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Isothermal and adiabatic flow laws of metallic elastic-plastic 
solids at finite strains and propagation of acceleration waves 

NGUYEN HUU VIEM (WARSZAWA) 

FROM THE EARLIER proposed constitutive equations for metallic elasto-plastic materials at finite 
strains and with induced anisotropy (18], the flow laws for isothermal and adiabatic processes are de
rived and examined. If certain minor coupling effects are disregarded, the difference between them 
consists only in the hardening functions. It is shown that deviation from plac;tic normality may arise 
from the plastic spin. On the basis of these equation, we consider the propagation of acceleration 
waves and give the expressions for the eigenvalues. They reduce in the cac;e of small deformations 
to those of [10]. 

1. Introduction 

IN [18] THE CONSTITUTIVE RELATIONS for metallic elastic-plastic solids at finite strains 
with induced anisotropy were derived under certain well-grounded assumptions. These 
equations are similar in form to those employed in problems of small strains but are 
applicable to the whole range of the deformation process. The objective of this paper is 
twofold. 

First, it is to study the flow laws for two extreme idealizations of the real deformation 
process: the isothermal and the adiabatic ones. In the isothermal process, we assume 
that the heat transport is so intensive that the process does not affect the temperature 
of the particles and in the adiabatic process, the heat transport between the particles 
may be neglected. The flow laws for isotropic bodies were considered in [14, 19]. These 
processes are widely used in experiments, for example to determine the dynamic properties 
of materials. It is shown that when some small coupled effects are neglected, the only 
difference between the isothermal and adiabatic flow laws is due to the difference of the 
hardening functions. Another aspect is the deviation from plastic-normality arising from 
the plastic spin. It is widely known that non-normality is an important destabilizing feature 
for the localization process [ 15). 

Secondly, motion of a second-order discontinuity surface in an infinite space is studied. 
Propagation of such acceleration waves in solids is intensively investigated [10) because 
the fundamental nature of them relates directly to the important issue of stability, static 
bifurcations and so forth. Moreover, recent developments in finite element method to 
analyze the localization of strain in thin zones within a solid have considerably intensi
fied this interest. In the pioneering work of HADAMARD [2) elastic waves were studied. 
THOMAS [16, 17] investigated isothermal elastic waves. The main contributions to waves 
in elastic-plastic materials belong to MANDEL [4] and HILL [3]. Assuming certain particu
lar forms of the constitutive equations, RANIECKI [13] and . NOWACKI [8] investigated the 
problem of propagation of acceleration waves in metals and soils. The following papers 
are dealing with wave propagation at finite strains [1, 11, 12, 20]. For non-associated 
plasticity we can cite the work of MANDEL [6] and OTTOSEN and RUNESSON [10). In this 
paper, neglecting the small terms due to the distortional elastic strains, the eigenvalues of 
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the acoustic tensor are determined. For small deformations, these results reduce to those 
of [10]. Here, with the presence of plastic spin, 'flutter' instability may occur although for 
a very broad class of nonassociated plasticity it is shown in (10] that it can not take place. 

Tensors will be written in boldface letters; summation over repeated indices is implied 
and the following symbolic operations are used: AB ~ AijBj, A· B ~ AijBij, A® B ~ 
Aij B kl with proper extension to tensor of different orders. The prefix ' tr' indicates the 
trace and a superposed dot - the material time derivative or rate. By A we denote the 
deviatoric part of A and by 1 the identity tensor. 

2. Basic equations 

In the case of metallic elastic-plastic materials, the following equation in Eulerian 
description were derived [18]: 

(2.1) 

where T = {3u, u - Cauchy stress tensor, {3 = p0 / p, p0 and p are the respective 
densities in the reference configuration and the 'actual configuration, according to the 
theory of MANDEL [5]. L and B are the generalized tensor of isothermal elastic moduli 
and elastic thermal stress, respectively, 

(2.2) 
L,jkl = o,jok,(KT- p) + 1-1 (o,koj, + o,,ojk- ~o,jok,) , 

Bij = a.vl( Tbij; 

here J( T - isothermal bulk modulus, - p - mean pressure, a.v 1 volumetric thermal 
expansion, Cv - specific heat at constant volume, Jl - Lame constant. ne and we 

denote, respectively, the elastic rate of deformation and spin tensor. 19 is the temperature 
in actual configuration. 

