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On the determination of material coefficients of the theory 
of thermodiffusion in deformable solids for the heat and 
moisture transfer processes in building walls 

W. DUDZIAK and R. UKLEJEWSKI (WARSZAWA) 

THE HEAT and moisture transfer processes in building walls are coupled together. The equations 
of the theory of thermodiffusion in deformable solids siven by W. Nowacki and S. Podstrigac allow 
to describe the coupled thermo-humiditive processes m building walls and, moreover, they enable 
the determination of the stresses induced in the wall material during these processes. A numerical
measurement rrocedure to determine the basic material coefficients for moisture thermodiffusion in 
a building wal has been proposed. 

1. Introduction 

THE EQUATIONS of the theory of thermodiffusion in deformable solids developed by 
W. NOWACKI and S. PODSTRIGAC [1, 2], have been applied in [3] to the investigation 
of the heat and moisture transfer processes in a multilayer building wall. The equations 
of this theory allow to describe the coupled thermo-humiditive processes occurring in 
building walls and, moreover, they enable us to determine the stresses induced in the wall 
material during these processes. 

The application of the general solutions presented in [3] in engineering practice de
pends on experimental determination of the numerical values of the basic material coef
ficients for the moisture thermodiffusion process: d, m, n, De, k and coefficients: J-L, .X, 
/T, /C which are necessary for determining the stresses. 

The determination of material coefficients for the Podstrigac-Nowack.i theory of ther
modiffusion in deformable solids presents, from the beginning of this theory, a substantial 
problem. The thermodynamical interpretations of the thermodiffusion coefficients oc
curring in this theory are given by PODSTRIGAC and PAWLINA [4]. Some attempts at 
determination of those thermodiffusion coefficients (including evaluation of their numer
ical values) are made in [5, 6]. However, the problem of a method of determination of all 
basic material coefficients for the theory of thermodiffusion in deformable solids is still 
open. 

This paper offers the numerical-measurement procedure for determining the basic 
material coefficients of thermodiffusion theory in solids (building walls), basing on the 
general solution of a one-dimensional problem and the measurements of the prescribed 
quantities on the building wall boundary. 

2. Equations of thermodiffusion theory in solids 

The complete set of differential equations of the linear theory of thermodiffusion in 
solids by W. NOWACKI [1] and S. PODSTRIGAC [2] for slow thermodiffusion process in 
isotropic homogeneous elastic bodies, by disregarding the inertial forces and assuming 
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that in the considered body volume the external heat and mass sources do not occur, has 
the following form: 

(2.1) 

j.L\1 2W + (A+ J.L) grad divW = IT grad B + lc grad c' 

k\12B - cf:,c8tB - To(/T8T€kk - d8tc) = 0, 

De \12c- 8tC + Df: \12€kk + DT\12B = 0. 

One can see that in deriving the above set of equations it is necessary to assume that 
the considered processes of the heat conduction and the mass transfer are coupled by 
means of the physical relations only. The physical relations in this theory have the form 

aij = 2J.L€ij + (A€kk - /TB - /eC)bij, 

(2.2) S = /T€ kk - dB + me, c = C - Co, 
M = -1 c€ kk + dB + nc, B = T - 1(, , 

where aij is the stress tensor, W- displacement vector, €ij - strain tensor, €kk -
dilatation, c - increment of concentration of the diffusing medium(l) related to the 
concentration in the initial state Co , B - increment of temperature related to the initial 
state temperature 1(, S - entropy per unit volume, M - chemical potential (moisture 
potential), J.L, A, k, /T, /c, d, m, n are the basic material coefficients: J.L, A are the Lame 
elasticity coefficients, k - coefficient of thermal conductivity; the remaining material 
coefficients (/c, /T, d, m, n) will be determined later. 

On the ground of Onsager's relations (simplified by the assumption that the considered 
processes of heat conduction and mass transfer are coupled by the physical relations (2.2) 
only), the entropy balance equation, and the mass conservation principle, when we confine 
our investigation to the linear theory with respect to the temperature, the concentration 
(humidity) and the displacement, we obtain the following equations (1]: 

1 
(2.3) q = To Lqq grad fJ , TJ = - L,, grad M , 

(2.4) - divq ~ 1($, - divTJ = c, 
where q is the heat flux, TJ- mass (moisture) flux, Lqq, L 7171 - are Onsager's coefficients. 

