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On J-L-stability in dynamical systems 

A. SZATKOWSKI (GDANSK) 

THE GROUP J.L-boundedness and group J.L-convergence of the trajectories, where J.L is the measure, 
for continuous time and discrete time dynamical systems ( contmuous and discrete time flows on 
topological spaces) are considered. The necessary and sufficient conditions for asymptotic group 
J.L-convergence are given. The results are developed for differential dynamical systems defined by 
vector fields on Riemannian manifolds. The measurability and measure of the invariant subsets and 
of the limit sets of the set-trajectories are considered. 

1. Introduction 

THE TRAJECTORIES of a continuous dynamical system are group J.L-bounded, where J.l 
is a (positive) measure defined on a family of Borel subsets of the state-space [ 5, 9], if 
the volume ft(A) of any measurable and J.L-bounded subset A in the state-space remains 
bounded along the trajectories of the system [11]. · 

Asymptotic group {l-convergence of the trajectories ensures [15] that the measure J.L( A) 
of each measurable and {t-bounded set A in the state-space tends to zero asymptotically, 
as t-+ oo. 

The dynamical system S is defined as the quartet (X, T, U, <p), where X is the state
space (the dynamic space), T is a group, U- a subset in X x T enclosing X x {0}, and 
<p is a map QJ _,. X satisfying: 

(1.1) <p(x,O) = x, for each x EX, 

and 

(1.2) <p(x, t' + t") = <p(<p(x, t'), ,t"), 

for each x E X and all t', t" E T, such that (x, t') E U, (x, t' + t") E U and 
( <p(x, t'), t") E QJ [4, 8, 14]. 

Additionally, if X is a topological space, where T is the topology on X, T is a topo
logical group, QJ is an open subset in X x T and <p is a continuous map, then S is a 
continuous dynamical system, and <.p is a continuous flow on X [8]. 

The dynamical systems are considered, where T is the space of reals or T = I, I
the set of integers. 

The following assumptions are made: 

ASSUMPTION 1. For each x E X, the motion <p(x, ·)of the systemS is defined for all 
t in T+, where T+ = R+, R+ = [0, oo ), or T+ = I+, I+ = {0, 1, 2, ... }, ([4], [6], [8]). 

Thus, X x T+ ~ U. o 
A dynamical semi-systems+ is defined as (X, T+, u+, <p+) where T+ = R+ or T+ = 

I+, u+ is a subset in X X T+ enclosing X X {0}, and <p+ is a map u+ -+ X, where (1.1) 
is satisfied for all x E X and (1.2) is satisfied for all x E X and t', t" E T+ such that 
(x, t') E u+, (x, t' + t") E u+ and (<p(x, t'), t") E u+ [8]. 

The semi-system~+ is continuous, if X is a topological space, u+ \X X {0} is an open 
subset of X x T, and <p+ is a continuous map. 
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A (continuous) dynamical system S · = (X, T, U, <p) corresponds to the uniquely
defined (continuous) semi-system s+ = (X, T+ ' u+' <p+), where u+ = u n (X X T+) 
and <p+ = IP!u+. 

ASSUMPTION 2. For each x E X, the motion <p(x, ·) of the semi-system S+ = 
(X, T+, u+, <p+), where T+ = R+ or T+ = J+, is defined for all t E T+. Thus, 
u+ = x x r+. D 

The trajectories of the semi-systemS+ ~ (X, T+, X x T+, <p+) define the semi-group 
(Gt)tET+ of maps Gt : X --+ X [4, 6, 8], 

X 3 x--+ Gt(x) = <p+(x, t). 

ASSUMPTION 3. The maps Gt, t E T+, defined by the trajectories of a continuous 
dynamical systemS (a dynamical semi-systemS+) are C0-embeddings of X into X [1, 6, 
8]. 0 

LetS = (X, T, U, <p) be a dynamical system, where the Assumptions are satisfied. 
For a subset A ~ X, ¢A is the map T+ 3 t --+ 2x defined by: 

¢A(t) = At, At = Gt(A), (Gt(¢) = ¢), 

(2x is the family of all subsets in X). 

DEFINITION 1. A subset A ~ X is a strictly (positively) invariant subset for the system 
S+, if Gt(A) = A for all t E T+. 

A subset A is a positively invariant subset for the system S +, if G t (A) ~ A for all t E T +, 

{6, 14}. C1 

Let </Js : 2x X T+ --+ 2x be the map defined by 

2x X T+ 3 (A, t)--+ </J~(A, t) = ¢A(t). 

<Ps is the global semi-flow on 2x, corresponding to the flow <p (the semi-flow <p+) on X; 

s+ = (2x r+ zx x r+ A.+) 
- , ' ' , l.f/S 

is the dynamical semi-system on 2x x T+. 
The (positive) half-trajectory of a subset A E 2x in the global semi-flow¢; on 2x is 

denoted by r_.t. Im </Js(A, ·) is the trajectory curve of the system~+, where Im ¢~(A,·) 
encloses the set A. 

