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Constitutive equations for finite deformations 
of elastic-plastic metallic solids with induced anisotropy 

NGUYEN HUU VIEM (WARSZAWA) 

THE oruEcr of this paper is to formulate the constitutive relations for elastic-pla•;tic metallic solids 
at finite strain, making some plausible physical assumptions and employing Mandel's formalism. 
Thermodynamic terms are included. The equations are further simplified which should make them 
more useful for solving problems. 

1. Introduction 

ONE OF THE MOST important features of deformable metallic solids is the fact that their 
distortional elastic strains are small under arbitrary loading whereas they can undergo 
large elastic volumetric changes. The logarithmic measure of elastic strains and the for
malism of MANDEL [6, 7, 8] were employed to establish the constitutive equations for 
isotropic metallic solids (cf. RANIECKI and NGUYEN [12]), assuming that the ratios of 
principal elastic stretches belong to the interval [5/6, 6/7]. Much attention is devoted to 
the formulation of strain-induced anisotropy for finite strains of rate-independent plastic 
materials in the recent years. These models apply to the deformation processes in which 
material rotation is of primary importance, e.g. large torsion of the test specimens. · 

In this paper, using the WILLIS approximation [17, 18] we derive the constitutive rela
tions for elastic-plastic metallic bodies in the case of plastic strain induced anisotropy. The 
resulting equations are similar in form to those applying to problems of small deforma
tion but are applicable for stresses up to those in the hydrodynamic regime of flow. The 
plastic strain induced anisotropy arises here from the residual stresses which is the result 
of the heterogeneous nature of plastic deformation in single crystals and polycrystalline 
material. It is modelled by the shift of the yield surface in stress-space and takes the form 
of combined isotropic-kinematic hardening. 

Tensors will be denoted by boldface characters. With the summation over repeated 
indices implied, the following symbolic operations apply: AB-+ AijBj, A· B-+ AijBii' . 
A 0 B -+ A ijBkz with proper extension to different orders tensor. The prefix tr indicates 
the trace, a superscript T the transpose and a superposed dot the material time derivative 
or rate. By A we denote the deviatoric part of A, by 1 the identity tensor and by a 
superscript -1 the inverse. 

2. Background 

Consider a homogeneous elastic-plastic material element M of unit mass. Let (k0) be 
the initial configuration of this element under zero stress and at the temperatP"'P' 190; (k) 
the actual configuration under the Cauchy's stress u and at the temperature \.ssume 
that at the moment t the element is unloaded instantaneously and brought back to the 
temperature 190 ; this unloading is elastic. A relaxed instantaneous configuration (k*) is 

http://rcin.org.pl



586 NGUYEN Huu VIEM 

obtained, which is specified only to within a rotation. Denote by p0, p. and p the densities 
of M in (k0), (k.) and (k). The deformation gradient resolved according to [7] into elastic 
and plastic compone~ts gives 

(2.1) 

Here F, Fe and FP maps (k0) c+ (k), (k.) ~ (k) and (k0) ~ (k.), respectively. The 
superscripts e and p refer to elastic and plastic deformation. Polar decomposition of Fe 
leads to 

(2.2) Fe = Reue = SeRe, 

where Re is a proper rotation tensor, ue and se are the right and left elastic stretches. 
Re introduced in Eq. (2.2) rotates the principal directions Ni of ue into the principal 
directions of the left elastic stretch tensor se' i.e. 

(2.3) 

and Di is the unit vector along the principal directions of Se. 
We have the following notations and kinematical relations [12]: 

(2.4) 

v = FF-1 = ve + vP' 
ve = F. eFe-1 VP = Fev•Fe-1 V* = FPFp-1 

' ' ' 
2D = v + vT = 2(De + DP), 2w = v- vT = 2( we + wP), 

2D* = V* + V*T 
' 

2w* = V*- V*T 
' 

2Ee = FeTFe - 1 De = Fe-T EeFe-1 
' ' 

2De = Re(i(Ue-1 + ue-\()ReT' 

2we = 2i(ReT + Re(UeUe-t - ue-1iJe)ReT' 

2DP = Re(uev•ue-1 + ue-1v•Tue)ReT' 

2wP = Re(uev•ue-1 - ue-1v•Tue)ReT' 

V is the velocity gradient, D is the rate of total deformation - the symmetric part of V 
and w- the material spin. V*, D*, w* are the corresponding terms for the purely plastic 
deformation which is envisaged to occur in the intermediate unstressed configuration. The 
name plastic rate of deformation and plastic spin can be associated either with D* and 
w* at (k.), or with DP and wP at (k). Ee is the Green's deformation tensor. 

