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Modified Fourier law - comparison of two approaches 

V. A. CIMMELLI (POTENZA), W. KOSINSKI (WARSZAWA) and 
K. SAXTON (NEW ORLEANS) 

THE ODJECftVE of this note is to compare two different models leading to modified Fourier laws. 
The first model uses the concept of semi-empirical temperature, the second one is built in the 
framework of extended thermodynamics. For both approaches three experimental cutves, namely 
the specific heat, heat conduction coefficient and second sound speed, all given in terms of the 
absolute temperature, determine the models. Conditions under which both models lead to similar 
results are formulated. 

1. Introduction 

V ARlO US TYPES of hyperbolic heat conduction equations leading to finite speed of thermal 
wave propagation were postulated for rigid and deformable heat conductors in the last 
three decades. After MAXWELL [1], CATTANEO [2, 3] and VERNOTTE [4] one can find 
dozens of papers in which different approaches have been used to model second sound 
effect observed in solids [5, 6] . 

It is well known that the simple dependence of energy 7/J* on the thermodynamic 
(absolute) temperature and the classical Fourier law combined with the first and second 
laws of thermodynamics lead to the heat conduction equation of the parabolic (nonlinear) 
type. Unfortunately, the same result will be obtained if under the function symbol 7/J* the 
temperature gradient appears. 

To modify the heat conduction equation and to get a finite speed of propagation of any 
thermal disturbances, the constitutive equation for the energy must be changed by adding 
at least one extra variable under the function symbol 7/J *, different from the temperature 
gradient. This extra variable can be regarded as an additional state variable. 

In this paper two approaches are compared: the first phenomenologicale) one de
veloped by the present authors in the series of papers [7-13] and based on the concept 
of semi-empirical temperature scale, different from the absolute onee), and the second 
model developed by Morro and Ruggeri in the framework of the extended thermody
namics [14, 15] and further applied to shock wave propagation in crystals at low tem
perature [ 16, 17]. The first model has a statistical background; in both the approaches, 
however, three experimental curves, namely the specific heat, heat conduction coefficient 
and second sound speed, all given in terms of the absolute temperature, determine the 
models. 

( 1 )A kinetic theory approach wac; developed, for example, in [18, 19], while a generalized thermoelac;ticity 
with one relaxation time in [20, 21 ]. 

e) In [22] the concept of inertial systems wac; used to derive a second order equation of heat for the 
integrated history of the absolute temperature. 
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2. Model with semi-empirical temperature 

Recently in a series of papers [7-9, 11-13] a thermodynamic, phenomenological theory 
of heat conduction with finite wave speed has been developed and applied to thermal wave 
propagation problems; the well-posedess of a Cauchy problem has been demonstrated as 
well ( cf. (10]). The theory is based on the concept of the semi-empirical temperature f3 
that at a typical particle .X of a medium under consideration is a solution of an initial 
value problem 

(1) /3 = F( f), {3), (3(to) = f3o, 
where f) is the absolute (thermodynamic) temperature at .X and the superposed dot 
denotes the differentiation with respect to time t. The material function F depends on 
thermal properties of the medium at hand, e.g. conductivity, and on some time interval r 
characteristic for the thermal inertia. 

In further constitutive modelling of the theory one assumes, after CAITANEO [2-3], 
that both relations: the classical Fourier law of heat conduction 

(2) q = -k grad f), 

(with k( i)) as a thermal conductivity coefficient) as well as the differential relation derived 
for the heat flux q from Eq. (1) and a set of constitutive equations for remaining quan
tities (and based on the semi-empirical temperature), play the role of balance equations, 
however, with different approximations of the mean kinetic energy of molecules of the 
medium. This point of view, together with the statistical arguments given in (9], imply 
that instead of the temperature gradient the spatial gradient of the semi-empirical tem
perature, i~ e. grad {3, appears in the following constitutive relations for the Helmholtz free 
energy ·1/J, specific entropy 7J and heat flux q 

~ = ~*(f), grad {3), 

(3) 7] = 7]*('19, grad{3), 

q = q*(f), grad{3). 

Moreover, it is assumed that the Fourier law is obtained when the thermal relaxation 
time r vanishes; then f3 becomes a function of f). This assumption will be used in the 
derivation of the relations between material functions and the heat conduction coefficient 
k( i)) measured in classical experiments on heat conductione). 

