Nonlinear functionals in existence theorems for reaction-diffusion systems

B. KAŹMIERCZAK (WARSZAWA)

The notion of nonlinear functional is used to prove the existence of solutions for time-independent reaction-diffusion systems, in which nonlocal terms may* occur and whose coefficients may depend on first derivatives.

Introduction

This work was stimulated by the interesting papers [2] and [3] of FitzgibBon and MORGAN, who used the notion of nonlinear functionals in existence proofs for some time-independent reaction-diffusion systems. Its aim is to generalize, in a way, one of the theorems in [2]. The generalization consists in the fact that we do not assume a separable structure of the functional (as in [2]) and consider a more general type of equations than those discussed in [2] or [3]. The coefficients of elliptic operators may depend on u (and x) whereas the right-hand sides may have nonlocal terms and depend on the first derivatives of u (and x, of course). However, we were forced to impose more complex conditions than those in [2] or [3].

1. Setting of the problem and main assumptions

We consider the following system of elliptic equations:

$$
\begin{align*}
-L[u] u_{i} & =F_{i}[u] & & \text { in } D, \\
u_{i} & =t_{i} & & \text { on } \partial D, \tag{1.1}
\end{align*}
$$

where $1 \leq i \leq m$ and there is no summation over i. In subsequent assumptions $\alpha \in(0,1)$ will be a fixed number.
A. D is a bounded domain in $\mathbb{R}^{n}, n \geq 1$, with boundary of $C^{2+\alpha}$ class. Without losing generality we may assume that $x_{j}>0, j=1, \ldots, n$, for $x=\left(x_{1}, \ldots, x_{n}\right) \in \bar{D}$.
B. For $i=1, \ldots, m$:

1) $t_{i} \in C^{2+\alpha}(\bar{D}) \cap C^{2+\alpha}(\partial D)$,
2) $F_{i}: C^{2}(\bar{D}) \longrightarrow C^{\alpha}(\bar{D})$,
3) $L[u]=\sum_{j, l=1}^{n} A_{j l}(x, u(x)) \partial_{j l}^{2}-\mathcal{C}(x, u(x), \partial u(x)) \cdot \nabla$,
where all $A_{j l}$ are of C^{1} class in every compact subset of $\bar{D} \times \mathbb{R}^{m}$, and for every finite $u=\left(u_{1}, \ldots, u_{m}\right) \in \mathbb{R}^{m}, x \in \bar{D}$ and $\xi \in \mathbb{R}^{m}, \xi \neq 0$, there exists a real $s>0$ such that

$$
\sum_{j, l=1}^{n} A_{j l}(x, u) \xi_{j} \xi_{l}>s \xi^{2}
$$

Here $\mathcal{C}: \bar{D} \times \mathbb{R}^{m} \times \mathbb{R}^{n m} \rightarrow R^{n}$ and \mathcal{C} is of C^{1} class in every compact subset of its arguments.

REMARK. In the above notation F_{i} should be treated as an operator. In particular it could be of the form

$$
F_{i}[u](x)=\mathbf{c}_{i}(x)\left(\nabla u_{i}(x)\right)+f_{i}(x, u)
$$

Let M be a closed unbounded (in general) subset of the space \mathbb{R}^{m}.
C. There exist a $C^{2}\left(M, \mathbb{R}^{1}\right)$ function H such that

