Nonlinear functionals in existence theorems for reaction-diffusion systems

B. KAŹMIERCZAK (WARSZAWA)

THE NOTION of nonlinear functional is used to prove the existence of solutions for time-independent reaction-diffusion systems, in which nonlocal terms may occur and whose coefficients may depend on first derivatives.

Introduction

THIS WORK was stimulated by the interesting papers [2] and [3] of FITZGIBBON and MORGAN, who used the notion of nonlinear functionals in existence proofs for some time-independent reaction-diffusion systems. Its aim is to generalize, in a way, one of the theorems in [2]. The generalization consists in the fact that we do not assume a separable structure of the functional (as in [2]) and consider a more general type of equations than those discussed in [2] or [3]. The coefficients of elliptic operators may depend on u (and x) whereas the right-hand sides may have nonlocal terms and depend on the first derivatives of u (and x, of course). However, we were forced to impose more complex conditions than those in [2] or [3].

1. Setting of the problem and main assumptions

We consider the following system of elliptic equations:

(1.1)
$$\begin{aligned} -L[u]u_i &= F_i[u] \quad \text{in } D, \\ u_i &= t_i \qquad \text{on } \partial D, \end{aligned}$$

where $1 \le i \le m$ and there is no summation over *i*. In subsequent assumptions $\alpha \in (0, 1)$ will be a fixed number.

A. D is a bounded domain in \mathbb{R}^n , $n \ge 1$, with boundary of $C^{2+\alpha}$ class. Without losing generality we may assume that $x_j > 0$, j = 1, ..., n, for $x = (x_1, ..., x_n) \in \overline{D}$.

B. For
$$i = 1, ..., m$$
:
1) $t_i \in C^{2+\alpha}(\overline{D}) \cap C^{2+\alpha}(\partial D)$,
2) $F_i : C^2(\overline{D}) \longrightarrow C^{\alpha}(\overline{D})$,
3) $L[u] = \sum_{j,l=1}^n A_{jl}(x, u(x))\partial_{jl}^2 - C(x, u(x), \partial u(x)) \cdot \nabla$,

where all A_{jl} are of C^1 class in every compact subset of $\overline{D} \times \mathbb{R}^m$, and for every finite $u = (u_1, \ldots, u_m) \in \mathbb{R}^m$, $x \in \overline{D}$ and $\xi \in \mathbb{R}^m$, $\xi \neq 0$, there exists a real s > 0 such that

$$\sum_{j,l=1}^n A_{jl}(x,u)\xi_j\xi_l > s\xi^2.$$

Here $C: \overline{D} \times \mathbb{R}^m \times \mathbb{R}^{nm} \to \mathbb{R}^n$ and C is of C^1 class in every compact subset of its arguments.

REMARK. In the above notation F_i should be treated as an operator. In particular it could be of the form

$$F_i[u](x) = \mathbf{c}_i(x)(\nabla u_i(x)) + f_i(x, u).$$

Let M be a closed unbounded (in general) subset of the space \mathbb{R}^m .

C. There exist a $C^2(M, \mathbb{R}^1)$ function H such that

1) H(u) tends to plus infinity for ||u|| tending to infinity, where || || denotes a norm in \mathbb{R}^m ;

2) there exist finite $N \in \mathbb{R}^1$ and a bounded function $\lambda^* : \mathbb{R}^1_+ \to \mathbb{R}^1$ such that for all $u \in C^2(\overline{D}, M)$, $||u||_{C^0} \leq \underline{u}$:

$$\sum_{\substack{i,j=1,...,m\\p,z=1,...,n}} -\{(1-\beta)s\delta_{pz} + \beta A_{pz}(x,u(x))\}H_{ij}(u(x))u_{i,p}(x)u_{j,z}(x)$$

$$+\sum_{j=1,\ldots,m}\beta H_j(u(x))F_j[u](x) < \lambda^*(\underline{u})H(u(x)) + N$$

for all $x \in \overline{D}$, $\beta \in [0, 1]$. (δ_{pz} denotes Kronecker's delta, $u_{j,z}$ denotes $\partial_z u_j$ and H_j denotes the partial derivative of H with respect to u_j).