Combining the Eqs. (2.3) and (2.4) we obtain 

(2.5) 

(2.6) 

S ~ ,;2 Lqq div grad fJ , 
0 

c = L 7171 div grad M . 
Substituting in (2.3)2 the potential M from the physical relations (2.2)3 we obtain 

(2.7) TJ = -De grad c- Degradckk- DT grade' 

where 

(2.8) De = nL,,, De = -!eL,,, DT = dL,,. 

In what follows it is assumed that the influence of the stresses in elastic material on 
the processes of the heat conduction and the mass transfer is negligible [ 1] . It is an 
analogous assumption to that used in the theory of thermal stresses and in the uncoupled 

( 1) In the building walls considered bere,the role of the diffusing medium plays the moisture; the concen
tration of moisture is called humidity. 
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thermoelasticity. Formally, it means that the dilatational terms in Eqs. (2.1)2 and (2.1)3 
can be omitted. 

According to the introduced assumptions, the slow one-dimensional process of mois
ture thermodiffusion in a building wall elastic material is described by the following equa
tions: 

from Eqs. (2.1) 

(2.9) 

from Eqs. (2.2) 

un = (2J-L + A)cn - /Te -"fcC, 

(2.10) s = me - de ' 

M = df) + TJC, 

from Eqs. (2.5) and (2.6) 

(2.11) 

from Eqs. (2. 7) 

(2.12) 

3. General solution of one-dimensional problem of moisture thermodiffusion under slow 
harmonic thenno-humiditive excitation 

Consider the one-dimensional, linear process of heat and moisture transfer in an 
external building wall viewed as an isotropic homogeneous material layer, undergoing slow 
harmonic changes (with the angular frequency w), of the thermo-humiditive environment 
parameters. 

This one-dimensional problem of moisture thermodiffusion in a building wall will be 
solved by means of the methods of the theory of electric transmission lines, which are very 
suitable for solving of one-dimensional boundary problems for sinusoidally - in time -
variable excitations. Application of such methods is possible owing to the electro-elasto
thermo-diffusive analogies presented in Appendix I. 

We assume that in the range of the considered values of temperature, humidity and 
time, the system (i.e. the building wall) is linear and stationary. Thus, all the quantities 
describing the moisture thermodiffusion process in this building wall are changing in time 
sinusoidally with the same angular frequency as the excitations (i.e. the thermo-humiditive 
environment parameters): 

(3.1) un(x, t) = Re[u0(x)ejwt], 
8tvl . t 8t := V(x, t) = Re[V0(x)e1w], 
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(3.1) 
[cont.) 

where 

(3.2) 

W. DUDZIAK AND R. UKLEJEWSKl 

B(x, t) = Re[B0(x)ejwt], ~~ := S(x, t) = Re[S(x)eiwt], 

M(x, t) = Re[M0(x)eiwt], 
8c . 
at := c(x, t) = Re[co(x)e)Wt]' 

ao(x) := O"om(x)ei<pu(x), 

Bo(x) := Bom(X )ei<pe(x), 

Mo(x) := Mom(x)ei<pM(x), 

V(,(x) := V(,m(x)ei<pv(x)' 

So(x) := Som(x)ej<p,(x), 

Co(X) := Ct)m(X)ej<pc(X) • 

The quantities denoted by index 0 are the complex amplitudes; they are vectors in the 
Gaussian complex plane, and in Eqs. (3.2) they are expressed in terms of real amplitudes 
(the quantities with the index "Om") and of the appropriate phase shift angles ~Po(x) . 
For example, M 0(x)- is the complex amplitude of moisture potential, IPM(x)- is the 
phase shift angle of moisture potential. 