1) $H(u)$ tends to plus infinity for $\|u\|$ tending to infinity, where $\|\|$ denotes a norm in \mathbb{R}^{m};
2) there exist finite $N \in \mathbb{R}^{1}$ and a bounded function $\lambda^{*}: \mathbb{R}_{+}^{1} \rightarrow \mathbb{R}^{1}$ such that for all $u \in C^{2}(\bar{D}, M),\|u\|_{C^{0}} \leq \underline{u}$:
$\sum_{\substack{i, j=1, \ldots, m \\ p, z=1, \ldots, n}}-\left\{(1-\beta) s \delta_{p z}+\beta A_{p z}(x, u(x))\right\} H_{i j}(u(x)) u_{i, p}(x) u_{j, z}(x)$

$$
+\sum_{j=1, \ldots, m} \beta H_{j}(u(x)) F_{j}[u](x)<\lambda^{*}(\underline{u}) H(u(x))+N
$$

for all $x \in \bar{D}, \beta \in[0,1]$. $\left(\delta_{p z}\right.$ denotes Kronecker's delta, $u_{j, z}$ denotes $\partial_{z} u_{j}$ and H_{j} denotes the partial derivative of H with respect to u_{j}).

The next assumption describes the relation between λ^{*}, L, D and s (comp. B). First of all, one can notice that every $A_{j j}(x, u)>s$.
D. Let $u \in C^{2}(\bar{D}, M),\|u\|_{C^{0}(\bar{D})}<\underline{u}$ and $\phi \in C^{2}(\bar{D},[0,1])$. Let

$$
\mathcal{L}^{\phi}[u]:=\phi L[u]+(1-\phi) s \Delta .
$$

We assume that for all the possible solutions U of the linear scalar problem

$$
\begin{align*}
-\mathcal{L}^{\phi}(x, u(x)) \xi & =\lambda \phi(x) \zeta+f & & \text { in } D \\
\zeta & =g & & \text { on } \partial D, \tag{1.2}
\end{align*}
$$

with $\lambda \leq \lambda^{*}(\underline{u})$, there exists a finite constant K independent of ϕ, u, f and g such that

$$
\|U\|_{C^{0}(\bar{D})}<K\|g\|_{C^{0}(\bar{D})}+\|f\|_{C^{0}(\bar{D})}
$$

REMARK. By standard results on eigenvalues of elliptic operators it is possible to give explicit conditions implying D.

D*. There exist $\delta>0, J \in\{1, \ldots, n\}, \eta \in \mathbb{R}_{+}^{1}$ and continuous functions $c: \mathbb{R}^{m} \rightarrow$ \mathbb{R}^{1} and $z: \mathbb{R}^{m} \rightarrow \mathbb{R}^{1}$ such that for all non-negative \underline{u} and $u \in M,\|u\|_{\mathbb{R}^{m}}<\underline{u}$ we have:

1) $\mathcal{C}_{J}(x, u, p)<c(u)$ for all $x \in \bar{D}$ and $p \in \mathbb{R}^{n m}$;
2) $\eta>\sup _{x \in D} x_{J}$;
3) $s(z(u))^{2}-c(u) z(u)>1$;
4) $\sup _{x \in D}\left\{\exp (z(u) \eta)-\exp \left(z(u) x_{J}\right)\right\} \lambda^{*}(\underline{u})<1-\delta$.

LEmmA. D* implies D. Besides, for every u and ϕ (such as in D) we have $\lambda^{*}(\underline{u}) \leq$ $\lambda_{(\phi, u)}$, where $\lambda_{(\phi, u)}$ is the smallest eigenvalue of the operator ($-\mathcal{L}^{\phi}[\mathrm{u}]$) (defined in D).

Proof. For a given $u \in C^{2}(\bar{D}, M)$ with $\|\mathrm{u}\|_{C^{0}(\bar{D})}<\underline{u}$ let $M_{(u)}:=M \cap\left\{\sigma \in R^{m}\right.$: $\|\sigma\| \leq \underline{u}\}$ and $c_{(u)}=\sup _{\sigma \in M_{(u)}} c(\sigma)$. If $c_{(u)}=c\left(\sigma^{*}\right)$, then let $z_{(u)}=z\left(\sigma^{*}\right)$. Now we can proceed (with slight modifications) as in the proof of Theorem 8.8 in [4]. Thus, first let us note that $\mathcal{L}^{\phi}(x, u(x))$ can be written as $\sum a_{j l}(x) \partial_{j l}^{2}$ and $a_{J J}(x)>s$. Without losing generality we may take $J=1$. Let us define

