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Free and immersed opposing laminar jets 
as viscoelastic flows with dominating extension 

S. ZAHORSKI (WARSZAWA) 

WE CONSIDER an apJ?lication of the flows with dominating extension to the ca<;e of free and immersed 
laminar viscoela<itic jets emerging from two opposing nozzles. An importance of the above geometries 
for the fluid characterization a<; well a<; for t.he extensional (comf.ressive) viscosity measurements for 
low viscosities and high strain rates is discussed in greater detai . 

1. Introduction 

IN A SERIES of our previous papers ( cf. [1, 2) 3]) we defined the so-called flows with 
dominating extension (FOEs) and discussed in greater detail some examples of possible 
applications. In particular, the following cases were considered: squeezing flows, flows 
between rotating cylinders, flows in converging slits and pipes, flows in viscoelastic bound
ary layers, fibre spinning and drawing processes, flows in rheometers with converging dies, 
etc. 

In the present paper we discuss another application of the FOEs, namely the case 
of free and immersed laminar viscoelastic jets emerging from two opposing nozzles. An 
importance of the above geometries and other steady orthogonal stagnation flows for 
fluid characterization was stressed by WINTER eta/. [4] already in 1979. There exist also 
several attempts of using various opposing jet devices, especially for immersed jets, to the 
extensional viscosity measurements for low viscosity fluids ( < 1Pas) at high strain rates 
(> 103 s - 1) [5, 6, 7]. Moreover the above devices can be designed and used for volative 
and corrosive fluids in closed systems. It is noteworthy that even for purely viscous fluids 
there exist no exact analytical solutions of the opposing laminar jet problems. Also the 
exact solutions of more fundamental problems of single laminar jets, free or immersed, are 
known only for infinitely narrow slits and small holes, or for particular shapes of the nozzle 
and initial viscosity distributions ( cf. [8, 9]). Some recent theoretical and experimental 
results on the submerged jet flows of non-Newtonian pseudoplastic fluids are presented 
by JORDAN eta/. (10]. 

At the beginning of the paper we briefly discuss the most important relations charac
terizing the FOEs as applied to the opposing laminar jet flows of viscoelastic fluids. In 
two subsequent sections we consider separately certain approximate solutions of the case · 
of free jets expelled from the opposing nozzles as well as the case of jets submerging into 
a big reservoir of the same fluid. The corresponding boundary conditions, the expressions 
for velocity profiles and stresses, the shapes of free and immersed jets, etc. are presented 
in greater detail. The case of additional mass transport from outside into the submerged 
jet is discussed separately. At the end some possibilities of the extensional (compressive) 
viscosity measurements are briefly outlined. 
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2. Axisymmetric flows with dominating extension 

Consider the following velocity field expressed in a system of polar cylindrical coordi
nates (r, B, z): 

(2.1) * 1. 
'lt = -f.r + u 

2 
w* = -lz + w, 

where the first terms describe a purely extensional flow characterized by a constant ex
tension rate l and the second terms u, w denote the additional velocity components 
responsible for shearing effects. Hence, the corresponding velocity gradient takes the 
form: 

(2.2) [Vv*] = [ ~ ~ : ] l + 

0 0 -1 

au 
ar 
0 

aw 
or 

0 
u 

r 

0 

au 
az 
0 

ow 
az 

If we assume, moreover, that the ratio of the characteristic dimension h in the z
direction to the characteristic dimension l in the r-direction is a small quantity c = 
hI l ~ 1, we can use simplifications applied to various thin-layer flows (lubrication ap
proximation). Introducing the following dimensionless quantities marked with overbars: 

( ) l h U U 
. U-:-

2.3 r = r, z = z, u = u, w = c w, f. = Tf., 

where U = lh denotes the characteristic velocity for the additional field, we can express 
Eq. (2.2) as 
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For relatively small vorticity components or relatively high Deborah numbers ( cf. [11 ]), 

the first matrix components may be notably more meaningful than the second matrix 
components. A decisive role is played by the gradient au I a:z. 