The flow laws for the plastic part with Huber-Mises yield criterion and combined 
isotropic-kinematic hardening are the following: 

(2.3) 

f = ~(T- n) · (T- ll)- a~(t?, II(a.)) = o, 
DP = 3jA(T- ll), 

. = { 1 if f = 0 and A ~ 0, 
J 0 if f = 0 and A < 0 or f < 0, 

- (~ CT • ) 8ay · 3(T- n) . T + -t?n - 2ay -t? 
A= c at? . 

. 2a~H ' 

here DP is the plastic rate of deformation; the combined plastic hardening modulus H is 
composed of the kinematic and isotropic hardening parts, 

(2.4) ( 
oay ) 

2 
dll 

H = 3c + 2 0 II da. , 

a. is a scalar variable modifying the 'siZe' of the yield stress and n is the scalar internal 
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thermodynamic force conjugate with a [14]. The evolution for a takes the form 

. 1 aay _ 
(2.5) a = - --DP . (T- II). 

ay an 
The function n(a) is determined from the stored energy p0u* [14]. The latter repre
sents the difference between the plastic work done and the heat release in the course 
of the isothermal cyclic process of straining. It is a measurable quantity in macroscopic 
experiments ( cf. [9]). 

The shift of the yield surface is represented by the back stress II, for which the 
evolution law has the form of linear kinematic modified by thermal effects 

~ cr. 
(2.6) n = cDP- -'190 with c = c0 - cr('!9- '!?o), co, cr, '19o = const. 

c 

The change in the temperature is described as 

· ( n aay ) - . , CT 
(2.7) PoCv'!9 = 1- ay an (T- ll). DP- f3 dtvq- '!9f3avAT trD- '!?~II. DP. 

Here q is the heat flux. This equation may be rewritten in the form 

(2.8) pocviJ = T · DP - pou* -:- f3 div q- '!9f3avl( T tr D. 

In the equations of this section, the small terms involving e, the deviatoric part of the 
logarithmic left elastic stretch tensor [14) are neglected. The relation between e and the 
Cauchy stress u is Ci = 2J-Le. The reader is referred to the paper [18] for more details. 

3. Isothermal and adiabatic flow laws 

We are in a position to derive the equations describing the isothermal and adiabatic 
processes. Combining Eqs. (2.1 ), (2.3) we obtain 

(3.1) T = 2J-Lf3[D- 3jA(T- II)]. 

Having calculated the term T · (T- II) from (3.1) the plastic rate of deformation can 
be rewritten in the form 

nP _ 3j(T- II)[ (- ) Jl] _ 3j(T- II).Ji D - D · T- II - m19 ·u - ----=---'.1! 
2a} 1ii 2a} 1ii ' 

. _ { 1 if f = 0 and t/1 2:: 0, 
J - 0 if f = 0 and rJi < 0 or f < 0; 

(3.2) 

here 

isothermal hardening function, 

(3.3) 1 [ aay CT - .. ] 
m19 =- 2oy-- 3-(T- II)· II 

6J.Lf3 8'!9 c 

tllennal coefficient of softening, measured in [m~K]. 
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From Eq. (2.7), it is easily obtained that 

(3.4) 

where 

qd = 

II aay 
1--· 

ay all 

PoCv 

thermal coefficient of heat produced by the dissipation of mechanical work, in 

(3.5) 
3cT(T- II) · II 

qr =- 2 
2cpocvay 

thermal coefficient of heat of internal rearrangement, in 

he = fJf3o:vf( T 

PoCv 
measure of heat of elastic deformation, in [°K], 
(3.6) Q = - _l_ div q 

PoCv 

[ oKmN 2]' 

. h . . [°Kl measure of heat exchange wtt the surroundmgs, m --;- . 