$$
h(x)=\|g\|_{C^{0}(\bar{D})}+\left[\exp \left(z\left(\sigma^{*}\right) \eta\right)-\exp \left(z\left(\sigma^{*}\right) x_{1}\right)\right]\left\|f^{*}\right\|_{C^{0}(\bar{D})}
$$

where $f^{*}=f+\lambda \phi U$. Then, according to $\mathrm{D}^{*} .1,3$ we have

$$
\begin{aligned}
-\mathcal{L}^{\phi}[u] h=\exp \left(z\left(\sigma^{*}\right) x_{1}\right)\left[a_{11}(x)\left(z\left(\sigma^{*}\right)\right)^{2}-z\left(\sigma^{*}\right) \mathcal{C}_{1}(x, u(x), \partial u(x))\right]\left\|f^{*}\right\|_{C^{0}(\bar{D})} \\
\left.\geq \exp \left(z\left(\sigma^{*}\right) x_{1}\right)\left[s\left(z\left(\sigma^{*}\right)\right)^{2}-z\left(\sigma^{*}\right) c(u(x))\right)\right]\left\|f^{*}\right\|_{C^{0}(\bar{D})} \\
\geq \exp \left(z\left(\sigma^{*}\right) x_{1}\right)\left[s\left(z\left(\sigma^{*}\right)\right)^{2}-z\left(\sigma^{*}\right) c\left(\sigma^{*}\right)\right]\left\|f^{*}\right\|_{C^{0}(\bar{D})} \geq \exp \left(z\left(\sigma^{*}\right) x_{1}\right)\left\|f^{*}\right\|_{C^{0}(\bar{D})} .
\end{aligned}
$$

Now, we take $\nu=U-h$. Then $\nu=g-h \leq 0$ on ∂D and $\mathcal{L}^{\phi}[u] \nu \geq f^{*}+\left\|f^{*}\right\|_{C^{0}(\bar{D})} \geq 0$ in \bar{D}. Hence from the maximum principle (see for example Theorem 8.1 in [4]) we infer that $\nu \leq 0$, i.e. $U \leq h$ in \bar{D}. Similarly, if $\nu=U+h$, then in the same way we can prove that $\nu \geq 0$, i.e. $U \geq-h$ in \bar{D}. Thus, we obtain an implicit bound for U

$$
\|U\|_{C^{0}(\bar{D})} \leq\|g\|_{C^{0}(\bar{D})}+W\left\|f^{*}\right\|_{C^{0}(\bar{D})}
$$

where $W=\sup _{x \in D}\left[\exp \left(z\left(\sigma^{*}\right) \eta\right)-\exp \left(z\left(\sigma^{*}\right) x_{1}\right)\right]$. Thus

$$
\|U\|_{C^{0}(\bar{D})} \leq\|g\|_{C^{0}(\bar{D})}+W\|f\|_{C^{0}(\bar{D})}+W \lambda\|U\|_{C^{0}(\bar{D})}
$$

Hence, for λ satisfying $D^{*} .4$ we obtain the inequality

$$
\|U\|_{C^{0}(\bar{D})} \leq\left(\|g\|_{C^{0}(\bar{D})}+W\|f\|_{C^{0}(\bar{D})}\right) \delta^{-1}
$$

To prove the second part of the Lemma suppose that, for some r and u, we have $\lambda=$ $\lambda^{*}(\underline{u})=\lambda_{(\phi u)}$. But then, according to the first part of the Lemma, we would be able to obtain a priori estimates in $C^{0}(\bar{D})$, which is impossible.