The next assumption describes the relation between λ^* , L, D and s (comp. B). First of all, one can notice that every $A_{jj}(x, u) > s$.

D. Let $u \in C^2(\overline{D}, M)$, $||u||_{C^0(\overline{D})} < \underline{u}$ and $\phi \in C^2(\overline{D}, [0, 1])$. Let

$$\mathcal{L}^{\phi}[u] := \phi L[u] + (1 - \phi)s\Delta$$

We assume that for all the possible solutions U of the linear scalar problem

(1.2)
$$\begin{aligned} -\mathcal{L}^{\phi}(x,u(x))\xi &= \lambda\phi(x)\zeta + f \quad \text{in } D,\\ \zeta &= g \qquad \qquad \text{on } \partial D, \end{aligned}$$

with $\lambda \leq \lambda^*(\underline{u})$, there exists a finite constant K independent of ϕ , u, f and g such that

$$||U||_{C^0(\overline{D})} < K||g||_{C^0(\overline{D})} + ||f||_{C^0(\overline{D})}.$$

REMARK. By standard results on eigenvalues of elliptic operators it is possible to give explicit conditions implying D.

D*. There exist $\delta > 0$, $J \in \{1, ..., n\}$, $\eta \in \mathbb{R}^1_+$ and continuous functions $c : \mathbb{R}^m \to \mathbb{R}^1$ and $z : \mathbb{R}^m \to \mathbb{R}^1$ such that for all non-negative \underline{u} and $u \in M$, $||u||_{\mathbb{R}^m} < \underline{u}$ we have:

- 1) $C_J(x, u, p) < c(u)$ for all $x \in \overline{D}$ and $p \in \mathbb{R}^{nm}$;
- 2) $\eta > \sup_{x \in D} x_J;$
- 3) $s(z(u))^2 c(u)z(u) > 1;$
- 4) $\sup_{x \in D} \{ \exp(z(u)\eta) \exp(z(u)x_J) \} \lambda^*(\underline{u}) < 1 \delta.$

LEMMA. D^{*} implies D. Besides, for every u and ϕ (such as in D) we have $\lambda^*(\underline{u}) \leq \lambda_{(\phi,u)}$, where $\lambda_{(\phi,u)}$ is the smallest eigenvalue of the operator $(-\mathcal{L}^{\phi}[u])$ (defined in D).

Proof. For a given $u \in C^2(\overline{D}, M)$ with $\|u\|_{C^0(\overline{D})} < \underline{u}$ let $M_{(u)} := M \cap \{\sigma \in \mathbb{R}^m : \|\sigma\| \le \underline{u}\}$ and $c_{(u)} = \sup_{\sigma \in M_{(u)}} c(\sigma)$. If $c_{(u)} = c(\sigma^*)$, then let $z_{(u)} = z(\sigma^*)$. Now we can proceed (with slight modifications) as in the proof of Theorem 8.8 in [4]. Thus, first let us note that $\mathcal{L}^{\phi}(x, u(x))$ can be written as $\sum a_{jl}(x)\partial_{jl}^2$ and $a_{JJ}(x) > s$. Without losing generality we may take J = 1. Let us define

$$h(x) = ||g||_{C^{0}(\overline{D})} + [\exp(z(\sigma^{*})\eta) - \exp(z(\sigma^{*})x_{1})]||f^{*}||_{C^{0}(\overline{D})}$$

where $f^* = f + \lambda \phi U$. Then, according to D*.1, 3 we have

$$\begin{aligned} -\mathcal{L}^{\phi}[u]h &= \exp(z(\sigma^{*})x_{1})[a_{11}(x)(z(\sigma^{*}))^{2} - z(\sigma^{*})\mathcal{C}_{1}(x,u(x),\partial u(x))] \|f^{*}\|_{C^{0}(\overline{D})} \\ &\geq \exp(z(\sigma^{*})x_{1})[s(z(\sigma^{*}))^{2} - z(\sigma^{*})c(u(x)))] \|f^{*}\|_{C^{0}(\overline{D})} \\ &\geq \exp(z(\sigma^{*})x_{1})[s(z(\sigma^{*}))^{2} - z(\sigma^{*})c(\sigma^{*})] \|f^{*}\|_{C^{0}(\overline{D})} \geq \exp(z(\sigma^{*})x_{1}) \|f^{*}\|_{C^{0}(\overline{D})}. \end{aligned}$$