All the kinematic quantities necessary for further considerations can be presented in 
the form of sums consisting of fundamental and additional terms. We obtain, for instance, 
the first Rivlin-Ericksen kinematic tensor A1 in the form: 

(2.5) 

On denoting the invariants: 
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(2.6) tr A~2 = 6( l + €')2 
, tr A~3 = 6( l + €')3 
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we also have for the extension rate increment 

(2.7) f.' = ow + 2._ ( au) 2 
+ 2._ ( ~) 

2 
+ 2._ (au) 2 

+ 2._ (au + ow) 2 

/)z 3£ or 3£ r 3£ {)z 6£ {)z or ' 
where primes refer to additional terms. 

In our previous papers [ 1, 2, 3] we defined the flows with dominating extension (FDEs) 
as such thin-layer flows for which the constitutive equations describing purely extensional 
flows of an incompressible simple fluid, viz. 

(2.8) T = -pl + f3tAt + ,82Af, tr At = 0, 

where Tis the stress tensor, p- the hydrostatic pressure, and f3i (i = 1, 2) denote the 
material functions of the invariants tr Af, tr Ai, can be used in a form linearly perturbed 
with respect to the additional velocity gradients. This definition means that 

(2 9) T* {3 {3 ' a. 2 f3 ( 2)' 8{31 ., 8(32 ., 2 . = -pl + tAt + tA1 + ,_,2A1 + 2 A1 + of. EAt + of. E A1 • 

Introducing the following dimensionless quantities: 

U TJol_ - 'T]o-
(2.10) ]J = ----,;;-P, f3t = TJof3I, ,82 = T,82, 

and retaining in the inertialess equations of equilibrium terms of the highest order of 
magnitude with respect to c = h / l, we arrive at the governing equations: 

/)p* 
-=0 
/)z ' 

dp* 82u ,, /) (au) 2 

- = C(r) = {3-. - + l\,8- - , 
dr /)z2 or /)z 

(2.11) 

where 

(2.12) P* _ P T*33 _ T*33 
- - E -- ' 

]( = .!_ (8f3t - 8{32 t) 
f3 8f. of. , 

p* is the modified pressure and C(r) denotes an unknown function of r only. 
It is worth noting that the above nonlinear differential equations can be obtained im

mediately from the equations of equilibrium after using the following simplified relations: 

(
8u)2 

T*ll = T*22 = -p + f3tf. + !h£2 + ,82 /)z 

+! 8f3t (8u) 2 +! 8{32 f.(iJu) 2 

6 of. {)z 6 {)f. {)z ' 

(2.13) 

_ ! 8f3t ({)u) 2 
+ ~ 8{32 f. (f}u) 2 

3 {)f. /)z 3 {)f. fJz ' 
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As a consequence of the above formulae we also have 

(2.14) T*n- T*33 = 3{3€ + ~J{{3(8u)z 
2 8z 

It is noteworthy that the material function {3 ( cf. Eq. (2.12)2) is simply related to the 
corresponding elongational viscosity defined for steady flows as 

(2.15) ry* ( €) = ~ (T*11 
- T*33 ) ~ 3{3€ , 

f 

this fact justifies for {3 the name "extensional viscosity". 
Equations (2.12) can be solved with appropriate boundary conditions expressed either 

in velocities or stresses. The surface boundary conditions for free jets are very similar to 
those derived in [2] and result from the fact that all the forces acting on a free surface 
have to be mutually balanced. 

z a b 
z 

fiG. 1. 