The one-dimensional process of moisture thermodiffusion running in a material layer in 
the x direction, at slow harmonic state changes, can be described by analogy to Eqs. (1.13 )
(1.15) (see Appendix I) by means of the following equations: 

(3.3) 
dV(,(x) 
~ = Ztao(x) + Z12Bo(x) + Z13Mo(x), 

(3.4) 
[ 

So(x) l [ 0 0 Z2 -Z23] 
..!!:._ c0(x) = 0 0 -Z23 Z3 
dx Bo(x) Y2 0 0 0 

M0(x) 0 Y3 0 0 

where 

(3.5) Z 
. 1 

1 = JW 2Jl + ,\' Z 
. mn+ ~ 

2 = JW ' n 

(3.6) Z . 'YTn -led 
12 = JW n(ZJl + ,\) , 

z · 'Yc 
13 = JW n(2Jl + ,\)' 

dao(x) = 
0 

dx ' 

[ 

So(x) l co(x) 
Bo(x) ' 
Mo(x) 

Z 
. 1 

3 = JW-' 
n 

Z 
. d 

23 = JW-, 
n 

1 1 1 
(3.7) Y2 = 1(,-k' Y3 =- = n-. 

LTJTJ De 
The quantities (3.5) and (3.6), by analogy to the electric impedances (1.16) (Appendix I), 
may be called the thermo-humiditive impedances of a material layer. 

Equation (3.4) is the so-called homogeneous state equation; it can be written in the 
compact form as 

(3.8) d~~) = AS(x), 

where 

(3.9) S(x) = [So(x), co(x), Bo(x), Mo(x)]T 

is the so-called state vector, A is the matrix of the system. 
The solution of the state equation (3.8) is given by the state vector S( x) presented by 

the following transmission equation: 

(3.10) S(x) = eAxs(O), 
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where eAx is the so-called transmission (or transition) matrix, S(O) = S(x = 0) is the 
state vector at the input of the system (external surface of the building wall). 

Thus, the solution of the state equation (3.8) reduces to the determination of the 
transmission matrix eAx. First, we find the eigenvalues of the matrix A by solving its 
characteristic equation: 

(3.11) det(A- Al) = 0 

we obtain from Eq. (3.11) 

(3.12) A4
- A2(P2 + P3) + P2P3- Q2Q3 = 0, 

where 

(3.13) 
P2 = Z2Y2, Q2 = Y2Z23, 

P3 = Z3~, Q3 = Y3Z23. 

The roots of Eq. (3.12) 

(3.14) 

are the eigenvalues of the matrix A, and 

(3.15) /1 = (P + 1()1/2, /2 = (P- K)1/2' 

where 

P= 
p2 + p3 K = [(LlP)2 + Q2)112, 

' (3.16) 2 

LlP = p2- p3 
Q2 = Q2Q3. 

2 ' 
The matrix eAx can be determined by means of the Cayley - Hamilton theorem [3] and 
as the result we obtain 

(3.17) 
Ax _ [ sh /1X sh /2X l 3 ch /1X- ch /2X 2 
e- 2 2- 2 2A+ 2 2 A 

/1(/1 - l2) /2(/1 - l2) l1 - l2 

[ 
It sh 1'2X 1i sh /1X l 1't ch 12x - 1i ch /tX 

+ 2 2 - 2 2 A+ 2 2 1. 
/2(/t - l2) /1(/t - 1'2) l} - l2 

Knowing the transmission matrix eAx we can determine, on the basis of Eq. (3.10), the 
components of the state vector S( x ), which is the solution of Eq. (3.8), namely: 

,.. ( ) (K + LlP)c0(0) - Q3So(O) h (K + LlP)A~ - Q3A~ h 
(3.18) .Jo x = K c /1X + K s /tX 

2 2 /1 

(K - LlP)c0(0) + Q3So(O) h (K - LlP)A~ + Q3A~ h 
+ K c /2X + K s /2X ' 2 2 b 

. ( ) (K- LlP)S0(0)- Q2co(O) h (K- LlP)A~- Q2A~ h 
(3.19) c0 x = K c /tX + K -s /1X 

2 2 ~ 

(K + LlP)S0(0) - Q2C.,(O) h (K + LlP)Y2co(O) - Q2Y3So(O) h 
+ K c /2X + K s /2X ' 