Now, we take $\nu = U - h$. Then $\nu = g - h \leq 0$ on ∂D and $\mathcal{L}^{\phi}[u]\nu \geq f^* + ||f^*||_{C^0(\overline{D})} \geq 0$ in \overline{D} . Hence from the maximum principle (see for example Theorem 8.1 in [4]) we infer that $\nu \leq 0$, i.e. $U \leq h$ in \overline{D} . Similarly, if $\nu = U + h$, then in the same way we can prove that $\nu \geq 0$, i.e. $U \geq -h$ in \overline{D} . Thus, we obtain an implicit bound for U

$$||U||_{C^0(\overline{D})} \le ||g||_{C^0(\overline{D})} + W||f^*||_{C^0(\overline{D})},$$

where $W = \sup_{x \in D} [exp(z(\sigma^*)\eta) - exp(z(\sigma^*)x_1)]$. Thus

$$||U||_{C^0(\overline{D})} \le ||g||_{C^0(\overline{D})} + W||f||_{C^0(\overline{D})} + W\lambda ||U||_{C^0(\overline{D})}.$$

Hence, for λ satisfying D*.4 we obtain the inequality

$$||U||_{C^0(\overline{D})} \le (||g||_{C^0(\overline{D})} + W||f||_{C^0(\overline{D})})\delta^{-1}.$$

To prove the second part of the Lemma suppose that, for some r and u, we have $\lambda = \lambda^*(\underline{u}) = \lambda_{(\phi u)}$. But then, according to the first part of the Lemma, we would be able to obtain *a priori* estimates in $C^0(\overline{D})$, which is impossible.

As in [2], solutions of (1.1) will be approximated by solutions of the "bounded" problems. Namely, let $k_r^0 \in C^2(\mathbb{R}^m, [0, 1]), k_r^1 \in C^2(\mathbb{R}^{nm}, [0, 1])$, where r > 0 and

$$k_r^0(u) = \begin{cases} 1 & \text{for } ||u|| < r, \\ 0 & \text{for } ||u|| > 2r, \end{cases} k_r^1(p) = \begin{cases} 1 & \text{for } ||p|| < r, \\ 0 & \text{for } ||p|| > 2r, \end{cases}$$

(||p|| denotes a \mathbb{R}^{nm} norm of p). We choose k_r^0 , k_r^1 in such a way that their first and second derivatives tend to 0 in C^0 norm for r tending to plus infinity. Let

$$K_r[u](x) := k_r^0(u(x))k_r^1(\partial u(x))$$

Now, for $\nu \in C^2(\overline{D}, \mathbb{R}^m)$ let

(1.3)
$$\mathcal{L}_r[\nu] := K_r[\nu] L[\nu] + (1 - K_r[\nu]) s \Delta - K_r[\nu] C[\nu] \cdot \nabla,$$

where for the sake of simplicity we have denoted $C(x, \nu, \partial \nu)$ by $C[\nu]$. Let $w = T\nu$ be the unique $C^{2+\alpha}(\overline{D})$ solution of the problem:

$$-\mathcal{L}_r[\nu]w_i = K_r[\nu]F_i[\nu] \quad \text{in } D,$$

$$w_i = t_i \qquad \text{on } \partial D,$$

 $1 \leq i \leq m$. For every finite positive r the operator T is a bounded linear operator from $C^2(\overline{D})$ to $C^{2+\alpha}(\overline{D})$. Thus, it is continuous in $C^2(\overline{D})$ and it maps all of $C^2(\overline{D})$ onto a bounded subset of $C^{2+a}(\overline{D})$. Due to the Schauder fixed point theorem there exist a $C^2(\overline{D})$ solution of the system

(1.4)_r
$$-\mathcal{L}_r[u]u_i = K_r[u]F_i[u] \quad \text{in } D,$$
$$u_i = t_i \qquad \text{on } \partial D.$$

In the subsequent section our aim is to prove that for r sufficiently large the solution of $(1.4)_r$ is also a solution of the initial system (1.1) with values in M. To do this we impose two other assumptions. They concern the possibility of *a priori* estimates and invariance of M.