The symbol1i is used for the half-trajectory of the point x in the semi-flow <p+ on 
X. 

The image set in X of the half-trajectory r_.t of the set A in the semi-flow <Ps on 2x 
is the subset 

;y+(A) = U At. 
tET+ 

;y+(A) is the invariant subset for the systemS. 
LetS = (X, T, U, <p) be a continuous dynamical system, and let M be the family of 

Borel subsets in X corresponding to the given topology T on X [ 4, 5, 8, 9, 12]. By the 
Assumption 3, the maps Gt, t E T+, are the homeomorphisms of X onto Gt(X). 

This ensures that Gt(A) E M, for any set A E M and t E T+. 
By restricting the system ~+ to the subfamily M of 2x, one obtains the dynamical 

semi-system S_M = (M,T+,M x T+,¢"S), where 'J>s is the contraction of <Ps toM. 
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Let J-L be a (positive) measure on a-algebra M of Borel sets in X. A set A E M is 
called the null set, if J-L(A) = 0. 

ASSUMPTION 4. The measure J-L is complete on M . This means that each subset of the 
null set is J-L-measurable (is in M ). As a consequence, the measure of a subset enclosed 
in a null set has J-L-measure equal to zero (9]. o 

2. Group J-L-boundedness of the trajectories 

The group J-L-boundedness of the trajectories of dynamical systems is considered.It is 
assumed that S is a continuous dynamical system, where the Assumptions 1 and 3 are 
satisfied. J-L is a measure on a-algebra M of Borel subsets of the topological space X, the 
state-space of the system. The measure J-L is complete (Assumption 4). 

DEFINITION 2. The trajectories of a continuous dynamical system S = (X, T, U, <.p ), 
where X X T+ ~ U, are group J-L-bounded on T+, if for each J-L-bounded set A E M 

sup J-L(At) < oo . o 
tET+ 

DEFINITION 3. The trajectories of a continuous dynamical system S are strongly group 
J-t-bounded on T +, if for each J-L-bounded set A E M such that 9 + (A) E M, 9 + (A) is a 
J-L-bounded set. D 

For a subset A E M such that 9+(A) E M, the strong group J-L-boundedness implies 
the group J-L-boundedness. The inverse conclusion is not necessarily valid. 

Denote by Jl+ the set R+ U { oo }. 

THEOREM 1. LetS = (X, R, U, <p) be a continuous dynamical system, X X R+ C U. 

Assume that the following is satisfied along the trajectories of S. 
For each J-L-bounded subset A E M, 
a. There exists an open interval (0, r A), r A > 0, in R+ where the function JlA(·) = 

J-t(</>.$(A, ·))is continuously differentiable, and 
d_ 

b. dtJ-LA (t) ~ 0, fort E (0, r A)· 

Then the trajectories of the systemS are group J-L-bounded on R+. 
(The proof has been omitted). o 

The following Theorem 2 concerns strong group J-L-boundedness of the trajectories. 

THEOREM 2. Let the trajectories of a continuous dynamical system S = (X, R, U, <p), 
where X X R+ C U, be group J-L-bounded on R+, and let the function JlA : R+ 3 t ~ 
J-L(At) E R+ be continuously differentiable, for any J-L-bounded set A E M. 

Assume that for each J-L-bounded set A E M, 

d- ' >-. t R+ -J-LA(t) < -At· e- 2 on , 
dt 

. At(A) 
for some positive constants ,\b --\2, where At and --\ 2 depend on A and satisfy Az(A) = 

J-t(A). 
Then the trajectories of the system S are strongly group J-L-bounded on R+. 
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Proof. Let A E M be a JL-bounded subset of X. There exist the following estimates: 

f!('y+(A))::; J JiA(t) • dt = J [ j :TJiA(r) • dr + f!(A)l dt 
0 0 0 

< J [ j - ,\1 • e-~,, · dr + f!(A)l dt 
0 0 . 

Joo [At ->. t At l = - . e 2 - - + JL(A) dt 
A2 A2 

0 

Joo [ At] At At 
JL(A) - A dt = A2 < oo, for A = JL(A), 

0 2 2 2 

which yield the thesis. o 

DEFINITION 4. ((10]). Let X be a metric space. The trajectories of the dynamical system 
S, where X X T + ~ U, are uniformly equi-bounded on T +, if for any constant c > 0, there 
exists h > 0 such that Dia A < h for a subset A ~ X implies Dia 9 + (A) < E. o 

Let S be a dynamical system, where X is a metric space, X x T+ ~ U. Assume 
that the JL-measurable and bounded subsets of X are JL-bounded. Then the uniform 
equi-boundedness of the trajectories of the system s on r+ implies the strong group 
JL-boundedness, assuming Dia A < oo. 