2 2 /2 
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(3.20) e ( ) (K + L1P)Qo(O) - QzMo(O) h 
()X = 2K c /tX 

+ (K + L1P)Yieo(O) - Qz~So(O) h (K - L1P)8o(O) + QzMo(O) h 
2K!t s /tX + 21( c /zX 

(K- L1P)Y2co(O) + QzY3So(O) h 
+ R' s /zX' 

2 /2 

(3.21) "AI ( ) (K - L1P)Mo(O) - Q38o(O) h 
..lY.l() X = 

2
K C /tX 

where 

(3.22) 

(K- L1P)Y3So(O) - Q3Yico(O) h (1( + L1P)Mo(O) + Q38o(O) 
+ 2K!t s /tX + 21( ch/zX 

(1( + L1P)Y3S(O) + Q3Y2co(O) h 
+ 21(/z s /zX' 

A~ = ZzBo(O) - Z23Mo(O) , 

Ag = Z3Mo(O) - Z238o(O) . 

Equations (3.18)-(3.21), and equations for V()(x) and a0(x) obtained by simple integra
tion of Eqs. (3.3), constitute the general solution for one-dimensional process of coupled 
thermo-diffusion of moisture in a material layer of an external building wall, running at 
slow harmonic changes of thermo-humiditive environment parameters. 

Equation (3.21) describes the moisture potential field in the wall, Eq. (3.19) presents 
the field of the humidity rate, Eq. (3.20) concerns the temperature field, and Eq. (3.18) 
describes the field of the entropy rate. They are the equations for the complex amplitudes 
of a.m. quantities, the instantaneous values of which one can obtain on the basis of 
Eq. (3.1). 

3.1. Determination or material c,:oefficients n, d, D c by means or a numerical-measurement procedure 

The differential equations of thermodiffusion (2.1) and the physical relations (2.2) 
contained 11 material coefficients J.l, .X, k, /T, /c, d, m, n, De, DT, D~. There are 9 
independent material coefficients; the last two coefficients DT, D ~ can be calculated from 
Eqs. (2.8) and expressed in terms of the independent ones. 

The material coefficients n, d, D c will be determined on the basis of the general 
solution given by Eqs. (3.18)-(3.21), and by some measurements of several prescribed 
quantities on the boundary of the building wall, in which the moisture thermodiffusion 
process occur. Note that in the physical relations (2.10) for one-dimensional thermodiffu
sion in an elastic material (where the effect of stresses on the heat and moisture transfer 
processes are assumed to be negligible), which are used to construct the general solution 
(3.18)-(3.21), occur all these material constants of thermodiffusion which are present in 
the 3-dimensional physical relations (2.2). Thus, the generality of our considerations is 
ensured. 

The schematic diagram of the measurement system proposed for determining the 
material coefficients n, d, D c is shown in Fig. 1. The thermodiffusion process goes inside 
a building wall of thickness g in the x direction, under the influence of the temperature 
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and humidity gradients changing sinusoidally in time. The wall is placed in a chamber 
possessing thermo-humiditive insulation, and divides this chamber into two parts 1 and 2. 
The temperature and the humidity in those two parts of the chamber are denoted 817 Ct 

and 02 , c2, respectively. 

ao g x 

FIG. 1. Schematic diagram of a measurement system to determine the material coefficients 
for thermodiffusion of moisture in a building wall material layer. 

In order to determine the numerical values of the material coefficients n, d, D c' the 
following procedure is proposed; 

1. In Part 1 of the system ~hown in Fig. 1 slow harmonic changes of e.g. temperature 
81 and humidity Ct should be used to measuree) 

M 0(0) complex amplitude of the moisture potential for x = 0; 
S0(0), S0(g) complex amplitudes of the entropy rate for x = 0 and x = g, respectively 

(by means of the heat flux and the temperature measurements); 
c0 (0), c0(g) complex amplitudes of the humidity rate for x = 0 and x = g, respectively; 

8 0c, 8 0g the complex amplitudes of the temperature for x = 0 and x = g, respec
tively. 