Considering a concave surface element based on the coordinates dr, rdO, dz, whose 
projection is shown in Fig. 1a, we arrive at 

(2.16) T* 11 t = T* 13 T*33 = T* 13 t s 1:. s ' s s 1:. ' 

where ~ = dh/ dr characterizes the inclination of the surface and s marks the values on 
the surface. This leads to the condition 

(2.17) (T*ll- T*33)dh = T*t3 
s s dr s ' 

if ~ ~ 1 is a small quantity and its squares may be neglected as compared with ~. 
For a convex surface element shown in Fig. 1b, we obtain 

(2.18) 

and finally 

(2.19) (T*ll - T*33) dh = - r•t3 
s s dr s 

if ~2 are disregarded. 
It is worth noting that Eqs. (2.18) and (2.19) remain valid, if the free surface is subjected 

to arbitrary hydrostatic pressure. 
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3. The case of free jets emerging from the opposing nozzles 

A solution of Eqs. (2.11) together with appropriate boundary conditions can be 
achieved either in a numerical or in an analytical way. A simple perturbation method 
can be applied in the case of slightly viscoelastic fluids ( cf. [ 1, 2]), if the following quan
tity: 

(3 .1) ,• . 1 (8{31 8{3z ·). 
k = A f = /3 of - {)f f f 

is small enough, i.e. if k2 are small as compared with k. Since k = 0 corresponds 
to the case of Newtonian fluids, perturbed solutions are approximately valid for a weak 
variability of f31 and f32 (or f3) with the extension rate f. 

r 

FIG. 2. 

Bearing in mind that the whole procedure concerned with the concept of FOEs can be 
used, if there exists a small parameter E = h/l ~ 1, we assume, moreover, that (Fig. 2) 

(3.2) h = d/2, l = nR, E = d/2nR, 

where d denotes the distance between the nozzles, R - the hole radius, and n is some 
number depending on the geometry of a system. An idea of applying perturbation methods 
to slender jets is also presented in [12]. 

3.1. Solution for Netwonian fluids 

In the case considered f3 = f31 = f30 = const, f32 = 0, and the straightforward 
integration of Eq. (2.11 )2 leads to the following velocity field for r ~ R: 

(3.3) 
Co(r) 2 u0 = -f3-z + E0(r), 
2 () 
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where the subscripts 0 refer to Newtonian quantities and E0 is a function of r only. 
Taking into account Eq. (2.1) 1 and the condition that the flow rate Q is constant in all 
cross-sections of impinging jets, i.e. 

Q h h 

(3.4) 2 = J u1~27rrdz = 1rr2Eh + J u027rrdz, 
0 () 

where h( r) denotes the outer surface of a jet, we arrive at 

(3.5) u* = _!]__ + Co(r) (zz- hz) . 
0 47rrh 2/30 3 

Since we assume uij = 0 at the nozzle tip, i.e. for r = R and h = d/2 (cf. Fig. 2), it 
turns out that 

(3.6) 
6Qf3o 

Co(R) = - 7r Rd3 . 

The unknown function C0 ( r) must be consistent with Eq. (3.6), with the boundary condi
tion on a free surface (2.17) as well as with the assumption that C0( r) ~ 0 for r ~ oo. 
Without any loss of generality we assume at the moment that 

6Qf3o 
(3.7) Co(r) ~ --d

3 
• 

1!"1' 

This specific form of the function C0( r) will be verified a little later. 
The second unknown function h( r) determines the outer surface of impinging jets 

(cf. Fig. 2). Since all the forces acting on that surface are mutually balanced (including 
presence of an atmospheric pressure), the corresponding impulse (momentum) is con
served in the flow considered. Thus, we have the following integral condition: 

h 

(3.8) ·. J = J (}u*227rrdz. = const. 
0 

Introducing Eqs. (3.5) and (3.7), and comparing the values of J calculated for arbitrary 
h(r) as well as for h = d/2, we arrive at 

(3.9) R d [ 1 ( d) 
6]5 h=--1+- h/- -. 

r 2 5 2 6 

It is seen that for h close to d/2 (close to the nozzle tip) the above expression simplifies 
to 

