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A coordinate-free description 
of nonequilibrium thermodynamics 

Z. BANACH and S. PIEKARSKI (WARSZAWA) 

THE EMPHASIS in nonequilibrium thermodynamics is upon such conceptual problems as (i) under
standing the meaning of temperature and pressure beyond local equilibrium or (ii) obtaining the 
theory of thermodynamic potentials for systems not infinitesimally near to equilibrium. In order to 
study these problems, the present paper offers the development of an approach based upon the fol
lowing entropy maximum principle: among all states having the same values of conserved variables, 
the equilibrium state gives the specific entropy its greatest value. The entropy maximum principle, if 
combmed with the ideas standing behind a coordinate-free description of the thermodynamic space 
of nonequilibrium states, allows one to draw upon results from the critical point theory. Precisely 
speaking, using this theory, it is possible to find a coordinate system for the thermodynamic space 
such that the (specific) entropy can be written as a sum of two physically different terms: the first 
term represents the thermostatic entropy (which is a function of conserved variables), while the 
second term is given by a quadratic form dependin~ only on "nonequilibrium variables". Due to 
the existence of this particularly simple representation of the specific entropy, one easily arrives 
at the natural definitions of temperature, pressure, and thermodynamic potentials for systems not 
infinitesimally near to equilibrium. 

1. Introduction 

IN GIBBSIAN thermostatics [1, 2], the state of a macroscopic system is described by a set 
of additive conserved variables (Y1, ••• , Yr ), denoted collectively by Y. The guiding idea 
is that these variables, which are sometimes called the extensive variables, are directly 
measurable. Given a system with a fixed amount of matter, we may single out the number 
of moles or molecules N as a scale factor and then introduce the intrinsic quantities 
y f3 : = Yf3 ( N) - 1 where f3 = 1, .. . , r. In the most common special case of a homogeneous 
chemically inert fluid, y : = (y1 , ••• , Yr) consists of the specific internal energy c and the 
specific volume v; hence r = 2. 

As we know, in Gibbsian thermostatics the concept of entropy is taken for granted. 
Thus, to each state e of the system labeled by y there is assigned a real number hE(Y) 
called the specific entropy. The intensive variables Ilf3 conjugate to Yf3 are introduced as 
derivatives of hE. For a homogeneous chemically inert fluid, the intensity II 1 = a hE I 8£ 
is equal to the inverse of the absolute temperature T and T Il2 = T(8hE/8v) can be 
identified with the thermodynamic pressure p. 

The application of geometrical methods to thermostatics rests on the assumption that 
the set E of all equilibrium states of the system is a finite-dimensional differentiable 
manifold [3, 4]. 

Now, it is widely believed that even for systems in a nonequilibrium state the in
trinsic conserved variables y are well-defined observable quantities. However, in order 
to make the information associated with the nonequilibrium state complete, one has to 
use, in many cases, additional thermodynamic variables to specify the properties of the 
system. Thus, what various approaches in the literature have typically proposed [5-12] 
has been to introduce a new set of real variables (zt, ... , zs), denoted collectively by z, 
and then to characterize the nonequilibrium staten by (y, z). Consequently, most of the 
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existing formulations of thermodynamics for systems not infinitesimally near to equilib
rium hinge on the postulate that the number of additional variables is finite. From the 
physical point of view, the universal validity of this postulate is by no means obvious, 
but here we do not enter into a detailed discussion of these difficult problems. Rather, 
we shall study the important consequences of the assumption that the set N consisting 
of all nonequilibrium states of the system is a finite-dimensional differentiable manifold 
(dim N = r + s ). 

Of course, the physical interpretation of the theory calls for a clear interpretation of the 
variables z. For example, in extended thermodynamics of rarefied gases [5], it is tempting 
to set s = 8 and then assume that the variables z are expressed in terms of the components 
of the pressure deviator P and the heat flux R. Also, given the postulational basis of 
rational thermodynamics [7-9], one can consider the materials of the differential type for 
which the numbers z are the space-time derivatives of the local conserved variables y. 
Finally, we may regard the parameters z as being the internal state variables [6, 10-
12]. The concept of internal state variables e) has been widely used in thermodynamics 
of irreversible processes [10] and in the general theory of viscoelastic and viscoplastic 
materials [ 6, 11]. 