E. There exists a continuous function $Q : \mathbb{R}^1_+ \to \mathbb{R}^1_+$ independent of r, such that if $u_r \in C^2(\overline{D})$ satisfies (1.4)_r and $||u_r(x)|| < P$ for $x \in \overline{D}$, then $||\partial u_r(x)|| + ||\partial^2 u_r(x)|| < Q(P)$ for all $x \in \overline{D}$. (|| || denote norms in \mathbb{R}^m , \mathbb{R}^{nm} and \mathbb{R}^{n^2m} , respectively).

REMARK. If F has no nonlocal terms, then E follows for example (under some additional conditions) from sections VIII.1-4 in [5].

F. If $t = (t_1, \ldots, t_m) \in C^{2+\alpha}(\overline{D}, M)$ and u_r satisfies (1.4), then $u_r(x) \in M$ for all $x \in \overline{D}$.

2. Existence theorem

Now, we are in a position to prove our existence theorem.

THEOREM. Assume A, B, C, D, E and F. Then, there exist at least one $C^{2+\alpha}(\overline{D}, M)$ solution of (1.1).

Proof. The proof of the theorem will consist in showing that the solutions of $(1.4)_r$ are bounded in C^0 norm uniformly in r. To prove this fact let u_r be a smooth solution of $(1.4)_r$ and let $H_r(x) := H(u_r(x))$. By a straightforward calculation we conclude that H_r satisfies, according to C and (1.3), the following identity:

$$-\mathcal{L}_r(x, u_r(x))H_r = \lambda^*(\underline{u}_r)K_r[u_r](x)H_r + N + B_r(x) \quad \text{in } D,$$

$$H_r = H(t) \qquad \qquad \text{on } \partial D,$$

where λ^* is defined in C and D, $\underline{u} = ||u_r||_{C^0(\overline{D})}$ and $B_r(x) \leq 0$ for $x \in \overline{D}$. Now, let \overline{H}_{re} denote the unique smooth solution of the linear problem:

$$-\mathcal{L}_r(x, u_r(x))z = \lambda^*(\underline{u}_r)K_r[u_r](x)z + N \quad \text{in } D,$$

$$z = h_e \qquad \qquad \text{on } \partial D,$$

where $h_e \in C^{2+\alpha}(\overline{D})$ and $H(t(x)) + e \ge h_e(x) \ge H(t(x))$ for all $x \in \overline{D}$ and some e > 0, which can be taken arbitrarily small. According to Lemma, the functions \overline{H}_{re} are bounded in $C^0(\overline{D})$ norm uniformly in r.

Let $R_{re} := \overline{H}_{re} - H_r$. Then R_{re} satisfies the identity:

$$\begin{aligned} -\mathcal{L}_r(x, u_r(x)) R_{re} &= \lambda^* (\underline{u}_r) K_r[u_r](x) R_{re} - B_r(x) & \text{in } D, \\ R_{re} &= \underline{h}_e & \text{on } \partial D, \end{aligned}$$

where $C^2(\overline{D}) \ni \underline{h}_e \to 0$ as $e \to 0$ uniformly on ∂D . According to the second part of Lemma 1.2 and Theorem 4.4 in [1] we can find a function $\underline{R}_r \ge 0$ satisfying the same equation but with zero boundary condition. If $S_{re} := R_{re} - \underline{R}_r$, then

$$-\mathcal{L}_r(x, u_r(x))S_{re} = \lambda^*(\underline{u}_r)K_r[u_r](x)S_{re} \quad \text{in } D,$$