As in [2], solutions of (1.1) will be approximated by solutions of the "bounded" problems. Namely, let $k_{r}^{0} \in C^{2}\left(\mathbb{R}^{m},[0,1]\right), k_{r}^{1} \in C^{2}\left(\mathbb{R}^{n m},[0,1]\right)$, where $r>0$ and

$$
k_{r}^{0}(u)=\left\{\begin{array}{ll}
1 & \text { for }\|u\|<r, \\
0 & \text { for }\|u\|>2 r,
\end{array} \quad k_{r}^{1}(p)= \begin{cases}1 & \text { for }\|p\|<r \\
0 & \text { for }\|p\|>2 r\end{cases}\right.
$$

($\|p\|$ denotes a $\mathbb{R}^{n m}$ norm of p). We choose k_{r}^{0}, k_{r}^{1} in such a way that their first and second derivatives tend to 0 in C^{0} norm for r tending to plus infinity. Let

$$
K_{r}[u](x):=k_{r}^{0}(u(x)) k_{r}^{1}(\partial u(x))
$$

Now, for $\nu \in C^{2}\left(\bar{D}, \mathbb{R}^{m}\right)$ let

$$
\begin{equation*}
\mathcal{L}_{r}[\nu]:=K_{r}[\nu] L[\nu]+\left(1-K_{r}[\nu]\right) s \Delta-K_{r}[\nu] \mathcal{C}[\nu] \cdot \nabla \tag{1.3}
\end{equation*}
$$

where for the sake of simplicity we have denoted $\mathcal{C}(x, \nu, \partial \nu)$ by $\mathcal{C}[\nu]$. Let $w=T \nu$ be the unique $C^{2+\alpha}(\bar{D})$ solution of the problem:

$$
\begin{aligned}
-\mathcal{L}_{r}[\nu] w_{i} & =K_{r}[\nu] F_{i}[\nu] & & \text { in } D, \\
w_{i} & =t_{i} & & \text { on } \partial D,
\end{aligned}
$$

$1 \leq i \leq m$. For every finite positive r the operator T is a bounded linear operator from $C^{2}(\bar{D})$ to $C^{2+\alpha}(\bar{D})$. Thus, it is continuous in $C^{2}(\bar{D})$ and it maps all of $C^{2}(\bar{D})$ onto a bounded subset of $C^{2+a}(\bar{D})$. Due to the Schauder fixed point theorem there exist a $C^{2}(\bar{D})$ solution of the system

$$
\begin{align*}
-\mathcal{L}_{r}[u] u_{i} & =K_{r}[u] F_{i}[u] & & \text { in } D, \tag{1.4}\\
u_{i} & =t_{i} & & \text { on } \partial D .
\end{align*}
$$

In the subsequent section our aim is to prove that for r sufficiently large the solution of $(1.4)_{r}$ is also a solution of the initial system (1.1) with values in M. To do this we impose two other assumptions. They concern the possibility of a priori estimates and invariance of M.
E. There exists a continuous function $Q: \mathbb{R}_{+}^{1} \rightarrow \mathbb{R}_{+}^{1}$ independent of r, such that if $u_{r} \in C^{2}(\bar{D})$ satisfies $(1.4)_{\mathrm{r}}$ and $\left\|u_{r}(x)\right\|<P$ for $x \in \bar{D}$, then $\left\|\partial u_{r}(x)\right\|+\left\|\partial^{2} u_{r}(x)\right\|<$ $Q(P)$ for all $x \in \bar{D}$. (\|\| denote norms in $\mathbb{R}^{m}, \mathbb{R}^{n m}$ and $\mathbb{R}^{n^{2} m}$, respectively).

REMARK. If F has no nonlocal terms, then E follows for example (under some additional conditions) from sections VIII.1-4 in [5].
F. If $t=\left(t_{1}, \ldots, t_{m}\right) \in C^{2+\alpha}(\bar{D}, M)$ and u_{r} satisfies $(1.4)_{\mathrm{r}}$, then $u_{r}(x) \in M$ for all $x \in \bar{D}$.