The notion of entropy for gases and fluids not infinitesimally near to equilibrium is 
sufficiently well substantiated, at least insofar as the kinetic theory of BOLTZMANN [13, 
9] and the revised kinetic theory of ENSKOG [14, 15] are concerned. In addition, the 
scheme based upon the existence of entropy has met with wide acceptance in the literature 
regarding nonequilibrium thermodynamics (16]. In our macroscopic theory, entropy is a 
primitive concept. We postulate that there is a sufficiently smooth function h : N => R 
which e> assigns the specific entropy h( n }, i.e., the entropy per mole (particle), to each 
nonequilibrium state n E N labeled by (y, z). 

In order to formulate and study our main problem, it is now necessary to review 
some aspects of the notation employed throughout the paper. Let n E N be the state 
labeled by (y, z). Then we postulate e) that n is an equilibrium state if and only if 
Zf3 = 0 for each f3 (/3 = 1, ... , s). Among other things, this means that we agree to 
regard henceforth the set E consisting of all equilibrium states of the system as a certain 
assigned submanifold of N. With these preliminaries, we are ready to define the projection 
1r of N onto E. Namely, the value of 1r at n is uniquely determined by the condition that 
if the variables (y, z) specify n, then the variables (y, 0) specify 1r ( n }, the image of n 
under 1r. ForeE E, we shall refer to 1r-1({e}) := {n EN I 1r(n) = e} C N as 
the inverse image of { e} by 1r. The state n E N is said to be consistent with a state 
e E E if n E 1r-1 ( { e} ). Alternatively, we say that the state 1r{n) has the same values of 
conserved variables y as n. Then we may call 1r ( n) the equilibrium state corresponding to 
n. There is nothing unnatural about this terminology. In Grad's formulation of the kinetic 
theory of gases [13, 9], the similar terminology, although not discussed or mentioned only 
vaguely, is inherently present in the characterization of the infinite-dimensional space of 
nonequilibrium states. · 

e) Some authors [12) use the term "hidden variables" or "hidden coordinates". 

e) The symbol R denotes the set of real numbers. 

e> This postulate is sufficiently general to represent most of the physically important systems, although (in 
all probability) it cannot be valid for viscoplastic materials [6, 10, 11). Such materials, however, will not be 
discussed here. 
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The states having the same values of conserved variables serve as comparison states 
for the entropy maximum principle (4 ). Precisely speaking, we express this fundamental 
principle by postulating that among all states consistent with e E E, the equilibrium 
state e gives h : N => R its greatest value. The main objective of this paper is the 
systematic development of a coordinate-free description of the thermodynamic space N 
of nonequilibrium states as well as of the entropy maximum principle. The extremal 
property of the specific entropy, which is an indispensable element of our generalization 
of Gibbsian thermostatics [1, 2], allows us to draw upon results from the Morse critical 
point theory [3, 4, 21]. We will show that this theory (cf., e.g., the lemma of Morse; p. 493 
in Ref. [4]), if combined with the ideas standing behind the geometrical interpretation 
[3, 4] of the finite-dimensional space N, is very useful in obtaining a large number of 
thermodynamic potentials and identities for systems not infinitesimally near to equilibrium. 
Moreover, we shall focus upon such conceptual problems as (i) understanding the meaning 
of temperature and pressure beyond local equilibrium or (ii) determining the conditions 
under which the differential of h (the extended Gibbs relation) can be represented by a 
particularly simple formula. 