3. Asymptotic group JL-convergence of the trajectories 

The limit behavior of the trajectories of a continuous dynamical systemS = (X, T, U, 
<p) is considered. The systemS satisfies the Assumptions 1 and 3. Jl is a complete measure 
(Assumption 4) on O"-algebra M of Borel sets in the state-space X. 

DEFINITION 5. The trajectories of the dynamical system S are asymptotically group J.L
convergent, as t ----+ oo, if 

(3.1) J.L(At) ----+ 0 as t ----+ oo , 

for each JL-bounded set A E M. o 

DEFINITION 6. The trajectories of the continuous dynamical system S = (X, T, U, <p), 
X X T+ C U are asymptotically group JL-convergent in stable mode, as t ----+ oo, if the 
trajectories of S, are asymptotically group J.L-convergent, and for any constant £ > 0, there 
exists h > 0 such that JL(A) < h for a subs~t A E M ensures JL(At) < £,for all t E T+. o 

DEFINITION 7. The trajectories of a continuous dynamical system S are monotone asymp
totically group J.L-convergent, if for any JL-bounded set A E M, JL(At) ----+ 0 monotone as 
t----+ 00.0 

DEFINITION 8. A subset B ~ X is the equilibrium state for the system s_+, if Bt = B, 
for all t E T +. o 

If the trajectories of a continuous dynamical system S are asymptotically group J.L
convergent, as t ----+ oo, then JL-bounded equilibrium states of the systems_+ corresponding 
to S are null sets. 
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The following Example concerning information processing system illustrates the theory 
([3]). 

EXAMPLE. Consider the information processing system P, as shown in Fig. 1. 

The mathematical model of system P is designed as follows. P = (X X Y, T+, X X 

y X r+ ' '1/J ), where: X is the (topological) state-space of the system, X is a state vector, 
x 0 denotes the state at t = 0, y(·) is the input signal, and Y is the space of input values, 
y(·) : r+ ----7 Y. 

'ljJ is a map from X X Y X T+ into X. 
It is assumed that for each value Yo E Y, PIYo = (X X {Yo}, T+, X X {yo} X T+, '1/Jiyo) 

is a continuous dynamical semi-system. In the simplified model, the value z(t) of the 
output signal z(·) is assumed to be equal the value x(t) of the state vector x at time t. 

As an example, consider the system Sf, where the non-autonomous differential equa
tion 

(3.2) 
dx 
dt=f(x, y) , 

f E C 1(R n X R m, R n), x E R n, y E R m, is the state equation (the dynamic equa
tion). 

It is assumed that the solutions of the equation exist for all t E R+, and that the 
system possesses the unique steady-state solution for each constant value y0 of the input 
signal. Precisely, for each y0 E Y, the systemS !IYo possesses the globally asymptotically 
stable equilibrium point x *, where x* yields both the steady-state vector and the output 
state of the system S 1, for a fixed value of the input signal. 

In the physical model, the equilibrium state varies in time becoming a stochastic pro
cess x*(·), x *(t) E X. It is claimed that the average value of x*(·) assumes the value 
given in the design of the system. 

It is essential, from the engineering point of view, that the statistical displacement of 
the equilibrium state becomes negligible as t -t oo. I.e., the output value is not sensitive 
to the dispersion in the equilibrium placement, under disturbance, in the steady-state as 
t ----7 00. 

In this context, the quality of the information processing is formulated as follows: 
It is assumed that the measure p is given on the family M of measurable (Borel) 

sets in the state-space X of the system P. It is required that for each input value y1, 

limt-+<X) p(At) = 0 for any p-bounded set A E M. It is then assumed that the trajec
tories of the system S fiYo' for a fixed value of the excitation, are asymptotically group 
J..L-convergent, in the steady-state, fort -t oo. D 
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In the following Theorems 3 and 4, the necessary and sufficient conditions for asymp
totic group J.L-convergence of the trajectories of a continuous dynamical system are pro
posed. 

S+ = (X, y+, X X T+, cp+) is a continuous dynamical semi-system, where the Assump
tions 2 and 3 are satisfied. M is the a-algebra of Borel sets in X, and J.L is a measure on M. 

THEOREM 3. Assume that J.L(X) < oo and let Xt" ~ Xt' fort" 2:: t', t', t" E y+. Then, 
the trajectories of the system s+ are asymptotically group J.L-convergent, as t --+ 00, if, and 
only if, the maximal strictly (positively) invariant subset A for the system S + is J.L-measurable 
and J.L(A) = 0. 

Proof 
i. Assume that the trajectories of s+ are asymptotically group J.L-Convergent and let 

A be the maximal strictly (positively) invariant subset for the systems+. 
For each t E y+, A ~ Xt = Gt(X). Hence, A ~ X00 , where Xoo = n Xt, and by 

tET+ 

taking into account that Xoo is the strictly invariant subset for the systems+, A = X00 • 

The following is used in the proof that X00 is J.L-measurable and J.L(X 00 ) = 0. 