2. The following nonlinear set of equations should be solved numerically: 

(3.24) . sh /t9 . r. 
n = JWQ3Mo(O)--/ {[(K + LlP)co(O)- Q3.Jo(O)] ch /t9 

/I 
. r. 0 sh /t9 +[(/(- LlP)co(O) + Q3.Jo(O)]ch129 + [(K + LlP)A2 + Q3Z23Bo(O)]--

/t 

o o sh /29 " } +[(K- LlP)A2 + Q3A3]-- - 2K .Jo(g) , 
/2 

(3.25) d = . . n {[(K- LlP)A~- Q2A~]shltg 
JW Y2co(O) ch /t9 /t 

o o sh /29 r. +[(K- LlP)A3 - Q2A2]-- + (K- L\P).Jo(O)ch/19 
/2 

+(!( + LlP)So(O)- Q2co(O)] ch /29- 2K co(g)}, 

e> The measurements should enable us to express the proposed quantities as functions of time; next it will 
be possible to determine the real amplitudes and the shift phase angles - i.e. the complex amplitudes of these 
quantities. 
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(3.26) De = nQ2So(O) sh /tY / {[(!( + ..:1P)eo(O)- Q2Mu(O)] ch /tY 
/t 

sh/tY 
+[(K- ..:1P)eo(O) + Q2Mu(O)] ch /2Y + (J( + ..:1P)Y2co(O)--

/t 

+[(!(- LlP)Y2co(O) + Q2Y3So(O)]sh 129 - 2J(e0(g)}, 
/2 

which are obtained by a simple transformation of Eqs. (3.18)-(3.21) to the form: 

(3.27) 

n = ft(n, d, De), 
d = h( n, d, D c) , 

De= h(n, d, De). 

The set of equations in the form (3.27) is suitable for numerical solution by means of 
e.g. the successive approximation method. 

The convergence of the iterative process will depend here partly upon the functions 
ft , ... , h for a given moisture thermodiffusion process going on in a given elastic material, 
and partly on the choice of the initial approximation [10, 11]. 

Substituting x 1 = n, x2 = d, x3 = De, and introducing the vectors 

[ 
Xt] [ ft(Xt, x2, x3)] 

(3.28) X = XX2
3 

, F(x) = h(Xt, X2, X3) , 
h(xt, x2, x3) 

one can present the set (3.27) in the form 

(3.29) x = F(x). 

After appropriate selection of the initial vector Xfh we construct the sequence { xn} of 
vectors xn determined according to the formula 

(3.30) xn+l = F(x), 

where n is the iteration index. 
If { xn} tends to the limit x* when n ~ oo, then, of course, x* is the solution of 

Eq. (3.28). 
Let us suppose that, if x = [xt, x 2, x3]T and x' = [x~, x~, x~]T belong to the region 

D containing all the vectors xn, then such positive numbers Aij exist that 

(3.31) lfi(xt,x2,x3)- fi(x~,x~,x~)l ~ LAijlxi- xjl for i = 1,2,3. 
j 

We define the following norms for matrices 

IIF(x)- F(x')ll = m~ lfi(Xt, x2, x3)- fi(x~, x~, x~)l, 
t 

(3.32) 
llx- x'll = m~ lxi- x~l, 

t 

IIAII = m~ ( L IAiil) = J( · . . 
J 

From the assumptions made it follows that 

(3.33) IIF(x)- F(x')ll ~ Kllx- x'll· 
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Thus, if ]( < 1 then the sequence { xn} possesses the limit. In addition, since the functions 
It, /2, h are differentiable we have 

(3.34) f;(x~, x2, x3)- f;(x;, x;, x~) = :L; : /; (6, 6, 6)(xj- xj) 
j x, 

thus, the derivatives 8 fi / 8x i are bounded from above by the numbers Aij. 

3.2. Determination of the remaining material coefficients 

The material coefficients J.L, A, k, {c, /T, m can be determined independently. The 
coefficients J.L, A are the Lame elastic constant, k is the coefficient of thermal conductivity 
from Fourier's law. The methods of determination of these coefficients (J.L, A, k) are 
well-known. 

From the theory of thermal stresses in solids it is known, that 

(3.35) IT = (3A + 2J.L)O.T, 

where aT is the coefficient of linear thermal expansion of the body, determined experi
mentally. 