An element M of an elastic-plastic material may be regarded as an elementary ther
modynamic system being in constrained equilibrium at any instant of the deformation 
process. Under arbitrary loadings most metallic materials undergo small elastic distor
tional strains and possible large elastic dilatational chance in shape. For such materials, 
as shown in [12], it is more expedient to employ the logarithmic elastic strain measure 
E* = ln ue than the Green measure Ee as a state variable. This enables us to separate in 
a simple manner the dilatational elastic changes of M from the distortional ones and to 
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simplify the basic equations by assuming that elastic distortional strains are infinitesimal. 
We have [ 12] : 

trE* = lnfi, 

fi = p* = U1 U2U3 = det Fe, 
p 

here uie, ( i = 1, 2, 3) are the principal elastic stretches. Let E* be the deviatoric part of 
E*, then 

(2.5) 
1 -

ue = fi'J exp E*. 

Similarly, we have 

(2.6) 

with tr e = In fi and the deviator e describes the elastic distortional changes of M in actual 
configuration. 

Assume that the elastic distortional strains are so small that, instead of the closed 
form (2.5), the following approximation is acceptable: 

(2.7) ue = jj!(t + E*) + O(IE*I 2
). 

In that case, to the order of IE*I 2, from the relations (2.3) we have: 

(2.8) 

or equivalently: 

(2.9) 

1 . 
De = 3(trD)l + ReE*ReT, we = :ilReT, 

DP = ReD*ReT- Re(w*E*- E*w*)ReT, 

wP = Rew *ReT - Re(D*E* - E*D*)ReT 

De = e + O(lel 2
) , 

ReD* ReT = DP + ( wPe- ewP) + O(lel 2
), 

Rew*ReT = w P + (DPe- ffiP) + O(lel2); 

by a = a- w ea +aw e we denote here the Zaremba-Jaumann derivative of tensor a. 
From the additive decomposition of the rate of the total work W into elastic We and 

• p 
plastic W parts 

(2.10) 

· 1 · e · p 
W = -u · D = W + W , 

p 
• e 1 . W :;:: - U • De = Te • Ee, 

p 

W. p 1 p * * = - u • D = tr(P V ) , 
p 

we have the following relations between the different stress measures: 

1 -1 -T 1 -1 
(2.11) Te =-Fe uFe , P* =-Fe uFe. 

p p 

Here Te denotes the stress measure conjugate to Green's elastic strain Ee (12]. 
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For materials that are isotropic with respect to the elastic properties in (k*), the stress 
T* energy-conjugate to the logarithmic E* elastic strain measure is [12] 

(2.12) T* = ~ReT uRe. 
p 

The decomposition (2.1) is unique assuming the instantaneous unloaded configuration 
to be isoclinic so that its orientation is fixed. It can be used as a basic reference configu
ration for the formulation of the constitutive equations of an elastic-plastic solid. Its use 
simplifies the description of material properties since the usual material derivatives of the 
constitutive quantities have simple meanings. The physical laws describing the properties 
of the elastic-plastic bodies can be then divided in two groups. The first group describes 
the elastic properties and the second group the plastic ones. Within the framework of 
MANDEL'S formulation [7), the constitutive equations established first in terms of the 
starred quantities, can be subsequently transformed to the Euler's configuration ( k) or 
the Lagrange's configuration (k0) using the relations (2.4 ), (2.10)-(2.12). 

Introduce now the free energy function </> = u - '/Js, where u is the internal energy, 
s is the entropy per unit of mass in the configuration (k*). Assume that the independent 
variables of free energy are { 7J, E*, a.(j)' a(i)} denoted collectively by yt9E, where a.(j) are 
internal tensorial variables and a(i) are internal scalar ones. The fundamental equation 
is adopted in the form 

(2.13) du = dW0 + '/Jds, dW0 = T* ·dE* + 'lr(i)da(i) + 1t(j) • da(J)' 