Let { A19} 19 EB be a family of J.L-measurable sets, where 4> :f e ~ R, and -:a (/_ e' 
-:a= supe. 

If 
1. A192 ~ A19 1 for all '19t, '!9z E 8, where '192 > '!9b 

and 
2. There is an index {)' E 8 such that J.L( A19') < oo, 

then 

and 

1) the set n A 19 is J.L-measurable, 
19EB 

2) lim_J.L(A19) = J.L( n A19 ). 
19-19 19EB 

Thus, by noting that Xt" ~ Xt' for t', t" E y+, t" > t', and J.L(X) < oo, one obtains 
that X00 E M and 

(3.3) J.L(X 00 ) = lim J.L(Xt) , 
t-oo 

where the assumed group J.L-Convergence of the trajectories of the system S+ yields 
lim J.L(Xt) = 0. 

t-oo 
ii. Let the maximal strictly invariant set A for the system s+ be J.L-measurable and 

J.L(A) = 0. Using the arguments as in the Part i, one obtains that X00 = A. Hence 
Xoo EM, J.L(Xoo) = 0, and J.L(Xoo) = lim J.L(Xoo)· 

t-oo 
Noting that 0 ~ J.L(At) ~ J.L(Xt), for each set A E M and t E y+, the limit 

lim J.L(At) exists and equals zero, for any set A E M. o 
t-oo 

As a corollary, consider a continuous dynamical systemS, where Assumptions 1 and 3 
are satisfied; J.L is a measure on a-algebra M of Borel sets in X. For each subset V E M 
such that 9+(V) E M and J.L(9+(V)) < oo, the trajectories of the dynamical system 
S

1
"!:..+ v , S

1
"!:..+ v being the restriction of s+ to the subset :y+(V), are asymptotically 

-y() -y() 
group J.L-convergent as t --+ oo if, and only if, the maximal strictly invariant subset for 
S1~+(V) is J.L-measurable and its J.L-measure equals zero. 0 
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THEOREM 4. Suppose that J.L(X) = oo and assume that the trajectories of the systemS+, 
are strongly group J.L-bounded on T+ (Definition 3). 

Let the set union A of all strictly (positively) invariant subsets for s+, being proper 
subsets of X, be a I-t-measurable set and let J.L(A) < oo. 

Assume that the measure J.l is complete and assume that for each J.L-bounded set 
A E M there exists an open and J.L-bounded (proper) subset V C X enclosing the set A. 

Then the trajectories of the system S + are asymptotically group J.L-convergent as t ~ 
oo if, and only if, J.L(A) = 0. 

Proof 
i. Assume that the trajectories of the systems+ are group J.L-Convergent as t ~ 00. 

Then the J.L-measurability and J.L-boundedness of A and the strict invariance of the set A 
yield J.L(A) = lim J.L(At) = 0. 

t-+oo 
ii. Assume that J.L(A) = 0 and let A be a J.L-bounded set in M. We shall prove that 

lim J.L( At) = 0. 
t-+oo 

Let V be an open and J.L-bounded subset in X enclosing the set A. ::y+(V) is open, and 
hence a J.L-measurable subset of X, and by the assumed strong group J.L-boundedness on 
T+ of the trajectories of the systems+, ::y+(V) is J.L-bounded. 

The maximal strictly (positively) invariant subset A;y+(V) for the system si~+(V) is a 

subset of A, and J.L(A) = 0 ensures that A;y+(v) is J.L-measurable, and J.L(A;y+(v)) = 0. As 
in the Corollary following the Theorem 3, tlim J.L(V t) = 0, and hence 0 ::; J.L(At) ::; J.L(V t) 

-+oo 
yields lim J.L(At) = 0. o 

t-+oo 

The measure of thew-limit sets of the set-trajectories are considered. s+ is a continu
ous semi-system satisfying the Assumption 2. 

The positive hull n;() of a point Xo E X denotes the closure of the image set ::y+(xo) 
of the positive half-trajectory lio (6, 8], 

H~1 = cl ::y+(xo), 

and flx0 is the w-limit set of the motion <p+(x0 , ·) [4, 6, 8] (flx0 is the w-limit set of a 
point x0 in the positive semi-flow <p+ on X), · 

flxn ~ n H ;+(xo,T). 

TET+ 

For a subset U ~ X, 

H+(U) <1J U H;
0

• 

xnEU 

Equivalently, 

H+(U) = ::y+(U) U { U flx0 } • 

xoEU 

DEFINITION 9. Thew-limit set fl(U) of a subset U, in the semi-flow <p+ defined by the 
trajectories of the semi-system S +, is given by 

fl(U) = n H+(UT). D 

TET+ 
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It is easily observed that !2( U) is the set union of the maximal strictly invariant subset 
for s+ enclosed in ::y+(U) and the strictly invariant subset U !2x

0
, 

xoEU 

!t(U)={ n ::y+(UT)}u{ U !2xo}· 
TET+ ~EU 

st(U) is the strictly invariant subset for s+. For U = {x0}, st(U) = stxo· 
Let XA denote the characteristic function of a subset A ~ X. Then, 

Xn(U) = tlim XH+(Ut), 
-+00 

where the point-wise convergence is taken into considerations. 