Loosely speaking, what we show is that the methods established by the critical point 
theory [3, 4] serve to generate a privileged class of coordinates (y, z) for N. In view of 
the existence of such a class of coordinates, the specific entropy h can be written as a 
sum of two physically different terms: the first term, denoted by hE (y ), represents the 
thermostatic entropy (which is a function of the conserved variables y), while the second 

s 
term is given by a quadratic form - L: (z,a)2 depending only on the nonequilibrium 

,0=1 

variables z. Using this representation of the specific entropy h, it is easy to prove that 
the derivatives of h with respect toy are functions independent of z. Thus, in this way of 
thinking, Gibbsian thermostatics [1, 2] is not to be viewed simply as a first approximation to 
the full description of the system, but, instead, as an exact theory valid for a suitably chosen 
parametrization of the space of nonequilibrium states. Furthermore, all of the classic 
assertions about the (free) energy minimum principles [2, 7] will find their places as clearly 
stated and mathematically proved theorems in the above-mentioned parametrization. The 
same remark concerns the well-known formalism of Legendre transformations [2], which 
does not fail to exist when applied to the coordinate system congruent with the geometrical 
properties of N. (The manifold N has the structure of the differentiable fibre bundle [4]; 
in this context, see Appendix B.) Finally, it seems to us that our preliminary results can be 
related to many existing presentations of thermodynamics, and all of them yield the same 
conceptual framework upon which a systematic characterization of various macroscopic 
theories may be based. · 

The layout of this paper is as follows. Section 2 contains a short description of the 
structure of the space of nonequilibrium states. Section 3 and Appendix A are devoted to 
a discussion of the relationship between the entropy maximum principle and the critical 
point theory [3, 4]. In Section 4, we analyse the extended Gibbs relation and the (free) 
energy minimum principles. Since this analysis can be carried out in a step-by-step analogy 
to that in Gibbsian thermostatics, we confine ourselves to giving the final answer with a 
few explanatory remarks. A very simple example illustrating our general considerations is 

( 4 ) If a macroscopic approach is compatible with the kinetic theory of gases, then, in many cases, the 
entropy maximum principle is a rigorous consequence of the definition of the specific entropy in terms of the 
distribution function (cf., e.g., Refs. [9, 13, 17, 18]). 
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found in Sec. 5. We conclude the paper with final remarks of Sec. 6. In Appendix B, we dis
cuss the structure of N from the standpoint of the theory of differentiable fibre bundles [ 4]. 

2. Structure of the space of nonequilibrium states 
We now proceed to list the basic postulates and definitions, the basis of nonequilibrium 

thermodynamics, amplified by short comments that are required for the clarific~tion of 
the formal statements. 

a. The set N consisting of all nonequilibrium states of a macroscopic system is a finite
dimensional, differentiable manifold; dim N = r + s. (The n will symbolize the elements 
of N.) The basic content of this postulate should be more or less obvious. The space N 
is locally Cartesian, and the passage from one coordinate system to another is smooth in 
the overlapping region. The dimension of N gives the number of independent degrees of 
freedom. 

b. In order to distinguish an equilibrium configuration within the class of all possible 
ones, we postulate that there is a submanifold of N, denoted by E, such that if e belongs 
to E, then e represents the equilibrium state of the system; dimE = r. 

c. For a certain finite-dimensional manifold G (dim G = s ), the product manifold 
EX 6 is diffeomorphic toN. We use the symbols g and (e, g) to signify the elements of G 
and EX G, respectively. A diffeomorphism from Ex G onto N is represented by the map 
D :EX G =} N. The symbol D(e, g) will stand for the image of (e, g) under D. We shall 
refer to D(e, G) C N as the image of the set { e} x G C E x G by D. The introduction 
of G and D allows us to characterize and classify the nonequilibrium states. For example, 
using the "projection" 1r of N onto E defined by 1r(n) = 1r(D(e, g)):= e, we may obtain 
an exhaustive partition of N into disjoint subsets, the equivalence classes, such that the 
equivalence class to which an arbitrary state n E N belongs is equal to 1r -I ( { e}) : = 
{n' EN 17r(n') = e} where e = 1r(n). Clearly, 1r-1({e}) = D(e,G). From the physical 
point of view, the equivalence class 1r-1( { e}) is made up of all nonequilibrium states n 
consistent with a given equilibrium state e. Alternatively, we may call 1r( n) the equilibrium 
state corresponding to n. 

d. Since the equilibrium state 1r(e) corresponding toe E E should be equal toe, we 
assume that there exists exactly one element g0 of G such that if e is an arbitrary member 
of E, then D(e, g0 ) = e. (Thus, indeed, 1r is a projection of N onto E C N, because 
1r2 = 1r .) We are aware of the fact that this assumption is not a valid statement when 
applied to viscoplastic materials [ 6, 10, 11 ], but it represents a sufficiently good proposition 
for many other systems of physical interest. 

