2 J k(w,x(O, y, t)v,x(O, y, t) + w,x(a, y, t)v,x(a, y, t))dy 
() 

+ J (2v + 4{3w)(O'xW,xxdWx + O'yW,yydW11 ) d{}. 
n 

Integrating by parts and using boundary conditions (2.2) we can prove the following 
equality: 

b b Ia J 4{3wmx,xx d{} = J 4{3wmx,xlg dy - J 4/3w,xmx,x dy = - J 4/3w,xmx dy 
n o n o 0 

b 

+ J 4/3W,xxfflx d{} = -4/3 J k(w~x(O, y, t) + w:x(a, y, t)) dy + 
n o 

Finally, we can rewrite the differential (3.6) in the form 

(3.7) dV = -4/3{ V,- J ((u!w:xx + u;w:yy)/4{3)dil + V.,} dt 
n 

J 4{3wmx,xx d{}. 
n 

+ J (2v + 4{3w)(O'xW,xxdWx + O'yW,11ydW11 ) d{}. 
n 
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Integrating Eq. (3.7) with respect to time from s to Tc5(t), where rc5(t) is the first exit time 
of the system trajectory from the domain V 112 ~ 6, we obtain V(rc5(t)). Remembering 
that the exit time is a random variable we conditionally average it with respect to a a­
algebra generated by events earlier that s. Therefore the last term in Eq. (3.7) vanishes 
and we have 

r.s(t) 

(3.8) EV(rc5(t)) = V(s)- E J 4,8{ Vp- J ((a!w~xx + u~w~yy)/4,8) dfl + Va} dt. 
() {J 

The functional V(r8(t)) is a supermartingale [7] if the expression in cubic brackets is 
positive. Proceeding similarly to the proof of Chebyshev's inequality we can prove that 
the supermartingality is a sufficient condition for the uniform stochastic stability of the 
trivial solution. Thus the positive definiteness of the following functional is the main 
condition for the uniform stochastic stability, 

(3.9) J (w~xx + w~YY + 2w~xy- (foxW~x- /oyW~x)/d- (u!w~xx + CT~W~yy)/4,Bd) dfl 
[) 

Jb k 2 2 Ja k 2 2 d + d(w,x(O, y, t) + w,x(a, y, t)) dy + d(w,y(x, b, t) + w,y(x, 0, t)) x 2:: 0. 
0 () 

The stability condition can be expressed by the potential energy of plate and the energy 
of support as follows: 

(3.10) Vp- J ((u!w~xx + u;w~yy)/4,B)dfl + Vs > 0. 
[) 

4. Antisymmetrically laminated cross-ply plat~ 

Let us consider a thin cross-ply laminated rectangular plate consisting of an odd 
number of elastic orthotropic layers antisymmetrically laminated about its middle sur­
face from both the geometric and a material standpoint. The Kirchhoff hypothesis on 
nondeformable normal element is taken into account. Neglecting the in-plane, rotary, 
and coupling inertias, linear vibrations obey the following set of partial equations in terms 
of the in-plane displacement w [8] 

(4.1) 

(4.2) 

(4.3) 

Nx,x + Nxy,y = 0, 

Nxy,x + Ny,y = 0, 

phW,tt + 2,Bphw,t + NxW,xx + NyW,yy + DuW,xxxx 

+2(D12 + 2D66)W,xxyy + D22W,yyyy- Bu(U,xxx- V,yyy) = 0, 

where the membrane forces are defined as follows: 

(4.4) 
Nx = Auu,x + A12v,y- BuW,xx' 
Ny = A12u,x + A22V,y + BuW,yy, 

Nxy = A66(u,y + V,x). 

(x,y)Efl, 

The cross-ply laminate has unidirectionally reinforces ( orthotropic) layers with principal 
material directions alternatively oriented at 0 and II /2 to the laminate coordinate axes. 
The in-plane stiffnesses Aij, coupling stiffnesses Bij, and the bending stiffnesses Dij are 
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defined as follows: 
h 

(Aij,Bij,Dij) = J (l,z,z2)Qijdz. 

-~ 

A. TYUKOWSKl 

The reduced in-plane stiffnesses of an individual lamina are expressed in terms of the 
lamina principal material properties [8], Eh E 2, G12 and v12 are major Young's modulus, 
minor Young's modulus, the shear modulus and major Poisson ratio, respectively. 