2. Existence theorem

Now, we are in a position to prove our existence theorem.
Theorem. Assume A, B, C, D, E and F . Then, there exist at least one $C^{2+\alpha}(\bar{D}, M)$ solution of (1.1).

Proof. The proof of the theorem will consist in showing that the solutions of (1.4) ${ }_{\mathrm{r}}$ are bounded in C^{0} norm uniformly in r . To prove this fact let u_{r} be a smooth solution of $(1.4)_{\mathrm{r}}$ and let $H_{r}(x):=H\left(u_{r}(x)\right)$. By a straightforward calculation we conclude that H_{r} satisfies, according to C and (1.3), the following identity:

$$
\begin{aligned}
-\mathcal{L}_{r}\left(x, u_{r}(x)\right) H_{r} & =\lambda^{*}\left(\underline{u}_{r}\right) K_{r}\left[u_{r}\right](x) H_{r}+N+B_{r}(x) & & \text { in } D \\
H_{r} & =H(t) & & \text { on } \partial D
\end{aligned}
$$

where λ^{*} is defined in C and $\mathrm{D}, \underline{u}=\left\|u_{r}\right\|_{C^{0}(\bar{D})}$ and $B_{r}(x) \leq 0$ for $x \in \bar{D}$. Now, let $\bar{H}_{r e}$ denote the unique smooth solution of the linear problem:

$$
\begin{aligned}
-\mathcal{L}_{r}\left(x, u_{r}(x)\right) z & =\lambda^{*}\left(\underline{u}_{r}\right) K_{r}\left[u_{r}\right](x) z+N & & \text { in } D \\
z & =h_{e} & & \text { on } \partial D,
\end{aligned}
$$

where $h_{e} \in C^{2+\alpha}(\bar{D})$ and $H(t(x))+e \geq h_{e}(x) \geq H(t(x))$ for all $x \in \bar{D}$ and some $e>0$, which can be taken arbitrarily small. According to Lemma, the functions $\bar{H}_{r e}$ are bounded in $C^{0}(\bar{D})$ norm uniformly in r.

Let $R_{r e}:=\bar{H}_{r e}-H_{r}$. Then $R_{r e}$ satisfies the identity:

$$
\begin{aligned}
-\mathcal{L}_{r}\left(x, u_{r}(x)\right) R_{r e} & =\lambda^{*}\left(\underline{u}_{r}\right) K_{r}\left[u_{r}\right](x) R_{r e}-B_{r}(x) & & \text { in } D, \\
R_{r e} & =\underline{h}_{e} & & \text { on } \partial D,
\end{aligned}
$$

where $C^{2}(\bar{D}) \ni \underline{h}_{e} \rightarrow 0$ as $e \rightarrow 0$ uniformly on ∂D. According to the second part of Lemma 1.2 and Theorem 4.4 in [1] we can find a function $\underline{R}_{r} \geq 0$ satisfying the same equation but with zero boundary condition. If $S_{r e}:=R_{r e}-\underline{R}_{r}$, then

$$
\begin{aligned}
-\mathcal{L}_{r}\left(x, u_{r}(x)\right) S_{r e} & =\lambda^{*}\left(\underline{u}_{r}\right) K_{r}\left[u_{r}\right](x) S_{r e} & & \text { in } D \\
S_{r e} & =\underline{h}_{e} & & \text { on } \partial D .
\end{aligned}
$$

As $S_{r e} \in C^{2} \bar{D}$ and $\underline{h}_{e} \leq e$ uniformly in on ∂D, then due to Lemma we conclude that $H_{r}(x) \leq \bar{H}_{r}(x)+K e$ for some finite positive K and all $e \rightarrow 0$. Thus $H\left(u_{r}(x)\right) \leq \bar{H}_{r}(x)$, where by \bar{H}_{r} we have denoted the unique in $W^{2, q}(D), q>r$, limit of $H_{r e}$. It is bounded in C^{1} norm uniformly in r. According to C we conclude that u_{r} is bounded in $C^{0}(\bar{D})$ norm uniformly in r by some finite constant P. Due to E this implies boundedness of u_{r} in C^{1} and C^{2} norms. Thus, for sufficiently large r, u_{r} is a solution of the problem (1.1). The Theorem is proved.