(3.10) 
Rd 

h~ --, 
r 2 

while for r ~ oo, we obtain the value 0.83 times smaller. 
Differentiating Eq. (3.10) with respect to r, viz. 

dh Rd 
(3.11) 

h 
- ,....._, --- = --
dr - 1·2 2 r 

and putting the above result into the boundary condition (2.17), we have 

h 
-3/3oE- = C0(r)h, 

r 
(3.12) 
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and finally 

3/3o€ 
(3.13) C0(r) = --. 

r 
This form of the function C0 ( r) is also consistent with our previous assumption expressed 
through Eq. (3.7), if the constant extension rate amounts to 

. 2Q 
(3.14) ( = 7rd3 . 

3.2. Solution for slightly viscoelastic fluids 

Under the assumption that the parameter k defined in Eq. (3.1) is small enough to 
reject terms proportional to" k2 and to higher powers of k, the straightforward integration 
of Eq. (2.11) leads to the following velocity field: 

(3.15) u = C(r) z3 + ~k_9_z4 + E(r) 
2/3 2 7rcf3r3 ' 

where E(r) is a function of r only. Taking into account Eq. (2.1)1 and the condition of 
constant flow rate in the form (3.4 ), we arrive at 

(3.16) * Q C(r) ( 2 h
2

) 3 Q ( 4 h
4

) 
u = 47rrh + ]]3 z - 3 + 2k 1rcPr3 z - S ' 

where we have used Eq. (3.14). 
Since we assume u* = 0 at the nozzle tip, i.e. for r = Rand h = d/2 (cf. Fig. 2), we 

obtain 

(3.17) 
6Qf3 9 Q 

C(R) = --- -k/3-. 
1r Rd3 10 1r R3d 

Without any loss of generality we may write the function C(r) as 

6Qf3. Qh2 

(3.18) C(r) = --d
3

- Akf3~d3 , 
1rT 1rT 

where A is a numerical constant. The above form of the function C(r) will be verified a 
little later. 

Calculating the impulse efflux determined by Eq. (3.8) for arbitrary h(r) as well as for 
h = d/2, we arrive at ' 

(3.19) Rd[ 1( d)
6 

( d) 6 h2][6 1 dzl-1 

h = -- 1 +- h/- + Bk h/- - - + -Bk-
r 2 5 2 2 r2 5 4 R2 ' 

where B is another numerical constant. 
It is seen that for h close to d/2 (close to the nozzle tip), we rediscover Eq. (3.10), 

while for r ___,. oo, we have 

(3.20) h~-- -+Bk-R d [6 d2 ]-t 
1' 2 5 4R2 

Substituting from Eqs. (2.13) into the boundary condition (2.17), we obtain 

(3.21) ( 
Q hz) h (c Q h3) 

- 3/3t + 9kf3 7rd3 rZ -:;: = f3 f3o h + 6kf3 7rd3 r3 ' 
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and finally 

(3.22) C(r) = -
3
(3t - 15~~;3_9_ h

2
• 

r 1rd3 r 3 

This form of the function C ( r) is therefore consistent with the previously postulated 
Eq. (3.18). To this end the constant rate of extension amounts to 

(3.23) t = ~[1- 19k(~!R)2]· 
7rd3 10 2 

Hence, the constant B present in Eqs. (3.19) and (3.20) must be equal to 29/35. 
The above considerations are based on the simplified expression (3.10) valid for h( r) 

close to d/2. On the other hand, the value of h(r) valid for r-+ oo leads to 

(3.24) 
dh 5 R d 5 h 

and under the Newtonian approximation 

5f3o€ 
(3.25) C0(r) = - 2r, . 12Q 

E= --. 
57rd3 

The latter quantity is 40% greater than the extension rate described by Eq. (3.14 ). 
Since the effect of k is opposite (the value of f. decreases with k), the total effect of 

r tending to infinity and viscoelastic properties of a fluid may be meaningless. 
The final approximate expression for the velocity profile in the cross-section of two 

opposing jets can be presented in the form: 