'lr(i) and 1t(j) are scalar and tensorial internal thermodynamic forces, respectively. We 
employ here for convenience the internal thermodynamic forces and the work-conjugate 
stress per unit of mass, by multiplying by p0 we obtain the usual ones per unit of volume. 
The term dW0 represents the part of external work that is accumulated in the form of 
energy. The thermostatic properties of M in (k*) are described by equations 

(2.14) T* = B<j>(Yt9E) 
8E* ' 

When </> has the form 

(2.15) 

where ¢1 , ¢2 are isotropic functions of E* and a.(j) respectively; the equations (2.14) can 
easily be transformed to the actual configuration (k) [12): 

(2.16) T = iJ<f>~~E), 

here we denote by yt9e the set of variables { '!J, e, tX(j), a(i)} and 

(2.17) 
u 

T = -, 
p 

Re * ReT 
tX(j) = a.(j) ' 

The rate equations in Eulerian description can be derived similarly as in [12] by cal
culating the Zaremba-Jaumann derivatives of the relations (2.16) with the spin we. For 
the plastic part, we know that the rate of dissipation F of mechanical work is [12] 
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(2.18) -r w· w· o * *) * · * .r = - = tr(P V - 1r(i )a(i) - 7t{j) • a(j)· 

The plastic flow rules in (k*) relate the thermodynamical forces (P*T, 1r(ih 7t(j)) to the 
rate (V*, D'(i)l a(j)) occurring in Eq. (2.18). For materials that are isotropic with respect 
to elastic properties in (k*) P* is symmetric [12] and 

(2.19) P* = T*, 

hence 

(2.20) 

Our task is now to specialize and simplify the equations of this section to obtain a set 
of equations which will be useful for solving practical problems of dynamical plasticity. 

3. Assumptions 

With certain loss of generality, for the sake of simplicity, the structural variables will 
be restricted to a second-order symmetric tensor a* and a scalar a, which will be specified 
later. The following assumptions seem plausible for metallic solids: 

1. The material is plastically incompressible: 

(3.1) p* = p0 = canst, f3 = Po. 
p 

2. The plastic hardening does not influence the thermoelastic properties. 

3. Elastic distortional strain is linear and infinitesimal so that the approximation (2.7) 
is permissible. Material is isotropic with respect to the elastic properties in (k*). 

4. The specific heat at constant volume Cv is constant (the classical Debye theory of 
metals). 

5. The free energy is an isotropic and quadratic function of the internal parameter 
a*. 

Under those assumptions the free energy function has the form [12, 13] 

(3.2) ¢ = <p1(/3, 19) + f3pE* · E* + u*(a , a*)- 19s*(a*), 
Po 

where Jl is the usual isothermal shear modulus assumed constant (although it could be 
assumed to depend upon /3,19 [12]). u*, s* are stored entropy and stored internal energy 
at the natural state where u = 0 and 19 = 0 

* * 1 1 _a ) * * u (a, a ) = -<p2(a) + -(c0 + cruo a ·a , 
Po 2po 

(3.3) 
*( *) 1 * * s a =-eTa ·a, 

2po 

where c0 and CT are constants. For isotropic solids the specific form (3.2) was first derived 
by WILLIS [17] under the assumption that the yield stress in simple shear was much less 
than the elastic modulus. The various forms of t.p1 are discussed in [12, 14, 17]. 
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4. Rate constitutive equations 

The Eqs. (2.16), (2.17), (3.2), (3.3) yield 

t = ,B(LDe - B~) + O(lel 2
), 

(4.1) 
piJs = iJB. De + PCv~ + !!_iJCTCX. a + O(lel 2

), 

Po 
assuming, as in the linear theory of elasticity, that e is of the same order as e. Here 
T = p0-r = ,Bu is the Kirchhoff stress tensor. L and B are the generalized tensor of 
isothermal elastic stiffness and elastic thermal stress in (k), respectively, 

Lijkl = 8ij8kl(J(T- p) + J.L(8ik8jl + 8il8jk- -3
2 

8ij8kt), 
(4.2) 

Here we have the following relations [12]: 

/( a 82c.pl 
\. T = PotJ 8,82 

isothermal bulk modulus, 

82c.pt 82c.pt . ( ) -1 

llv = - 8,88{} ,8 8,82 volumetric thermal expansion, 

82c.pl 1-12 Cv = -{} 
8

{}2 + 0( e ) 
(4.3) 

specific heat at constant volume, 

CJii 8c.pl 1-12 -p = - = Po- + 0( e ) 
3 8,8 

mean pres~ure, 

u = 2J.Le + O(lel 2
) deviator of the Cauchy stress. 