We shall close our discussion of the structure of N by providing a very simple 

EXAMPLE. Let us consider a three-dimensional, classical, moderately rarefied, sim
ple, monatomic gas consisting of molecules of unit mass. The following variables, direct 
idealizations from daily experience, are the primitive elements of nonequilibrium thermo
dynamics of the above-mentioned system (5]: 

Name Symbol 

specific energy (internal energy per particle) £ 

specific volume (per particle) v 
pressure deviator P 

heat flux R 
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After introducing the primitive quantities, the members of N, E, and G can be constructed 
in their terms: 

(2.1) 
n := (c, v,P,R) EN, 

g : = (P, R) E G, 

e := (c, v,O,O) E E C N, 

go:= (0,0) E G. 

The action of D :Ex 6 => N upon (e, g) E EX 6 is given by 

(2.2) D(e, g)= D((c, v, 0, 0), (P, R)) := (c, v, P, R) = n. 

Using Eqs. (2.1), we conclude that 

(2.3) 
dimE = r = 2, dim G = s = 8, 

dim N = r + s = 10. 

Returning to the definition of the projection 1r : N => E, we arrive at 1r ( n) = 
1r((c,v,P,R)) = (c,v,O,O) =e. 

3. The entropy maximum principle and the Morse critical point theory 

In this paper, the specific entropy (per particle) is a primitive concept, characterized 
by the following two axioms: 

e. There exists a scalar field h : N => R which assigns to each n E N a real number 
h(n) called the specific entropy. In order that all the mathematical operations of this 
paper be well defined, by h : N => R we shall always mean a sufficiently smooth scalar 
field. For example, the term "sufficiently smooth" means C 00

, but is used in preference 
to coo, because in fact we do not require "infinite" smoothness. 

f. The equilibrium state D(e, g0) = e gives h the greatest value it can attain for 
all states n E D(e,G) = 1r-1({e}) consistent withe (the entropy maximum principle). 
Precisely speaking, if e is an arbitrary member of E, then h(D(e, g)) ~ h(D(e, g0)) for 
every g E 6; equality holds if and only if g = g0• 

Now, combining Axioms (a)-(f) with the results established by the critical point theory 
[3, 4, 21] (in this context, see the lemma of Morse as formulated, e.g., on p. 493 in 
Ref. [ 4 ]), we arrive at the main conclusion of this paper: 

THEOREM. Let E be a globally Cartesian manifold. Under Axioms (a)-(f), there is a 
subset e) N of Nand a coordinate system (Yt, ... ' Yr, Zt, ... ' Za) on N such that 

(A) the manifold E is a proper subset of N; 
(B) if (Yb ... , Yr, Zt, ••• , Z 8 ) are coordinates of e E E, then Zf3 = 0 for each /3 

(/3 = 1' ... ' s ); 
(C) if (Yh ... , Yn z~, ... , Z 8 ) are coordinates of n E N \ E, then Zf3 :f 0 for some /3 

(/3 = 1' ... ' s ); 
(D) the restriction of h : N => R to N is a nde which assigns to each state n E N 

detennined (labeled) by (6) (Yb ... , Yn Zt, ••• , Z8 ) a real number 

(3.1) 
8 

hN(Yb · · ·, Yn Zt, • • ·, Za) := hE(Yt, · · ·, Yr)- l:(z13)2 

/3•1 

( 5) This subset is an open submanifold of N (dim.N' = r + s). 