REMARK 1. The limit set defined as the set union of the w-limit sets ilx of the 
trajectories,;, for x E U, and thew-limit set st(U) in X of the set-trajectory F(j are 
equal if, and only if, the maximal strictly invariant subset for s+ enclosed in ::y+(U) is a 
subset of U !tx. o 

xEU 
The following Corollary concerns the measurability and measures of the w-limit sets 

il(U), U ~ X, X being state-space of the dynamical system. 

COROLLARY. Consider the continuous dynamical systems+ = (X, r+' X X T+' <p+). 
Assume that Xt" ~ Xt', for any t" > t', t', t" E T+, and J.L(X) < oo, where the measure 
J1 is complete. 

Then the asymptotic group j.l-Convergence of the trajectories of the systems+ implies 
that st(U) E M and J.L(!t(U)) = 0, for any subset U of the state-space X. 

Proof. Let U be a subset of X. The w-limit set !2( U) is the strictly invariant subset 
for S+, and hence st(U) is a subset of the maximal strictly invariant subset A for the 
system S +. By the Theorem 3, J.L( A) = 0. The assumption that the measure J1 is complete 
ensures then that f2( U) E M, and J.L( f2( U)) = 0. D 

Theorem 5 concerns the case tt(X) = oo . 

THEOREM 5. A continuous dynamical systemS+ = (X, T+, X X T+, <p+) is considered, 
where Assumptions 2 and 3 are satisfied. Let J1 be a complete measure on the u-algebra 
M of Borel subsets of X, and for each J.L-bounded subset A E M let us assume that there 
exists an open and J.L-bounded subset V of X enclosing the set A. 

Assume that the trajectories of the systems+ are strongly group J.L-bounded on T+ 
and that they are asymptotically group J.L-convergent as t -+ oo. 

Additionally, let ::y+(V) be a regular subset, for any open set V ~ X [9]. This means 
that the boundary cl ::y+(V) \ ::y+(V) of ::y+(V) is a ~t-measurable set and ~t(cl9+(V) \ 
::y+cvn = o. 

Once the above conditions are satisfied, f2( U) E M and ~t( f2( U)) = 0, for any 
~t-bounded subset U E M. 

Pro o f. Let U E M be a ~t-bounded set, and let V be an open and J.L-bounded subset 
of X enclosing the set U. For each t E T+, ::y+(v t) = Gt(::Y+(V)) E M and by the strong 
group tt-boundedness of the trajectories on T+, 

(3.4) 
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H +(v t) \ ;y +(v t) is a subset of ci 9 +(v t) \ ;y+ (V t), where ;y+(v t) is the regular 
set. The completeness of the measure J.l ensures that H+(Vt) \ ;y+(Vt) E M and 
it(H+(Vt) \ 9 +(V t)) = 0. 

Finally ;y +(Vt) E M, J.L(9+(Vt )) < oo, and 

(3.5) J.L(H+(V t)) = J.L(9+(Vt)). 

Noting that 

(3.6) 
tET+ tET+ 

it suffices to prove .!2(V) E M and J.L(.fl(V)) = 0. Then the completeness of the measure 
J.l ensures that .!2(U ) E M, and lt(fl(U)) = 0. 

From (3.4) and (3.5), by taking into account that H+(Vt") ~ H+(Vt') fort" ~ t', 
t' , t" E y+, and using the fact appearing in the proof of the Theorem 3, il(V) E M 
and J.L(.!2(V)) = lim J.L(H+(Vt)) = lim J.L(9+(Vt)), where the asymptotic group j.l-

t-+ oo t -+ oo 

convergence of the trajectories ensures that J.L( .!2(V)) = 0. 
By the assumed completeness of the measure J.l, the relation (3.6) yields .!2( U) E M 

and lt(52(U )) = 0. o 

4. Smooth dynamical systems on Riemann manifolds 

The group J.L-boundedness and asymptotic group J.L-convergence of the trajectories of 
differential dynamical system is considered. The state-space X of the system S is a finite
dimensional second countable connected C2-manifold, n = Dim X, with the structure of 
Riemann space defined by symmetric and positive definite covariant C 1-tensor field g of 
the degree two on X. It is assumed that the manifold X is orientable, and that the chosen 
orientation on X [ 1, 7] has been assigned. 