* Q th2 ( z2) £h4 ( z2) 3 th
4 

( z4) (3.26) u = -- + - 1 - 3- + 5k- 1 - 3- - -k- 1 - 5-
47rrh 2r h2 r3 h2 20 r3 h4 ' 

where the extension rate ( results from Eq. (3.14) or more precisely from Eq. (3.23). 
Similarly, the normal stress difference defined by Eq. (2.14) amounts to 

(3.27) T*11
- T* 33 = 3(3t(1 + ~k z

2

) 
2 r2 

and tends to 3{3t for r -+ oo. 

4. The case of jets emerging from the opposing nozzles immersed in a fluid 

Although this case seems to be quite difl'erent as compared with the previous one, the 
applied procedure is performed in a similar way. We also use the previously described 
perturbation method, if the quantity (3.1) is small enough and the assumption expressed 
in Eq. (3.2) is furthermore valid. 

4.1. Solution for Newtonian fluids 

In the case considered an additional velocity field defined in Eq. (2.1) should be written 
in the following form: 

(4.1) 1 -
u = --f:r + u 

2 
W = fZ + W, 
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under the assumption that the concept of the FDEs is justified. The straightforward 
integration of Eq. (2.11 )z for f3 = {3 1 = /30 = const, (32 = 0 leads again to Eq. (3.3). 

If we assume, moreover, that h( r) denotes an interface between the submerged jet 
and the stagnant (or weakly recirculating) region of a fluid ( cf. Fig. 2), the condition that 
ujj = 0 for z ~ h(1') gives 

(4.2) 
* _ Co(r) ,., ,., 

u0 = u0 = --(z'" - h'"), 
2/3o 

where the subscript refers to Newtonian quantities. The assumption that the fluid is at 
rest for z ~ h(r) has been made intentionally for the sake of simplicity, since in reality 
there is always a mass transport between a jet and a surrounding fluid. 

At the exit of impinging jets or, more precisely, on the surface r = R, 0 < z ~ d/2, 
we have for the flow rate 

2 
(4.3) 

Q 
h/2 

J u*27r Rdz. 
() 

Since also ujj = 0 at the nozzle tip, i.e. for r = R and h = d/2 (cf. Fig. 2), we arrive 
at the same relation as that described by Eq. (3.6). Reasoning in a way similar to that 
presented in Sec. 3.1, we postulate the unknown function C0(7') in the form of Eq. (3.7). 
A verification of this assumption is also necessary. 

If the fluid outside a jet is at rest under the action of at most hydrostatic pressure, 
all the forces acting on the interface h( r) have to be mutually balanced. This means 
that the boundary condition (2.19) valid for a convex interface h( r) must be satisfied. If, 
moreover, there is no remarkable mass transfer through the interface h(r), the impulse 
efflux in the moving part of a jet is conserved. Thus, on the basis of Eq. (3.8) we arrive at 

(4.4) 
h5 _ R C1~(R) d5 

- -:;: c,~(r) 32. 

After taking into account Eqs. (3.6) and (3.7), we obtain the following approximate for
mula: 

(4.5) 

what confirms that the interface h( r) is convex. 
Differentiating Eq. ( 4.5) with respect to r, viz. 

4 

(4.6) dh ~! (!...) -s R-t~ = !~ 
dr 5 R 2 5 r 

and introducing the above result into Eq. (2.19), we have 

-3 f3ot h · 
(4.7) --- = C0(r)h; 

5 r 1' 

what implies that 

(4.8) 
3/3o€ 

Co(r) = --. 
5r 
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This form of the function C0 ( r) is consistent with our previous assumption ( cf. (3. 7)), if 
the constant extension rate amounts to 

(4.9) 
. 10Q 
f = 7rd3 . 