The plate is assumed to be elastically supported. Denoting the solutions of the first 
two Eqs. (4.1) and (4.2) as 

u = .Cu(w), v = .Cv(w), 

we substitute them into the third Eq. ( 4.3), divide by ph and preserve for convenience 
the same notations 

(4.5) W,tt + 2{3w,t +(fox+ .fx(t))w,xx +(Joy+ .fx(t))w,yy + DnW,xxxx 

+2(Dl2 + D66)W,xxyy + D22W,yyyy 

-Bn(.Cu(w),xxx + .Cv(w),yyy) = 0, (x, y) E f2. 

We choose the functional in the form (3.4 ), but it should be remembered that the 
inner moments are expressed by modified expressions 

Mx = -Bnu,x- DnW,xx- D12w,yy, 

My= -Buv,y- D12w,xx- D22W,yy, 

Mxy = -2D66W,xy. 

Proceeding similarly to the stability analysis of isotropic plates we apply the Ito lemma 
and calculate the functional differential. It can be shown that the main stability condition 
for antisymmetrically laminated cross-ply plate has the same form as that for the isotropic 
ones (3.10). 

5. Cylindrical bending 

Effective stability conditions in terms of force intensity a, critical axial force Pcf7 damp­
ing coefficient {3 and edge coefficients can be easily calculated for a plate in cylindrical 
bending, where results of static buckling calculated by PlAUT [5] can be used. Dimen­
sionless notations are introduced in the following way: 

where 

X 
_.*X' 
a 

w 
-*w, 
a 

ak 
n*k, 

Pa2 

n*P, 

{ 
D for isotropic plate, 

D = D Btt 1 
\. 1.1 - An for antisymmetrically laminated cross-ply pate, 

Assuming that the plate is infinitely long in y direction, neglecting the compression in y 
direction as w ( x, y) = w ( x ), and omitting partial derivatives with respect to y, we obtain 
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the basic inequality in the form 
1 

A. TYLLKOWSKI 

(5.1) 1 ((1- CJ;/4(3)w~xx- pw~x) dx + k(w~x(O, t) + W~x(l, t)) ~ 0, 
() 

where the simplified boundary conditions have the form 

w(O, t) = 0, W,xx(O, t)- kw,x(O, t) = 0 

w(1, t) = 0, W,xx(1, t) - kw,x(1, t) = 0. 
(5.2) 

If the edge x = 1 is a classical simple support independent of the axial force and the 
characteristic of boundary condition for x = 0 depends on x, the buckling force can be 
determined by minimizing the potential energy of the plate 

1 1 

(5.3) II = 1 W~xx dx - Per 1 W~x dx + kw~x(O, t). 
() () 

Since the critical force Per can be calculated from the Rayleigh quotient 
1 

1 W~xx dx + kw~x(O, t) 
P. () er = mwin _____ 1 ____ _ 

1 W~xdx 
() 

it satisfies the inequality 

(5.4) II ?:. 0 

for any function w(x, t) satisfying boundary conditions (5.2). The appropriate Euler 
equation derived from condition 6 II = 0 has the classical form 

(5.5) W,xxxx- Pw,xx = 0, 

for which the critical force is determined [5] for a linearly stiffening spring constant of 
the support 

(5.6) k = c: 1 + Pc:2, 
where c: 1 is the value of the spring constant, and c:2 is a proportionality coefficient. 

We see that the uniform stability condition (3.7) can be rewritten in the form similar 
to inequality (5.4) with (5.3) as follows 

11 2 Per J1 2 k 2 
w,xx dx- --(!~2 w,x dx + (!2 w,x(O, t) ~ 0. 

() 1-- 0 1--
4(3 4(3 

(5.7) 

Using numerical results of paper [5] we can calculate CJ;/4(3 as a function of the 
constant component of axial force p and boundary coefficients c: and 1. Figures 1 and 2 
present uniform stability regions for 1 = 0.0 and 0.4, respectively. Stable domains are 
situated under curves shown in the figures. These results demonstrate how the stability 
domains are affect~d by supports which stiffen when the axial force is increased. It is 
seen that if the constant component c: of spring support is increased, the stability domain 
increases. 
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