Since r represents the time dimension parameter in F, and both variables f3 and f) 

have the dimension of temperature (kelvin), the dimensional analysis implies the existence 
of a function f (of f3 and f)) of the dimension of temperature, such that 

(4) 

Then the kinetic equation (1) takes the form 

(5) T~ = j(i},{J) 

and the limit case of vanishing r corresponds to f (f), {3) = 0, identically in f) and f3. Hence 
the sought relation between the both scales follows, provided the derivative <a J 1 a f3) is 
different from zero. (Note that stability of solutions of Eq. (5) is guaranteed if that 
derivative is negative, exactly non-positive, for positive T [9]). 

e) In the classical heat conduction experiment no concept of thermal relaxation time appears. 
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, In the case of an isotropic medium the second law of thermodynamics is satisfied 
( cf. (8, 9, 13]) if 

(6) q = -a grad ,8, 1] = -D'Ij;* I{){}' and a(8 f I 8/3) < o 
c a f I 8fJ) - ' 

- -1 . . {)'lj;* 1 
where o{O) = pfJr ( 8 f I DfJ) Dl !3ll !3l has the dimension of a thermal con-

grad grad 
ductivity coefficient (say k0). Let us first notice that the coefficient a cannot depend on 
f3 for the form of Eq. (3) to be valid, and consequently the function f is governed by the 
equation 82 f I i)i)i) f3 = 0. Thus the general form of f is 

(7) f(iJ,,8) = f1(fJ) + h(/3). 
u one assumes that a is independent of 1 grad /31 then the last expression for a can 

be regarded as a differential equation for 'lj;*; integrating it one gets 

(8) 

where 'lj;i ( iJ) plays the role of the classical free energy function, and 

(9) 

The last relation can be regarded as a compatibility condition. From Eqs. (6) the form 
of the entropy function 17* follows. However, to compare the present model with that 
developed by MORRO and RUGGERI (14] in the framework of extended thermodynamics 
(cf. (15-17]), we assume after them that the internal energy cis a function of iJ only (i.e. 
independent of grad /3); this assumption is compatible with the Debye theory in which at 
low temperatures the specific heat is a cubic function of the absolute temperature only. 

Then necessarily ;f;2( iJ) is a linear function of temperature, for c = 'lj; + 17iJ; this together 
with Eq. (6)2 leads to two expressions 

(10) ;j;2(fJ) = 'lj;2ofJ and 17*(iJ, I grad,t31) = 1JE(iJ)- 0.5'1j;2ol grad/31 2, 

where 1JE(iJ) = -d-lf;i ldiJ, and the dimensional analysis (cf. [7]) requires 

(11) 

with some reference temperature {)0 and positive(4) constant k0 of the dimension of a 
thermal conductivity coefficient. The term 1JE represents the classical equilibrium entropy. 
Hence the compatibility condition (9) will take the form 

(12) rk0 l pfJ~ = rCi(iJ)(piJ2 f{(iJ))-1, 

where f{(iJ) := df1(iJ)IdfJ. Now, if Eq. (6)1 is used then the RHS of Eq. (10)2 can be 
expressed in terms of iJ and q as 

(13) 7j;2o I 12 
1J = 1JE( tJ) - o.5 a( fJ)2 q . 

Speeds of propagation of weak discontinuities, i.e. discontinuities in the first (time and 
spc;ttial) derivatives of the energy and the heat flux, are given as solutions of the so-called 

( 4 ) Here the principle of maximum for entropy at equilibrium holds. 
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characteristic equations. In the semi-empirical temperature model this equation is of the 
form 

(15) 

where A denotes the speed and n the direction of propagation, and Cv( rJ) 
-rJd2'1/J;(fJ)/(drJ2) represents the specific heat. Let us notice that the constraint (6h to
gether with the assumed stability of solutions of Eq. (5) assert real solutions to Eq. (15), 
provided the product of T and the specific heat is positive. In the case of the so-called 
equilibrium case, i.e. when grad f3 = 0, we get the equilibrium characteristic speed U E 

being a function of rJ only 

(16) 

Hence, knowing the specific heat and the (positive) second sound speed U E ( rJ) one 
can express two material functions !t and a as follows 

ft(rJ)V'l/J2o/r2 = J rJ- 1UE(rJ).;;:c;i)dfJ, 

a(fJ)j ~ = pfJU E(fJ).;;:c;i). 
(17) 

Now our assumption following Eqs. (3) is used to identify the second material function 
h(/3). Since the Fourier law is the zero-order approximation of the both modified ap
proaches of [7] and [14], let us pass to the limit with T tending to zero in Eq. (5). Then 
from the RHS of Eq. (5) we obtain a functional equation 

(18) ft(fJ) + h(/3) = 0. 

Its solution given by the inverse function / 2-
1
(- f 1(rJ)) (which expresses f3 in terms of fJ) 

we denote by B( rJ); this is a differentiable function which satisfies Eq. (18) as an identity, 
i.e. f( rJ, B( rJ)) = 0. This means, that in the limit of vanishing T the semi-empirical scale 
f3 is equal to B(rJ). From Eq. (6)1 we obtain- as required- the classical Fourier law 

(19) q = -k(fJ)gradrJ with k(fJ) = a(fJ)B'(fJ). 

In that way the last material function f2({3) can be determined in terms of the observed 
quantities U E(rJ), cv(rJ) and k(rJ). 