4.2. Solution for slightly viscoelastic fluids 

On applying the previous perturbation scheme, after the straightforward integration 
of Eq. (2.11)2, we obtain 

(4.10) u* = C(r) (z2 - h2 ) + 3k_9_(z4 - h4 ) 
n 2{3 7r d3r3 ' 

where it is assumed that u* = 0 for z = h(r), and the parameter k is defined by Eq. (3.1). 
Thus for r = R, h = d/2 we have 

6Q{3 39 Q 
(4.11) C(R) = - 7r Rd3 - 200k{3 7r R3d. 

Without any loss of generality we may write that 

(4.12) 
6Q{3 Qh2 

C(r) = --d3- Ak{3-"3d3' 1rT 1rT 

where A is a numerical constant. This form of the function C ( r) will be verified a little 
later. 

Calculating the impulse efflux determined by Eq. (3.8) for arbitrary h( r) as well as for 
h = d/2, we arrive at 

(4.13) 

where B is another constant. 
It is seen that for h close to d/2, we rediscover Eq. (4.5), while for r---+ oo, we obtain 

(4.14) 

Application Eq. (4.6) to the boundary condition (2.19) leads to 

(4.15) h ( . 9 Q h
2

) (c 6 Q h3) - 3{3f + -k{3-- = -{3 -h + -k{3-- ' 
5r 5 1rd3 r2 {3 5 1rd3 r3 

and finally to 

(4.16) 
3{3€ 39 Q h2 

C(r) = --- -k{3---. 
5r 25 1r R3d r3 

This is consistent with the postulate (3.18), if the constant rate of extension is equal to 

(4.17) . 10Q [ 28 ( d ) 
2]-t 

f =- 1- -k -/R 
7rd3 125 2 

Hence, the constant B in Eq. (4.13) amounts to 51/175. 
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The velocity profile in an arbitrary cross-section of two opposing jets can be presented 
in the form: 

(4.18) 3 f.hz ( z2) 39 f.h
4 

( z2) 3 f.h
4 

( z4) 
u* = 10 7 1 - h2 + sook-;J 1 - h2 - 100k7 1 - h4 ' 

where the extension rate f. results from Eq. ( 4.9) or, more precisely, from Eq. ( 4.17). 
Similarly, the normal stress difference defined by Eq. (2.14) amounts to 

(4.19) T*11
- T*33 = 3/3£(1 + !_k z

2

) 
50 r 2 

and tends to 3{3£ for r ---+ oo. 

4.3. Improvements taking into account a mass exchange 

When dealing with the submerged jets we assume as a first approximation that the 
outer fluid is at rest. In more realistic approach a stagnant region must be replaced 
by a weakly recirculating region schematically shown in Fig. 2 (cf. [6, 7]). This means 
that, depending on the fluid properties and the boundary conditions in a reservoir, true 
velocities disappear only in the centers of occurring eddies. As a second approximation we 
assume that z = h( r) denotes the interface where all the forces are practically balanced 
(what is equivalent, to some extent, to the constant pressure assumption for Newtonian 
fluids) but u * is not zero, since there exists some mass transport with the mean velocity 
'llm. Of course, the corresponding impulse efflux must be conserved too. 

Bearing in mind the impulse balance for an element based on the coordinates r + dr 
and r, 0 + flO and 0, 0 and h(r), respectively, we obtain in the case considered 

dJ dM 
(4.20) dr = dr 'llm' 

where J denotes the corresponding impulse and M is the mass transported through the 
interface h( r ), viz. 