[ oKmN 2]' 

Using the definitions (3.5), (3.6) we can write the equations (3.2), (3.4) in the forms: 

-p 3j(T- II) _ 3j(T- II) 
D = 2 (D·(T-II)-m19(Q-he trD)]= 2 1t Wa, 

2ay1ta 2ay a 
(3.7) . _ { 1 if f = 0 and 1]/ a ~ 0, 

J - 0 if f = 0 and 1]/ a < 0 or f < 0; ' 

adiabatic hardening function, 

(3.8) 7J = jqd + qr (Af • D- 11119Q) + Q- he trD, 
1ta 

with 

(3.9) 

When f) = fJ0 = const, the flow laws and the equation for temperature in the isother
mal process are obtained from Eqs. (3.1), (3.2), (3.4): 

(3.10) t = {3LD - 3j J-Lf3(T- II) (D. (T- II)], 
a}1ti 

( 
II aay 3fJ11cT(T- II) · II) (T - II) · D . , 

(3.11) 0 = 1--~- 2 - {3 dtvq- fJof3o:vRT trD, 
ay ull 2poccvay 1ti 
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and when heat conductivity Q = 0, the response of a solid to an instantaneous adiabatic 
process is described by the following equation 

3. {3 
(3 .12) t = {3 LaD- -fL-(Af · D)A9 

ay1ta 

on account of Eq. (3.1), (3.7); here 

(3.13) g 
(
- ) nv l(r(qd+qr)a~ 

A=T-ll+ 1 
3j.L ' 

and 

(~.14) 

is the generalized tensor of adiabatic elastic moduli. At moderate pressures, one can 
ignore the thermal expansion (the terms involving av), the heat of elastic deformation 
(the terms containing he) as discussed by MR6Z and RANIECKI [7], so the second terms 
in the right-hand sides of Eqs. (3.9), (3 .13) can be disregarded. Moreover, from ·(3.14) 
we have La = Land the difference between Eqs. (3.10), (3.12) consists only in the fact 
that Hi 'f 1ta 

The Eqs. (2.6), (3.10), (3.12) are not convenient in applications since the elastic spin 
we occurs at the left-hand side of them. The flow rules can be expressed in terms of 

v . 
usual Zaremba-Jaumann rates T = T- wT + Tw for rate-independent materials in both 
isothermal and adiabatic processes (when certain small coupling effects are disregarded) 
as follows: 

(3.15) 
v 3jJ.L f3 D. (T- ll) 
T = /3LD- 2 1t [(T- ll) + P], 

ay 

{~ if f=O and D · (T- ll) ~ 0, 
J = if f=O and D · (T- ll) < 0 or f < 0. 

Here 1t = '}-{ i in isothermal and 1t = 1ta in adiabatic processes. 1ta is usually smaller · 
than Hi. Tensor P appearing in (3.15) is obtained by expressing the term ( wPT- TwP) 
as a function of DP where w P is the plastic spin. Thus, n'on-normality is here a result 
of presence of the plastic spin. Under the assumption that wP is of the same order as 
DP, one may neglect the term involving P if quantities of the order stress/ elastic moduli 
are small compared to unity, and in such circumstances the plastic spin does not play any 

v 
important role in the relation between T and D. 

4. Propagation of acceler~tion waves 

The motion of a so-called singular surface, across which variables may be discontin
uous, is the subject of this section. Such a moving surface is called a wave. We consider 
now the propagation of the second-order discontinuity in a three-dimensional, unbounded, 
elastic-plastic medium. The propagation of waves may be analyzed in the space coordi
nates, or with respect to the material, that is in Lagrangian coordinates. However, in 
order to obtain the simplest results, let us assume the material configuration at time t as 
the reference configuration. It means that the motion of the wave in the time interval 
[t, t + dt] is referred to the material particles at time instant t. The following relation 
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between the velocities holds true: 