Now we show the prolongation of the kinetic equation (5); taking the spatial derivative 
of it, we obtain an evolution equation for heat flux 

(20) ----r- + d f (fJ) - fi({3) 
a(rJ) q gra 1 - a(rJ) q, 

where Eq. (6)1 has been used. Let us notice that only in the case of linear material 
function h the RHS of Eq. (20) does not depend on {3. Since then f~(/3) is equal to a 
constant c1 and consequently B'(fJ) is equal to -c} 1 f{(fJ), in view of Eq. (19)2 we obtain 
the term -c} 1 J: (J)jk(fJ) in front of q. 

We shall close this section with the final remark concerning the structure of the system 
of differential equations of the model in the case when the RHS of Eq. (5) can be inverted 
with respect to rJ. If one introduces two additional variables: w = /3 and p = grad {3, then 
rJ becomes a function of f3 and w, say {) = 0({3, w), and the governing system becomes 
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of the first ordere) 

(21) ~ = w, pt + divq = 0, 

r'p - grad ft ( tJ) = f~ (,B)p, 

where, due to Eqs. (6)-(9), q = -a('l7)p with a(tJ) = p7j;201J2 f{(tJ)jr and the last 
equation (21)3 is a prolongated kinetic equation (cf. Eq. (20)). Note, that if h is linear 
the first equation decouples from the remaining two, and the problem can be solved in 
terms of 1) and q. 

No\\, if the second equation multipled by 1)-t is added to the third one multiplied by 
- P'l/J2o/r then one gets a balance law for the entropy density p1] = P1JE - 0.5p'lj;20p • p 
with the entropy flux k = q/17 and the production term -p7j;20fi(,8)p · pjr. 

3. Extended thermodynamics model 

The rigid heat conductor model developed by Morro and Ruggeri [14] in the frame
work of extended thermodynamics and further applied to shock wave propagation in 
crystals [ 16, 17], is based on two balance laws: 

(22) 

(23) 

pt + div q = 0, 

. v' ( tJ) 
o:q + grad v( tJ) = - k( tJ) q, 

where o( tJ) and 11( tJ) are two material scalar-valued functions, while k( tJ) represents a 
heat conduction coefficient, dependent on temperature. The factor a plays the role of 
thermal inertia, and if one puts it equal to a constant then Eq. (23) coincides with the 
MaxweU-Cattaneo equation [2, 3, 7] nj + q = -k grad tJ, identifying 

(24) T = akjv'. 

The second law of thermodynamics (the entropy principle) is satisfied if the specific en
tropy ha; the form 

(25) 

where 1 is a constant to be determined; if it is positive then the entropy(6) has a maximum 
at equiliJrium, i.e. for q = 0. 

Let us notice that till now no assumption about the dimension of v, o: and 1 has 
been maie. The particular identification (24) says that dimensions of a and v must be 
different Choosing for a the dimension of T / k means that v' is dimensionless. Since 
in the fi tst model in the limit of vanishing T the COefficient Q does not vary, the possible 
identification that is compatible with the chosen dimensions is 

(26) a = r fa . 
Hence roth the entropy functions 17* and ~ will give the same values (for the same 1) 

and q) il 

(27) 

( 5 ) I n [12) such a system wa<; derived for a particular form of f. 
( 6 ) Tre entropy is concave if the specific heat and 1 are positive [14). 
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Now due to the compatibility conditions (11), (25)z and (26) we get 

(28) v( tJ) = !1 ( tJ). 

Now we can see that the last three equations (26)-(28) give the set of identification 
formulae for both models. Moreover, if / 2 is linear then both systems will lead to the same 
solutions, provided initial conditions ( tJ(O), q(O)) of the second model will be adjusted to 
initial conditions (,8(0), tJ(O)) of the first model. In particular, at the initial time the 
equation p = grad ,B has to hold. 

Let us notice that in the shock wave analysis performed in the second model ( cf. (16]) 
the form of the function k( tJ), and consequently of /z(,B) - for the first model - does 
not influence the results. 

It is worthwhile to mention that the second model has been already applied when 
investigating thermal hot and cold shocks propagating with finite speed in crystals at low 
absolute temperature. A structural temperature at which the physics of shock waves 
changes was observed by T. RUGGERI (17]. Moreover, in [16, 17] basing on experimental 
results of [5, 6] and analyzing quantitatively thermal shock wave propagation in crystals of 
NaF and Bi at low temperature, the obtained values of the critical structural temperatures 
were very closed to the values for which the second sound was clearly picked out in these 
crystals. 

On the other hand in [11, 12] dealing with the first model weak discontinuity waves for 
rigid and elastic heat conductors were investigated; it was shown that the wave amplitude 
in both types of conductors can blow up in finite time which can lead to the formation of 
shocks. Description of the second sound effect in deformable conductors and within that 
model will be the subject of the next paper. 
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