REMARK. It is easy to note that when coefficients of L do not depend on u then we can get rid of the auxiliary Laplacean and take $\beta=1$ in C and D with $\mathcal{L}_{r}[\nu]:=$ $L-K_{r}[\nu] \mathcal{C}[\nu] \cdot \nabla$ in (1.3).

3. An example

Let us consider the following system of equations (comp. [2] p. 36):

$$
\begin{aligned}
& -d_{1} L(x, u(x)) u_{1}(x)=u_{3}(x)-u_{1}(x) u_{2}(x)+u_{1}(x) \int_{D} K_{1}(x, u(y)) d y \\
& -d_{2} L(x, u(x)) u_{2}(x)=u_{3}(x)-u_{1}(x) u_{2}(x)+u_{2}(x) \int_{D} K_{2}(x, u(y)) d y \\
& -d_{3} L(x, u(x)) u_{3}(x)=u_{1}(x) u_{2}(x)-u_{3}(x)+u_{1}(x) \int_{D} K_{1}(x, u(y)) d y \\
& \left(u_{1}, u_{2}, u_{3}\right)(x)=\left(t_{1}, t_{2}, t_{3}\right)(x) \quad \text { for } x \in \partial D
\end{aligned}
$$

where d_{1}, d_{2}, d_{3} are positive constants and L is the same as in B. 3 Dividing the i-th equation by d_{i} we obtain the system of the form (1.1). First of all, we note that by taking $c(u) \equiv 0$ we can deduce the existence of λ^{*} fulfilling the assumption D. Now, let

$$
M:=\left\{u \in \mathbb{R}^{3}: u_{i} \geq 0, i=1,2,3\right\}
$$

We assume that
I. K_{1}, K_{2}, K_{3} are smooth in every compact subset of $\bar{D} \times M$.
II. For $i=1,2,3$, all $x \in \bar{D}$ and all $u \in C^{0}(\bar{D}, M)$

$$
\int_{D} K_{i}(x, u(y)) d y \leq \min \left\{d_{1}, d_{2}, 2 d_{3}\right\} \lambda^{*}
$$

First of all we note that, if $t(x) \in M$ for all $x \in \bar{D}$, then F is fulfilled. The proof is almost exactly the same as that in [2] (Lemma 2.1). Due to the classical result of Ladyzhenskaya and Ural'tseva (Sec. VIII.1-4 in [5]) the assumption E is fulfilled. By taking

$$
H(u)=d_{1} u_{1}+d_{2} u_{2}+2 d_{3} u_{3}
$$

(as in [2]) one can verify check that C is fulfilled due to II, B and Lemma 1.2. Thus the system possesses at least one solution of class $C^{2+\alpha}(\bar{D}, M)$.

References

1. H. Amann, Fixed point equations and nonlinear eigenvalue problem in ordered Banach spaces, SIAM Rev., 18, 620-709, 1976.
2. W.E. Fitzgibbon and J. Morgan, Steady state solutions for certain reaction-diffusion systems, Nonlinear Analysis, 15, 27-37, 1990.
3. W.E. Fitzgibbon and J. Morgan, Existence of solutions for a class of weakly coupled semilinear elliptic systems, J. Diff. Eqns., 7, 351-368, 1989.
4. J. Smoller, Shock waves and reaction-diffusion equations, Springer-Verlag, 1983.
5. O. A. Ladyzhenskaya and N.N. Uraltseva, Linear and quasi-linear elliptic equations, Academic Press, New York 1968.

POLISH ACADEMY OF SCIENCES

institute of fundamental technological research.
Received June 11, 1992