( 6 ) The collection of real variables (Yt, ... , Yr, zt, ... , z,) is said to determine (label) nEN' if 
(yt, ... , Yr, zt, ... , z,) are coordinates of n. 
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identified with the specific entropy h( n ); 
(E) in the definition (3.1), the hE(Yb ... , Yr) represents the specific entropy h(e) assigned 

to the equilibrium state e labeled by (Y1, ... , Yr, 0, ... , 0). 

P r o o f. A sketch of the proof of this theorem is given in Appendix A. 
The theorem just formulated shows that the specific entropy as given by (3.1) is com

pounded of two parts, one of which arises from the thermostatic effects, and the second 
from the nonequilibrium ones. Indeed, the first term on the r.h.s. of (3.1), which C:epends 
only on the conserved variables (y1, ••• , Yr ), is rather obviously the specific entropy ac
cording to thermostatics; the second nonequilibrium term is more explicit, because it 
represents the quadratic form completely independent of y. 

Looking back at the example [5] described in Sec. 2, let us assume that the specific 
entropy h is a sufficiently smooth function C) of (c:, v, P, R): 

(3.2) h = h(c:, v, P, R). 

One (generally accepted) property of Eq. (3.2) suffices as a basis for easy proofs of the 
rests: among all states (c:, v, P, R) having the same values of c: and v, the equilibrium state 
(c:, v, 0, 0) yields the greatest specific entropy h. Indeed, from our theorem it follows that 
there is an open submanifold N of N and a coordinate map 3 = (3~, ... , j 10) on N such 
that if (Yb y2 , Zt, ... , zx) are coordinates of (c:, v, P, R) EN, then we can substitute the 
inverse of 

(3.3) 

into (3.2), so obtaining 

(3.4) 

Y1 = j 1(c:,v,P,R) := c:, 

Yz = j2(c:, v, P, R) := v, 

Zf3 = J{3+2(c:, v, P, R), {3 = 1, ... , 8 

H 

h = hE(c:, v)- L(z,a)Z, 
{3=1 

where (we consider here a simple gas consisting of molecules of unit mass; the ks is 
Boltzmann's constant) 

(3.4') hE(c:, v) = const + k8 In(vc:312
). 

The domain N C N over which the real-valued functions 3,a : N => R, {3 = 1, ... , 10, 
are defined and have certain properties of smoothness depends on the choice of the 
fundamental equation (3.2). In any event, (P, R) = (0, 0) if and only if z,a = 0 for any {3 
({3=1, ... ,8). 

4. The extended Gibbs relation and the energy minimum principles 

Obviously, the specific entropy hN(Y, z) as given by Eq. (3.1) is differentiable with 
respect toy := (Yb ... , Yr) and z := (zt, ... , z8 ), and we obtain for the differential of 
h N the following, particularly simple formula: 

r s 

(4.1) dhN = L II /3dY{3 - 2 L Zf3dZf3· 
{3=1 /3=1 

()For the sake of simplicity, here we use the same symbol to denote a function and its value. 
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Here the intensity II f3 conjugate to Yf3 is defined by 

II~ ·= fJ'hN = {)hE (4.1') /J • {) ({3 = 1, ... , r). 
{)y/3 Y/3 

We call (4.1) the extended Gibbs relation. Equation (4.1') evidently has the form of the 
well-known expression of Gibbsian thermostatics, because hE(Y) is the equilibrium specific 
entropy and the intensities II 13 depend actually only on the local conserved variables y. Even 
more, this is one of many instances in which thermostatics is readily adapted to nonequi
librium thermodynamics and, in fact, an indication that the extended Gibbs relation truly 
deserves this name. 

In the important case of a chemically inert fluid, Eq. (4.1) reduces to 

1 1 s 
(4.2) dhN = -de:+ Tpdv- 2 L z13dzf3, 

T f3=1 

where 

(4.2') 

( 4.2") 

Thus we are able to state the theorem that for a suitably chosen class of coordinate maps on 
N, fJhN I fJc: and fJhN I fJv are the same functions oft: and vas in equilibrium. Due to this 
fact, {) h N I fJc: = {)hE I fJc: > 0 and we shall refer to T as the temperature and to p as the 
pressure. Clearly, using the well-known axioms of thermostatics, we conclude that (4.2') 
is invertible fort: as a function ofT and v. The resulting equation c: = c:(T, v) can be 
called a caloric equation of state (valid for systems not infinitesimally near to equilibrium). 
All this we deduced without use of any information beyond that which directly arises from 
the (generally accepted) properties of smoothness and the entropy maximum principle. 