ASSUMPTlON 5. The closure of a p9-bounded subset of the manifold X, p9 being a 
Riemann metric on X, is a compact subset of X. This is equivalent to the assumption that 
X is a complete metric space [1 ]. o 

Let {(U(, 'ljJ~ (·))hE.= be the nuoomal C2-atlas on X, in the chosen orientation on X. 
The a-algebra M x of measurable sets in X is defined in the following way [1, 12]: a 

subset A ~ X is a measurable set, if 'ljJ~ (A n U~) E Mn, for each U{, Mn being the 
a-algebra of Borel sets in Rn. 

The a-algebra M x is indentical with the family of Borel subsets of X, where the 
original topology on the manifold X is identical with the topology defined by the Riemann 
metric on X ([ 1 ]). 

The measure J.l 9 is defined on M x in the following way: let A E M x and let 
{Ard~Ee be any countable Mx-decomposition of the set A, subordinate to the cover 
{U{}{E..=:· ThismeansthatA~ E Mx,foreachiJ E fJ, U A~= A,A~,nA~, =</>for 

~Ee 

{)' , {)" E fJ, where {)' -=f {)", and each set A~ is enclosed in a coordinate neighbourhood 
U~(~)• U{(~ ) selected in {U{}~E-=· 

Set 

(4.1) 
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where Vn is the Lebesgu.e measure on Rn, y = 7/Jd x ), g~] >(y) , i, j = 1, 2, . .. , n, are the 
coordinates of the metric tensor gin the map (in the coordinate system) (Uf, , 7/JE,(·)) , and 

h<O(y) = det[g~]>(y)]. 
The value of J.lg(A), which may become oo, does not depend on a particular choice 

of Mx-decomposition {A19}, (A t9 ~ U€< t9 >), for A [12]. The function J.1 9 : Mx 3 A-+ 
(0, oo], defined in (4.1), is the measure on Mx . The measure tt 9 is complete. 

The C1-vector field is given on the Riemannian manifold X. It is assumed that the 
trajectories of the vector field f exist fort E R+ . Thus, the solutions of the differential 
equation dx I dt = f ( x) define a differentiable flow <p 1 on X; S 1 = (X, R , U, <p 1) is the 
differential dynamical system on X, where X x R+ C U. 

REMARK 2. For a compact subset A of the Riemann (connected and second countable) 
manifold X, where the metric tensor field g is continuous, 

J.1 9 (A) < oo. 

If the closure of any p9 -bounded subset of X is a compact subset of X (Assumption 
5), then p9 -bounded subsets of X are 119-bounded. 

Proof. Let {(W,, 7/J((·))}(EZ be a C1-atlas on X, where with no loss in generality for 
the cover {W,} (EZ, each set cl w, is a compact subset of X. There exists a refinement 
{V(}(EZ of {W(}(EZ such that each cl v,, ( E Z, is a compact subset of w,. Each 
7/Jd cl v, ), ( E Z, is a compact subset of Rn. 

Because A is a compact subset of X, there exists a finite cover {V((t), ... , V((r)}, 
V((th ... , V((r) E {V,} for A. Let {At, ... , A r } be the subordinate Mx-decomposition 

r-1 

of A, where A1 = An V((t), ... , Ar = (An V((r>) \ U Ai . Each set cl A i is a compact 
i=l 

subset of the neighbourhood W((i), and hence 7/J((i) (cl Ai ) is a compact subset of Rn. 
Write ( i for ((i ). 
For each i = 1, 2, . .. , r, Ji((i ) = sup h((il( 'lj;(i (x )) < oo, (the continuous function 

x EAi 

h((i)('lj;(i(x)) attains the supreme on Ai at a point in a compact subset cl Ai of W,J . 
Hence, 

r r 

/lg(A) = L J Vh((i )(y) · dvn :::; L vw;> • Vn('I/J(i (Ai )) , 
i=11/J<i(Ai) i =l 

where Vn('I/J(i(Ai)) < oo (7/J(i(Ai) is a subset of the compact set cl 7/J( i (A i ) = 7/J(i.(cl Ai ) 
C Rn). D 

By the Remark 2, the Assumption 5 ensures that J.19 (A) < oo, for each p 9-bounded set 
A E Mx, where X is a Riemann (connected, second countable) oriented C 1-manifold, 
and the metric tensor field is continuous. 

REMARK 3. Consider the differential dynamical systemS 1 = (X , R, U, <p 1 ), X X R+ C 
U, where X is a finite-dimensional (connected and second countable) Riemann oriented 

· C2-manifold and <p 1 is the flow defined by the solutions of the differential equation 
dxldt = f(x), where f is a complete+ C1-vector field on X (that is, the domain of each 
of the solutions of the differential equation dx I dt = f(x) encloses R+). 
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For each 11 9 -measurable and p 9 -bounded subset A of the manifold X, the domain of 
the function Jl, 9 ,A : t -+ lt 9 (At) encloses an open interval in R containing R+, and Jl, 9 ,A 
takes values in R+ and is C 1-differentiable. 