By analogy, for the isothermal processes of moisture diffusion in deformable solids we 
have (1]: 

(3.36) /c = (3A + 2J.L)O.c, 

where ac is the coefficient of linear diffusive expansion of the body. This coefficient 
can be determined in a similar way as aT, i.e. by measurement of the elongation Lll of 
a standard beam of the length l, made of the building wall material, the elongation of 
which is due to the humidity increment Llc, 

(3.37) Lll = Llcacl. 

From the thermodynamical considerations presented in (1], we have 

(3.38) m = c;;:, c.,c = T (:;:) <,c, 

where Cc:,c is the specific heat at const~nt strain and humidity; 1(, is the absolute tempera
ture of natural state. The specific heat Cc: ,c is a measure of the amount of heat stored in 
unit volume of the solid due to a variation by one degree of its temperature at constant 
strain and humidity. This quantity (cc:,c) may be determined by means of the calorimetric 
method, similar to that used in determining the specific heat at constant strain ( Ce) in the 
theory of thermal stresses [ 15]. 

4. Final remarks 

Although the processes of the heat conduction and the moisture transfer in building 
walls are coupled, up till now, in the thermo-humiditive design of building walls, one 
usually does not take into account the influence of the slow process of moisture transfer 
on the temperature field inside the wall (12]. The temperature field and the moisture 
potential field in the wall are determined separately, from two partial differential equations 
with variable coefficients of the Fourier's type. 
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The linear theory of thermodiffusion in deformable solids, developed by W. NOWA

CKI [1] and S. PODSTRIGAC [2], enables us to describe the coupled thermo-humiditive 
processes occurring in building walls; here the role of the diffusing medium plays the mois
ture; the humidity defines its concentration, the chemical potential of diffusing medium 
is replaced by the moisture potential. This theory gives also a possibility to calculate 
the stresses and strains which appear during the heat and moisture transfer in the wall 
material. 

In this paper, a method has been proposed concerning the determination of material 
coefficients of the theory of thermodiffusion in deformable solids, for a building wall 
material. This method is based on the general solution of the one-dimensional problem 
of moisture thermodiffusion in a material layer, obtained in [3], and on the measurements 
of several quantities at the wall boundary. 

Appendix I. Electro-elasto-thermo-diffusive analogi .!s and electric transmission lines 

One-dimensional, slow process of linear thermodiffusion of moisture in an elastic 
material layer by neglecting the influence of stress state on the heat and moisture transfer 
processes, is described by the Eqs. (2.9) and (2.10). 

Figure 2 presents the system of three electric transmission lines coupled magnetically. 
It will be seen in the following that line 1 corresponds to the elastic deformation of the 
solid, line 2 - to the heat conduction, and line 3 - to the moisture transfer. 

I2D 

u2 {x - l,t) 

FIG. 2. System of three electric transmission lines coupled magnetically - the electrical 
analogue of a slow, one-dimensional process of thermodiffusion in elastic solids. 

In Fig. 2 Ut, u2, u3 are the line voltages, it, i2, i3 - the currents, Lt, L2, L3 - the 
self-inductances per unit length, L12, L13, L23 - the mutual inductances per unit length, 
G2, G3- the self-conductances per unit length. 

For the electric system from Fig. 2, we have on the basis of the second Kirchhoff's 
law [8], by neglecting the influence of the magnetic field of line 1 on the lines 2 and 3 
(what corresponds to neglecting the influence of the stress state on the heat and moisture 
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transfer), the following equations 

0 ( {)1]11 L . L . L . ) 0 {)t OX + tZt + 12Zz + 13Z3 = 

(A.1) 
0 ( {)l]lz L . L . ) 0 fJt OX + zZz - z3Z3 = , 

0 ( {)1]13 L . L . ) 0 {)t OX - 23Zz + 3Z3 = ' 

where 1]1 is magnetic flux associated with the corresponding transmission line (k = 1, 2, 3). 
Between the line voltage and the associated magnetic flux, the following relationship 

holds true [8]: 

(A.2) 
{)1]1 

u= m· 
From Eqs. (A.1) we obtain 

it = JtA = 1 8( -1]/t) _ L3L12 + L13Lz3 iz _ L13 8( -1]/3) 

L1 ox . LtL3 LtL3 ox ' 

(A.3) 8( -1]/z) = (Lz _ Lb) iz _ L23 8( -1]/3) 
ox L3 L3 ox ' 

. _ J A _ L23 . 1 8( -1]/3) 
z3 - 3 - J:;zz + L3 ox ' 

where Jk (k = 1, 2, 3) is the current density in line k, A is the cross-sectional area of 
each transmission line. 