If we introduce the specific free energy 1/J N, 

(4.3) 1/JN(T, v, z) := t:(T, v)- ThN(t:(T, v), v, z), 

then by ( 4.2) 

(4.4) 
1 {}1/JN 

Zf3 = ---
2T fJz13 ' 

so that the differential of 1/J N becomes 

(4.5) 
s 

d'l/JN = -hNdT- pdv + 2T L Zf3dZf3· 
(3:c1 

In addition, we may conclude from (4.3) and 

(4.6) 
8 

hN(t:, v, z) = hE(t:, v)- L(z13)2 

/3•1 

that of all states (T, v, z) with given values ofT and v, that co"esponding -to zer-O values of 
z 13 has the least specific free energy 1/J N (the fr.ee energy minimum principle). 

Lett: = £(hE, v) be a solution fort: of the equation hE = hE(t:, v) (this equation is 
well known in thermostatics). Returning to ( 4.6), we may express hE in terms of ( h N, z) 
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and obtain 

(4.7) 

Hence 

(4.8) 

s 

£ = t:(hN, v, z) := £[hN + L:)z13)2
, v]. 

/3=1 

8£ 
T = 8hN' 

s 

dc: = TdhN- pdv + 2TL z13dz13. 
/3=1 

Z. BANACH AND S. PIEKARSKI 

Now, it is not difficult to see that 8t:/8hN > 0. Indeed, the function 8c:/8hN is equal to 
acj8hE = (8hE/8t:)- 1 and, according to the generally accepted assumptions of ther
mostatics, the derivative of hE(£, v) with respect to£ must be positive. Then, beginning 
from (4.7) and 8t:/8hN > 0, we find that among all states (hN, v, z) having the same 
values of h N and v, the state ( h N, v, 0) gives £ its smallest value (the energy minimum 
principle). 

In summary, it is perhaps important to stress that the extremum principles as for
mulated in this section are theorems, proved to follow from the existence of coordinate 
systems congruent with the geometrical structure of the space of nonequilibrium states. 

5. A very simple example of Eqs. (3.2) and (3.3)3 

Given a three-dimensional, classical, moderately rarefied, simple, monatomic gas con
sisting of particles of unit mass, the fundamental equation (3.2) proposed by Jou et al. [5] 
is of the form 

(5.1) 

hE(£, v) being given by Eq. (3.4'). Using this proposition, we see at a glance that 
Eqs. (3.3)3 reduce to 

1 

z/3 = [9kBv
2

] 1 p f3 = 1, ... ,5, 16£2 13, 
(5.2) 1 

z/3 = [27kBv
2

) 1 R f3 = 6, ... '8. 40c:3 13, 

Here P13 are components of P with respect to the orthonormal basis in the space of 
symmetric traceless tensors of degree 2, and R13 are Cartesian components of R. 

A very simple relation (5.1) has the advantage of offering a major point of contact 
with the kinetic theory, as remarked by Jou et al. [5]. 

6. Final remarks 

In this paper, we have treated only a simple macroscopic system: a system described 
by a finite set of real parameters (y~, .. . , Yn Zt, . .. , z5 ). As this case is the easiest to 
handle mathematically as well as the simplest in concept, we have reason to hope that 
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many results concerning it will have analogues for "nonequilibrium thermodynamics" with 
an infinite number of degrees of freedom ( r < oo, s = oo ). 

For a kinetic theory of rarefied gases, by a simple application of the results obtained in 
Ref. (19], we can exhibit a pseudo-thermodynamic representation of Boltzmann's entropy 
h. In other words, it is possible to express Boltzmann's entropy h in terms of the specific 
energy € , the specific volume v, and the countably infinite set of Hermite moments ba, a = 
2, 3, ... , oo. These moments are the expansion coefficients of the distribution function 
(19, 20]. The resulting expression for his such that the derivatives of h with respect to € and 
v are functions independent of ba, a = 2, 3, ... , oo. The validity of this assertion will be 
demonstrated elsewhere. 