(4.21) 
h 2 

M = uQ = u j u*21rrdz = Sg1rf.h3
• 

0 

Expressing the velocity 'llm in the form: 

(4.22) 'llm=m-, 
r 

where m is a number greater than zero, we see that m = 0 corresponds exactly to the 
previous case with no mass exchange. Under the above notations the straightforward 
integration of Eq. ( 4.10) leads to 

(4.23) h = (~) !r-&.n ~. 
It is seen that for m ---+ 2/5, the function h( r) as well as its derivative with respect to r 
tend to infinity; this means a possibility of recirculation or eddies in the outer fluid. Such 
a picture of flow with stream lines deviating suddenly from the direction almost parallel 
to the r-coordinate is presented in (6, 7). 
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Alternatively, taking into account the balance of impulses for z = h and z = dl2 (at 
the nozzle tip), we arrive at 

(4.24) Jl z=h - Jlz=d/2 = (Mi z=h - Ml z=dj2)Urn' 

where Urn denotes an average velocity across the interface h( r ). Hence, we obtain 

(4.25) 6 €h2 [ r (d )
5] [ (d )3]-t Urn = 25 7 1 - R 2 I h 1 - 2 I h 

It is seen from the above relation that for r ---* oo, we have Urn ---* fsihlr . Therefore, a 
recirculating region is very probable for some increasing values of h. 

5. Determination of the extensional (compressive) viscosity 

Application of the impinging jet geometries to determination of the extensional (com
pressive) viscosities of Newtonian as well as non-Newtonian fluids has been discussed in 
several papers ( cf. [5, 6, 7]). Omitting a detailed description of the corresponding devices, 
we want 01;1ly to emphasize that in all cases any determination of the extensional (com
pressive) viscosity is performed by means of force (or torque) measurements. Th~se forces 
(torques) balance tensile stress forces, as well as pressure and momentum forces. In many 
situations a simple momentum balance indicates that the pressure and momentum forces 
will cancel each other ( cf. [ 5]) and that the gap separation should be comparable to t h l " 

nozzle diameter in order to obtain optimal results. In the paper [ 6] some possibilities of 
inferring nearly extensional stress over some internal area from a measured force (torque) 
are widely discussed for Newtonian fluids. On the other hand, some instrument design 
optimization problems are also presented. In what follows we shall stop at a possibility 
of force determination in the case of free impinging jets ( cf. [ 4 ]). 

The net thrust force F, i.e. the excess of the momentum efflux over the force exerted 
by the axial stress amounts to 

rs rs 

(5.1) F = j ew*2Z1rrdr- f T* 33Z1rrdr, 
u u 

where w* denotes the axial velocity and 1'5 - the radius of a jet surface. The above 
condition is satisfied, in particular, at the nozzle exit, i.e. for 1' 5 = R and z = dl2. 
Hence, after taking into account Eq. (3.27) and disregarding smaller terms proportional 
to k (Newtonian approximation), we arrive at 

R R ·2d2 R 

(5.2) F = J ew*221rrdr - J T* 3327rrdr = (]T1r R 2 + 3{3E7r R2 - J T* 11 21rrdr' 
u u u 

where we have introduced w* = - ~f.d as for purely extensional flows. It can easily be 
shown that the first term in the above relation, viz. 

€2d2 7r R4 Re -- (}WuR 
(5.3) e-4 7r R2 = (Re)2~{32 d4 ' 

~ f3o ' 
is relatively unimportant for laminar flows at small Reynolds numbers. If, moreover, the 
radial stress T*11 distribution over the exit cross-section can be· disregarded, we obtain 
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the following simplified expression for the extensional (compressive) viscosity: 

F 
(5.4) 1]E = 3{3 ~ R2" . 

7r f 

Both extensional and compressive viscosities can be determined by reversing the flow 
direction for the opposing jet geometry. This means that the case of fluid expelled from the 
nozzles should, in principle, be replaced by the case of fluid sucked into the nozzles. One 
would anticipate the compressive viscosity to be lower for most fluids because of different 
residence times required for proper alignments of molecules. Taking into account any 
inertia effects may also lead to different results. 

An essential disadvantage of the opposing jet instrument is the fact that for relatively 
short residence times steady-state conformations of less or more flexible molecules cannot 
be achieved at all. A steady-state behaviour of the flow considered is the necessary 
condition for reliable viscosity measurements. 
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