Consider now the rate equations for the plastic part. Assume the simplest form of the 
internal tensorial parameter 

(4.4) a* = D*, tr ex* = 0. 

From (2.14), (3.2), (3~3) we can calculate the thermodynamical force n* 

(4.5) 
1 dc.p2 

7r = --
Po do.' 

* 1 AQ AQ * de{ 1 * 7t = -[co- cT(v- vo)]cx = -ccx . 
Po Po 

We shall identify this force with the back stress that determines the position of the 
symmetry centre of the yield surface. Then the following evolution equation for the 
internal force in the unloaded configuration (k*) is obtained: 

(4.6) . * 1 * CT J:~ * 7t = -cD - -v7t , 
Po c • 

and the dissipation rate (2.18) for the considered model is 

(4.7) F = (T* - 7t*) · D* - 1ra. 
Adopt the generalized Huber-Mises yield criterion 

(4.8) f 3 -* * -* * y2 Ao = 2 (T - 1t ) • (T - 1t ) - ('v, 1r) = 0. 
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Then the plastic flow law associated with (4.13) yields: 

(4.9) 

where 

(4.10) . { 1 J = 
0 

if 

if 

* .A 8! 
D = J * 8f*' 

. * .A 8j 
-a = J * 87t*' 

-6 =J·A 8j 
*87r' 

f=O 
f=O 

and 

and 
A*~ 0, 

A*< 0 

591 

or f < 0, 

and the parameter A* at the yield point f = 0 is calculated from the consistency relation 

( 4.11) 

-* (...!...* CT · *) 8Y · 3(T - 7t*) • T + -fJ1t - 2Y-{} 

A. = Pn [ c 2 ] f){) • 

2Y
2 

3c + 2 (~:) ~:: 
The set of constitutive equations for the plastic par.t in the unloaded configuration 

(k*) consists of Eqs. ( 4.5)-( 4.9). They can be transformed to the actual configuration 
on account of Eqs. (2.4 ), (2.8) and (2.17). It is evident from Eq. (2.9) that for solids 
anisotropic with respect to plastic properties, the normality in (k*) does not imply the 
normality in (k). When the terms (wPe- ewP) and (DPe- ei)P) may be neglected, 
DP, wP and T defined (k) differ from D*, w* and T* merely by the rotation resulting 
from the elastic deformation. In this case, normality in ( k) implies normality in ( k) and 
vice-versa. 

Denote by II = p01t and ay = p0Y the true internal and the yield stress, II = Po7r, 
the flow laws in Eulerian description are 

( 4.12) 

DP = 3j A(T- II) - ( wPe- ewP), 

1 auy -
6 = - --[DP + ( wPe- ewP)] · (T- II), 

uv an 
~ CT. 
II = c[DP + (wPe- ewP)]- -fJn. 

c 

The yield criterion in terms in ( k )-description preserves it form 

(4.13) 3 - - 2 . G f = z (T - II) · (T - II) - u y ( v, II) = 0 

and we have the following expression for A: 

( 4.14) 

- (.:::... CT · ) 8ay · 3(T- II) · T + -{}II - 2ay -{} 
A = c 8{) 

2 [ (8ay) 2 d2
<p2 ] 2ay 3c + 2 8II da2 
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592 NGUYEN Huu VIEM 

The combined plastic hardening modulus H 

8ay 2 d
2<p2 

(4.15) H = 3c + 2( BII ) da2 

is composed of the kinematic hardening part hOt = 3c and the isotropic hardening term hi. 
The changes in the temperature are caused by the dissipation of mechanical work, the 

heat exchange with environment, the heat of elastic deformation and the heat of internal 
rearrangement [ 11]. Let us present here without derivation the equation for the rate of 
temperature. 

(4.16) PoCvfJ = (1- !!_Bay) (T- II). [DP + (wPe- ewP)]- f3 divq 
ay 8II 

-'!9f3avl(r trD- '!JCT II. [DP + (wPe- ewP)]. 
c 

Here q is the heat flux. From this set of equations we can get, in the case of isotropic 
materials, the equations of [12] and the equations presented by RANIECKI and SAMANTA 
in (13] for the rigid-plastic solids. In particular, following the procedure presented in 
(16], we can derive the system of equations describing the isothermal and adiabatic pro
cesses. 