Appendix A. A sketch of the Proof of the Theorem formulated in Sec. 3 

In order to sketch the proof of our theorem, we shall introduce first for each e E E 
the specific coordinate system J-le = (J-Lf, ... , J-L~) on a certain neighbourhood N(e) of 
D ( e, g0) in D ( e, 6) C N; the existence of J-l e follows from the results established by the 
Morse critical point theory (3, 4, 21]. (In this context, we should note that D(e, G) is 
diffeomorphic to G and that dim G = s.) Then we show that the collection of coordinate 
maps {J-Le : N(e) =} R8 I e E E} can be "glued together in a smooth way". This 
enables us to construct a diffeomorphism 3 from N : = UeEE N (e) onto a certain subset 
of E x R8

• Finally, using 3 and parametrizing a globally Cartesian manifold E, we arrive 
at the coordinate system on N, the importance of which is manifest by the particularly 
simple form of the r.h.s. of Eq. (3.1). 

1. STEP 1. A construction of J-le = (J-Lf, ••• , J-L:). Since D( e, g0 ) is a strict maximum 
point of the restriction of h to D(e, G), we can draw upon results from the critical 
point theory (3, 4, 21]. According to this theory ( cf., e.g., the lemma of MORSE on 
p. 493 in Ref. (4] and Proposition 3.10.4 on p. 144 in Ref. [3]), for each e E E there 
is a neighbourhood N(e) of D(e, g0) in D(e, 6) and a coordinate map on N(e), J-le : 
N(e) =} R 8

, J-le = (J-Lf, ... , J-L:), such that if hi.N(e) denotes the restriction of h to N(e), 
then 

s 

(A.1) hiN(e) = h(D(e, 9o))- L(J-Lp)2
• 

{3=1 

Clearly, the number s is equal to th~ dimension of the manifold D ( e, 6 )[dim G = 
dim D(e, G) = s]. From (A.1) it is not difficult to see that J-L~(D(e, g0)) = J-L~(e) = 0 for 
any {3. 

2. STEP 2. A construction of j : N =} E X R8
• Now, using the collection of coordinate 

maps {J-Le : N(e) * R8 I e E E}, we can obtain a particular coordinate system on 
N := UeEE N(e). However, before defining this system we shall recall some aspects of 
the construction of a chart J-le : N(e.) =} ns on the neighbourhood N(e) of e in D(e, 6) 
( cf., e.g., the reasoning of BISHOP and GOlDBERG directly after Proposition 3.10.3 in 
Ref. (3]). This construction starts by choosing a very specific basis for each e E D(e, G), 
n~mely a basis R( e) consisting of vectors orthonormal with respect to the Hessian He of 
he := hiD(e,G) at e. 

The next stage in the analysis is to introduce a coordinate system at e E D(e, 6) _ 
generated by R(e). (Concerning the method of obtainig this system, see the proof of 
Proposition 3.10.4 in Ref. (3].) Then the coordinate components of He are represented 
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in terms of the second derivatives of he. But h : N => R is a sufficiently smooth function on 
N. Thus, due to the definition of'R(e), there exists a "smooth field of bases" {'R.(e) I e E 
E} such that the resulting collection of coordinate maps {J.L e : N (e) => R 8 I e E E} can be 
"glued together in a smooth way". This implies in turn that the mapping 3 : N => EX R8 

as given by 

(A.2) 3(n) := (e, J.LHn) , ... , J.L~(n)), 

where e = 1r(n), is a diffeomorphism from N := UeEE N(e) onto a certain subset of 
EX R8

• 

3. STEP 3. A construction of the coordinate system on N. For the sake of simplicity, 
we assume that the manifold E is "globally Cartesian". In view of this assumption, E has 
a global parametrization. Let v = (v1, ••• , Vr) be a global coordinate system on E; thus 

(A.3) E 3 e => (vt(e) , . . . , Vr(e)) ERr. 