Let { U~ (I) , . . . , U~ (T) } be a finite cover of the set A, where the sets U~(i) are selected as 
coordinate neighbourhoods of the maximal C2-atlas { ( U ~ , lJ! ~(·))}~e.= defining orientation 
on X (the maximal C2-atlas in the given orientation on X). Assumption 5 ensures that a 
finite cover exists, for each p9 -bounded subset of the manifold X. 

Let { At, . .. , AT } be the (standard) M x-decomposition of the set A, subordinate to 
T-l 

the cover { u~(lb . . . 'u~(T )}, (At = An UHl) l ... 'AT = (An u~(T)) \ u Ai, where the 
i =l 

sets A1 , ... , AT are disjoint) . 
The following expression is found ford/ dtJ1 9 ,A (t = 0), (~i = ~( i)), 

(4.2) 
d T I 

dt/i 9 ,A (t = 0) = ?= J div(\jh<~d(y) • f(~i)(y))dvn , 
t =I lf!ei(Ai ) 

where /(~ i) = ( '1/J~J * (fiUe)' '1/JZi being the induced map from TxX onto T lf!ei(x)Rn. 

Proof. Let A be a 119 -measurable and p9 -bounded subset of X. For each t E R+, 
the set cl(At ) == G t(A), where A = ciA, is a compact subset of X (Assumption 5 ensures 
that A is a compact subset of X). The domain of the function J19 ,A encloses an open 
interval in R containing R+ (the C 1-vector field f is complete+). 

Let {( Ue , '1/Je(·))}ee.s' be a C2-atlas for X, in given orientation on X. With no loss 
in generality, ci Ue is a compact subset of X, for each e E 5'. There is a refinement 
{ U~,} e e:=' of { Ue } e e:=', such that each set cl U~, is a compact subset of Ue, and there is 
a shrinkage { lf~ ,} e e.s' of { U~,} ee.s' such that each set cl Fe is a compact subset of Uf,. 

By the defined construction of the covers 

inf 
x'E Ve 

x
11 EUe' \U~ 1 

p9 (x ', x") > 0. 

Let {Fe(t) , ... , Ve(T)} be a finite cover for the set A, where each Ve(i> is selected in 
{Ve}~'E-='· {A1 , . . . , AT} is the subordinate to the cover {Ve(t), ... , Ve(T)} (standard) 
disjoint M x -decomposition of A. 

The constructions of the covers ensure that there exists such an open interval ~t in 
R containing zero, that Gt(Ai ) C U~'(i ) fort E ~t and each i = 1, 2, . .. , r . This yields, 
c~: = eci)), 

T 

(4.3) /lg(At) = L J h<~i>(y) • dvn, ((Ai)t = Gt(Ai)) 
i=t lf!e«Aild 

' 
for t E ~t . Thus ((4]), J1 9 (At) is a C1-function on ~t. 

Because the solutions of the differential equation dx / dt = f(x) (the trajectories of 
S 1) exists for all t ~ 0, the expression ( 4.3) remains valid for each t0 E R+ and all t in 
an. open neighbourhood ~t of t0 , where the covet .{Ve.'(i)} is selected for (A)to· . . 
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Finally, for any 119 -measurable p9 -bounded subset A, the function /ig,A is C1-differen
tiable on an open interval in R containing R+, and ([4, 8]), 

(4.4) ~Ji9 ,A(t = 0) = t ~ J Jh(<il(y) • dvnlt=ll 
t=t 11'e«Adt) 

I 

r 

= L J div(..jh<~i>(y) · f<~p(Y))dvn, 
i=l11'e<Ad 

' 
(~i = e ( i)), where { Ai} is the subordinate to the cover {Ve(i>} (standard) disjoint M x
decomposition of the set A, and the value of (d/dt)/ig,A(t = 0) in (4.4) does not depend 
on the particular choice of the finite cover {Ve(i)} for A, selected from the family of 
coordinate neighbourhoods of the oriented C2-atlas on X. o 

In the coordinate system (U~, 7/Jd·)), u~ 3 X --+ y = 7/J~(x) E Rn, of the maximal 
C2-atlas in a chosen (fixed) orientation on X: 

(4.5) div( ..jh<~>(y) • f<o(Y)) 

= ..jh<~>(y) • [(div fco)ly + k,. (grad v'h<O. fc<J(Y))]. 
h<O(y) 

The expression (div fco)ly + k, · grad(v'h<O)Iy • fco(Y) defines the divergence 
h(~)(y) 

divx f of the vector field f, in terms of local coordinates on the oriented Riemann 
manifold (X, g) [1]. Thus, 

:t/ig,A(t = 0) = J divx f · d11 9 , 

A 

for a 119 -measurable p9 -bounded subset A of X. 
The following Theorem 6 concerns the group 119 -boundedness [15] of the trajectories 

of the system S 1. 