It is easy to see that Eqs. (A.3) are analogous to the physical relations of thermodif
fusion (2.10). 

On the ground of the first Kirchhoff's law for the lines 2 and 3 from Fig. 2, we obtain 
the equations 

(A.4) 
1 Biz 

Uz = --
Gz ox' 

Differentiating Eqs. (A.4) with respect x we have 

8( -uz) 1 l)Ziz 8( -u3) 1 l)Zi3 
(A.S) ox = Gz oxz ' ox = G3 fJxZ · 

Equations (A.5) are analogous to Eqs. (2.11). 
Substituting i 3 from Eq. (A.3h into (A.4), we obtain 

1 az( -1]/3) Lz3 Biz 
(A.6) u 3 = - LzG3 oxz - L3G3 ox . 

Equation (A.6) is analogous to Eq. (2.12). 
From the complete set of differential Eqs. (2.9) describing one-dimensional, slow pro

cess of linear thermodiffusion of moisture in an elastic material layer, we obtain the 
following analogous equations describing the system of coupled electric transmission lines 
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from Fig. 2 

1 82( -W1) L3L12 + L13L23 8i2 L13 8 2( -!li3) 
---= ------

L1 ox2 L1L3 8x L1L3 8x2 

(A.7) 
/2o 8 2i2 _ /2o(L2L3- Lh) 8i2 + hoL23 8( -u3) = 

0 
G 8x2 L3 at L3 8x ' 

1 82 8( -!li3) 8 8( -W3) L23 82i2 
---- - + ---- = 0 
L3G3 ox2 ox 8t ox L3G3 8x2 . 

Comparing Eqs. (A.3) to (2.10), (A.6) to (2.12) and (A.7) to (2.9) we establish the 
following correspondences: 

(A. B) 

Correspondences (A.8)1 indicate that the electro-elasto-thermodiffusive analogies pre
sented above constitute an extension of the so-called Firestone system of electro-mechani
cal analogies (13, 14]. 

Let us assume in the system from Fig. 2 

Uk(x, t) = Re[Uk(x)eiwt], 

ik(x, t) = Re(Ik(x)ejwt], k = 1, 2, 3, 
(A.9) 

where uk(x, t), ik(x, t) are the instantaneous values of voltages and currents, respectively, 
Uk(x), Ik(x) are the complex amplitudes, j = A is the imaginary unit, and w is the 
angular frequency. 

The system of electric transmission lines Fig. 2 is described by the following equations: 

(A. 10) 8( -u1) _ L 8i1 L oi2 L 8i3 8i1 _ 
ax - 17ii + 12 at + 13at' ax - 0 ' 

(A. 11) 
8( -u2) _ L 8i2 L oi3 8i2 _ G 

ox - 28t- 238t' 8x -- 2u2, 

a( -u3) _ L 8i2 L 8i3 oi3 _ G 
(A.12) ox - - 23Eft + 3Eft' ox - - 3U3. 

If we introduce (A.9) into Eqs. (A.10)-(A.12), we obtain the following set of equations 
for complex amplitudes 

(A.13) d( ~~1 ) = z~e> It + z~;> h + z~;> /3, 

(A.14) d( ~~2) = z~e) /2- zt> /3, 

(A.15) d(~~3) = -zt> h + z~e) h, 
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Here 

(A.l6) 

(A.l7) 

z~e> = jwLt, 

z~e> = jwL2, 

Z (e) . L 
12 = JW 12, 

Z(e) . L 
23 = JW 23, 

are the complex electric impedances. 
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