5. The plastic spin 

To complete the constitutive equations of the previous section, we have to specify three 
equations for w* or wP (cf. KLEIBER and RANIECKI [3]). Decision upon what form of 
plastic spin to admit was left open here. As we know, the plastic spin w* describes the 
rate of material element rotation with respect to the isoclinic unloaded configuration and 
thus, roughly speaking, it represents the mean relative spin of all material fibers measured 
with respect to a certain chosen triad. In the case of materials fully isotropic with respect 
to plastic properties in (k*), this relative angular velocity may be neglected [12] so that 
w* = 0 and then wP = 0. Anisotropy results from the fact that different material fibers 
have different angular velocities with respect to the director triad chosen. As the plastic 
spin is not explicitly measurable, the representation theorems for isotropic functions have 
been used in conjunction with the concept of tensorial structure variables to provide 
explicit forms for it (LORET [4), DAFALIAS [1, 2) PAULUN and P~CHERSKI [9]). Another 
possibility was proposed in RANIECKI and MR6Z [10] for a model of rigid-plastic solids. 
Supposing that the texture orientation can be specified by a rigidly rotating triad and that 
the texture orientation at consecutive steps of plastic deformation can be measured, the 
plastic spin is then the difference of the material and texture spins. Such an approach 
closely follows the ideas of MANDEL [5, 7]. We present in brief the extension of this idea 
to elasto-plastic bodies. 

Consider the plastic transformation FP. Let t~, i = 1, 2, 3 be the three orthonormal 
vectors representing the initial texture orientation in (k0). Assuming that at each subse
quent instant t the orientation of texture is specified by the triad ti, the instantaneous 
texture spin w t is 

(5.1) 

The texture reference frame mi is selected in the following way: vector mi represents 
the material fiber lying in a chosen material plane with normal mi and mj = mi 1\ mi 
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(the vector product). It is shown in [3] that the spin w of the triad m; is a very simple 
function of the rate of permanent strain tensor D* and the chosen triad: 

(5.2) 
2 ~ ( ) ~ ( * * * *) w m, t = W ij m i ® m j - mj ® m i , 

If the transformation from mi to ti is specified by an orthogonal t~nsor Q, then the 
relative texture spin w r is defined as follows: 

(5.3) w r(m, t) = QQT . 

The following relation holds true [10]: 

(5.4) w*- w t = w(m, t)- wr(m, t). 

In Eqs. (5.2)-(5.4) the symbol m emphasizes the fact that w(m, t) and wr(m, t) depend 
on the selection of the texture reference frame. If a generic instant t the texture reference 
triad m; is assumed to coincide with ti, then the corresponding tensors are denoted by 
@and wr. The relation (5.4) remains valid, so that 

(5.5) 

When the motion of the texture frame is isoclinic wt = 0, Eq. (5.5) takes the form 

(5.6) 

For the sake of simplicity we drop the term wPe - ewP and (DPe - eDP) in (2.9). 
Passing to the Eulerian description, Eq. (5.6) yields 

(5.7) 

wP = wf- wi, 
wf = RewReT = gb 

wi = RewrReT = gz. 

Here t i is the texture triad in actual configuration. The plastic spin is thus divided 
into two parts. From Eq. (5.2), g1 is a known function of ti and DP. To complete the 
description, a constitutive equation for g2 should be formulated. This could be verified 
by metallographic measurements of texture orientation changes during deformation. In 
general this equation has the form 

(5.8) 

and g2 is an isotropic function of all tensor arguments. For rate-independent materials it is 
a homogeneous function of degree one with respect to DP. Due to the lack of appropriate 
experimental data, some theoretical assumptions may be proposed for the form of g2 [15]. 

6. Conclusions 

The simple model of metallic solids with combined isotropic linear kinematic harden
ing modified by thermal effects is considered here. The complexity of the equations is 
minimized by assuming that the material satisfies the Huber-Mises yield condition and 
the associated flow rule, rate dependence of plastic properties being excluded. The choice 
of flow rule other than ( 4.7) could be made if some particular mechanism of flow required 
such a choice. Mandel's formalism combined with the concepts of thermodynamics may 
be used to generalize the more complex models of infinitesimal plasticity theory. 
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