Combining (A.2) and (A.3), we obtain the coordinate map i: N => Rr+s defined by 

(A.4) J'(n) := (vt(e), ... ,vr(e) , J.Lf(n), ... ,J.L~(n)) , 

e being the image of n E N under 1r. The collection of real numbers (Yt, . . . , Yr , 
z1, ••• , Z 8 ) is said to determine (label) n EN if 

Yf3 = i13(n) := v13(e), f3 = 1, .. . ,r, 
(A.S) 

Zf3 = J{3+r(n) := J.L~(n), f3 = 1, ... , s, 

where 

e = 1r(n). 
In other terminology, we may call the collection (y17 ••• , Yn z17 ••• , z8 ) coordinates of 
n E N in the chart 3: N => Rr+s. Now, for each e E E, we set 

(A.6) hE(Vt(e), ... , Vr(e)) := h(e). 

This relation defines a real-valued function hE on the image of E by v = (v1 , ••• , Vr ). 
Given (A.1), the net upshot of the above considerations may be stated as the theorem 

of Sec. 3. • 

Appendix B. Background and connections with the theory of differentiable fibre bundles 

The objective of this appendix is to summarize the basic assumptions which lead to 
Axioms (a)-( d) [cf. Sec. 2]. In our discussion, we omit the technical details. 

1. Nonequilibrium thermodynamics seems always to rest upon the existence of 
(i) the set N of nonequilibrium states; 
(ii) the proper subset E of N, consisting of all equilibrium states; 
(iii) the surjective mapping 1r : N => E. 
From the physical point of view, the state e E E is identified with a finite set of real 

numbers (Yt, ... , Yr) such that y f3, f3 = 1, ... , r, are conserved (extensive) quantities. In 
fact, without loss of generality, we can postulate that E is a finite-dimensional manifold. 
The introduction of the surjective mapping 1r : N => E enables us to define the equilibrium 
state 1r(n) E E which has the same values of conserved quantities as n E N. The universal 
valid tty of this interpretation of 1r( n) is a consequence of the following observation: even 
for systems not infinitesimally near to equilibrium, the Yf3 are well-defined observable 
quantities. 
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2. In thermodynamics, one usually limits attention to nonequilibrium states described 
by a finite number of degrees of freedom. Consequently, it is natural to assume that N is 
a finite-dimensional manifold and that a triple (N, E, 1r) forms a bundle [4]. 

3. Let 1r-1( { e}) denote the set made up of all states n E N consistent with a given 
equilibrium state e; thus 1r-1{ e} := { n E N l1r(n) = e }. This set is called a fibre at 
e E E [4]. What seems to be true is that, in many cases, two different fibres are the same 
in all properties which concern only their structure as manifolds. It is this observation 
which we have used as our guideline in assuming that a triple (N, E, 1r) has the structure 
of the differentiable fibre bundle [4]. 

4. Finally, we may assume that the differentiable fibre bundle (N, E, 1r) is trivial [4]. 
Since the nontrivial fibre bundles do not appear very frequently in practice, this extra 
simplification can easily be accepted for many systems of physical interest. However, 
even if the bundle (N, E, 1r) is not a trivial bundle, it is always possible to concentrate 

. on discussing a distinguished local trivialization and then restrict attention to the domain 
of this local trivialization. It suffices to establish the theory on each such domain; hence 
without loss of generality we have postulated [cf. Axiom (c) in Sec. 2] that the set N of 
all states is diffeomorphic to the Cartesian product of E and the typical fibre 6 [4]. 

5. Let D be a diffeomorphism from E x G onto N. Our assumption that there exists 
exactly one element g0 of 6 satisfying D(e, g0) = e for each e E E [cf. Axiom (d) 
in Sec. 2] is sufficiently general to represent most of the physically important situations. 
Then the definition of 1r by 1r(D(e,g)) := e, g E G, enables us to conclude that the 
equilibrium state 1r (e) corresponding to e E E is equal to e, as it should. 
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