$$S_{re} = \underline{h}_e \qquad \qquad \text{on } \partial D.$$

As $S_{re} \in C^2\overline{D}$ and $\underline{h}_e \leq e$ uniformly in on ∂D , then due to Lemma we conclude that $H_r(x) \leq \overline{H}_r(x) + Ke$ for some finite positive K and all $e \to 0$. Thus $H(u_r(x)) \leq \overline{H}_r(x)$, where by \overline{H}_r we have denoted the unique in $W^{2,q}(D)$, q > r, limit of H_{re} . It is bounded in C^1 norm uniformly in r. According to C we conclude that u_r is bounded in $C^0(\overline{D})$ norm uniformly in r by some finite constant P. Due to E this implies boundedness of u_r in C^1 and C^2 norms. Thus, for sufficiently large r, u_r is a solution of the problem (1.1). The Theorem is proved.

REMARK. It is easy to note that when coefficients of L do not depend on u then we can get rid of the auxiliary Laplacean and take $\beta = 1$ in C and D with $\mathcal{L}_r[\nu] := L - K_r[\nu]\mathcal{C}[\nu] \cdot \nabla$ in (1.3).

3. An example

Let us consider the following system of equations (comp. [2] p. 36):

$$-d_{1}L(x, u(x))u_{1}(x) = u_{3}(x) - u_{1}(x)u_{2}(x) + u_{1}(x)\int_{D} K_{1}(x, u(y))dy,$$

$$-d_{2}L(x, u(x))u_{2}(x) = u_{3}(x) - u_{1}(x)u_{2}(x) + u_{2}(x)\int_{D} K_{2}(x, u(y))dy,$$

$$-d_{3}L(x, u(x))u_{3}(x) = u_{1}(x)u_{2}(x) - u_{3}(x) + u_{1}(x)\int_{D} K_{1}(x, u(y))dy,$$

$$(u_{1}, u_{2}, u_{3})(x) = (t_{1}, t_{2}, t_{3})(x) \text{ for } x \in \partial D,$$

where d_1 , d_2 , d_3 are positive constants and L is the same as in B.3 Dividing the *i*-th equation by d_i we obtain the system of the form (1.1). First of all, we note that by taking $c(u) \equiv 0$ we can deduce the existence of λ^* fulfilling the assumption D. Now, let

$$M := \{ u \in \mathbb{R}^3 : u_i \ge 0, i = 1, 2, 3 \}.$$

We assume that

I. K_1, K_2, K_3 are smooth in every compact subset of $\overline{D} \times M$.

II. For i = 1, 2, 3, all $x \in \overline{D}$ and all $u \in C^0(\overline{D}, M)$

$$\int_D K_i(x, u(y)) dy \leq \min\{d_1, d_2, 2d_3\}\lambda^*.$$

First of all we note that, if $t(x) \in M$ for all $x \in \overline{D}$, then F is fulfilled. The proof is almost exactly the same as that in [2] (Lemma 2.1). Due to the classical result of Ladyzhenskaya and Ural'tseva (Sec. VIII.1-4 in [5]) the assumption E is fulfilled. By taking

$$H(u) = d_1 u_1 + d_2 u_2 + 2d_3 u_3$$

(as in [2]) one can verify check that C is fulfilled due to II, B and Lemma 1.2. Thus the system possesses at least one solution of class $C^{2+\alpha}(\overline{D}, M)$.

References

- H. AMANN, Fixed point equations and nonlinear eigenvalue problem in ordered Banach spaces, SIAM Rev., 18, 620–709, 1976.
- 2. W.E. FITZGIBBON and J. MORGAN, Steady state solutions for certain reaction-diffusion systems, Nonlinear Analysis, 15, 27–37, 1990.
- 3. W.E. FITZGIBBON and J. MORGAN, Existence of solutions for a class of weakly coupled semilinear elliptic systems, J. Diff. Eqns., 7, 351-368, 1989.
- 4. J. SMOLLER, Shock waves and reaction-diffusion equations, Springer-Verlag, 1983.
- 5. O. A. LADYZHENSKAYA and N.N. URALTSEVA, *Linear and quasi-linear elliptic equations*, Academic Press, New York 1968.

POLISH ACADEMY OF SCIENCES INSTITUTE OF FUNDAMENTAL TECHNOLOGICAL RESEARCH.

Received June 11, 1992