THEOREM 6. x0 is a point in the state-space X of the dynamical system S 1, where f is 
a complete+ C1-vector field on C2-(connected, second countable and complete) Riemann 
manifold X. Assume that there exist constants A > 0, fJ > 0 such that 

divx f(x) < -A 

for all x E X: p9 (x, x0) > b, p9 being the Riemann metric on X. 
Then the trajectories of the system S 1 are group 11 9 -bounded on R+, for each p9 -

bounded set A E M x. 

Proof. Let Bs denote the closed ball {x E X : p9 (x, x0) ~ b}. Bs is a compact 
subset of X. 

For any p 9 -bounded set E E Mx, 

(4.6) :tji9 ,E(t = 0) $ j I divx f I dj.t9 + . J divx f · dj.t9 

B6 E\B6 
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(4.6) 
[cont.) 

s; sup ldivx fl • J-t 9 (Bo) + 
x EB6 

525 

J divx f · dJ-£ 9 

E\B6 

s; (sup I divx Jl · p 9 (Bo) +A· J-t 9 (Bo))- A· p 9 (E). 
xE B 6 

From the estimate ( 4.6), ( d/ dt)jj 9 ,E(t = 0) < 0, for each p 9-bounded subset E E M x 
having the measure 

J-t 9 (E) > ± · su_£ I divx !I· J-t 9 (Bo) + J-t 9 (Bo). 
x EB6 

Thus sup jj 9 (At) < oo, for each p9 -bounded set A E Mx. o 
tER+ 

f is a C 1-vector field on C2-Riemann manifold X, as in the Theorem 6. 

THEOREM 7. Assume that the trajectories of the system S 1 are uniformly equi-bounded 
on R+ (Definition 4). When for each p9 -bounded set BE Mx 

( 
d ~ 

4.7) dtJ-lg ,B(t = 0) s; 0 

and 

(4.8) 
d ~ 
dtJ-lg ,B(t = 0) = 0 

if, and only if, p 9 (B) = 0, then the trajectories of the system S 1 are monotone asymptotically 
group J-t 9 -convergent as t ~ oo, for each p 9 -bounded set A E M x. 

Proof. Let A be a p 9 -bounded p 9 -measurable subset of X, and let V be an open 
and p9 -bounded subset in X enclosing A . The image set ;y+(V) is a p9 -bounded (the 
trajectories are uniformly equi-bounded) and p 9 -measurable subset of X. 

In order to prove that lim p 9 (At) = 0, it suffices to show that the maximal strictly 
t___. oo 

invariant subset A:y+ (v) for the system s;,::;+ (V) is J-lg·measurable and Jl,g(A:y+(v)) = 0. 

The J-£ 9 -measurability of A:y+(v) is proved in the same way as the J-t-measurability of 

the maximal strictly invariant subset A for the system s+ has been proved in the part i 
of the proof of Theorem 3. 

p 9 (A:y+(v)) = 0 and monotone convergence follows immediately from (4.7) and 
(4.8). 0 

REMARK 4. If divx f(x) < 0, p9 - almost everywhere on X, then the conditions 
(4.7) and (4.8) are satisfied,for each p9 -bounded set B E Mx. D 

The assumptions for the manifold X and a vector field f are the same as in the 
Theorem 6, where f is not necessarily complete+. 

COROLlARY. Let x* be a (locally) asymptotically stable equilibrium point (a critical 
point) of the vector field f, f(x*) = 0. Then ([13]), 

(4.9) divx f(x*) s; 0. 

Proof. Let x * be a (locally) asymptotically stable equilibrium point of the vector 
field f. Suppose that the relation ( 4.9) is not satisfied at x *. 
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Let { (U~, !lid·))} ~E.:=' be (maximal) C2-atlas on X, in a chosen orientation on X, and let 
U e be a coordinate neighbourhood enclosing x *. There is such an open neighbourhood 
Bg(x*) = { x E Ue : p9 (x, x*) < c: }, 0 < c: < oo, of x* in Ue, that 

(4.10) divx f(x*) > 0, 

for all x E Bc(x*). For c: sufficiently small, x* is the maximal invariant subset of the 
systemS 1 in Bc(x*). 

Because x * is the stable equilibrium point of the systemS 1 (of the differential equation 
(dx/dt) = f(x) on X), then there exists such an open neighbourhood Bc5(x*) of x*, that 

(4.11) G-r(Bc5(x*)) ~ Bc(x*), for all T E R+. 

As in the Corollary following the Theorem 3, where Bc5(x*) is set for V and x* is the 
maximal invariant subset for the system s;,;;+(B.s(x•))' 

(4.12) lim p, 9 (GT(Bc5(x*))) = 0. 
T--+00 

But from (4.10) and (4.11), 
d . 
dtJl,g,Gr(B6(x*))(t = 0) = J divx J • dp,9 > 0 

Gr(B.s(x*)) 

for each T E R+, which contradicts (4.12). o 
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