(4.1) W = [2 + v • v; 

here W is the wave velocity in space, [2 is the local velocity (with respect to the material 
at time t ), v is the particle velocity and v is the unit vector normal to the wave surface S. 
The jump conditions associated with such discontinuity were established by HADAMARD 

(2]. In Eulerian coordinate, if 1(x, t) remains continuous at passing through S but its 
derivatives are discontinuous, there exists r such that 

(4.2) h.il = [::J = rv,, h.tl = [~n = -rw, r11 = -rn, 
where [A] denotes the jump of A. Owing to the compatibility conditions, we obtain 

v · 
(4.3) [/,i ] =- ~[i']. 

The equations of continuity and of motion assume now the forms 

(4.4) i3 = fJ divv, div u = pv. 

Taking into account Eqs. (4.2), (4.3), from (4.2) and (4.4) we obtain the equation which 
controls acceleration waves 

(4.5) 

where the so-called acoustic tensor Q j l is given by 

Qj l = Qjl + Q~l ' 
Qjl = Qj' + Qjy, 

(4.6) 
Qj; = (J(T + j) VjVI + P,bj t , 

2 
Qj1 = J.l((e pqVpVq)- e ijViV[ - ei [ViVj - ej [ViVi], 

Q~L = - 3jJ.l ajbt, where { aj = [(Tij - Ilij) + Pij]vi , 
J a}1t bt=(Tkt-Ilkl)vk. 

It appears that Q depends on the material parameters as well as on the direction v. 
Here, the acoustic tensor Q is non-symmetric because aj f: b1 in the presence of the 
plastic spin. The elastic acoustic tensor Qe is symmetric and consists of the usual part Q et 
and the part Q e2 due to the geometric effects. Under the assumptions that Q et is positive 
definite and the elastic distortions are small, as was shown in [20], Qe is also positive 
definite. The eigenvalues of Eq. ( 4.5) give us the velocities of elastic waves (when j = 0) 
and those of plastic waves (when j = 1). Let us now determine the eigenvalues of the 
acoustic problem ( 4.5). 

We shall use the identity 

( 4.,7) det (1 + ra 0 b + sc 0 d + te 0 f) = 1 + ra . b + sc . d + te . r 
+rs[(a · b)(c ·d)- (a· d)(b ·c)] + rt[(a · b)(e ·f)- (a · f)(b ·e)] 

+st[(c · d)(e ·f)- (c • f)(d ·e)] 

+rst[(a · b)(c · d)(e ·f)+ (b · c)(d · e)(f ·a)+ (a· d)(c · f)(b ·e) 
-(a· b)(c · f)(d ·e)- (c · d)(a · f)(b ·e)- (e · f)(a · d)(b ·c)] , 
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that may be verified by direct expansion of the above determinant. This identity reduces 
when s = t = 0 to that used in [13]. Using Vieta's theorem of roots for the characteristic 
equation (4.5) and the identity (4.7), we therefore obtain 

pilJ = JL(1 + ersVrVs), 
(4.8) 

pf2i1,m = ~ { (~" + M- :{~ajbj) ± JLi}. 
Here the eigenvalues are determined, the terms of the order O(lel 2) due to the distortional 
elastic strains being disregarded, and 

ll;f } ·" 4!L 
11 = \.y +-

3 ' 

( 
3jj.L )

2 
[ 9(J(y + 2JL)(3J(y + JL) - l 

Ll = jL + lvl - -:r-1i ajbj - 4JLM AA 1 + M 2 ]( 2 (ersVrVs) , 
ay . JL (3 · T + 4JL) 

with 

(4.9) 3j IL { 1 [ 3]( T + jL l AA = 1- ---:r-
11 

- (akbk)- ]( (ajvj)(bkvk) 
ay JL (3 \.y + 4JL) 

1 [ _ 2(ersVrVs)(3J(y + JLf 
-- (eTsVrVs)(akbk)- }"' 2 (ajVj)(bkvk) 

jL (3 \.y + 4JL) 

- (3J(y-2JL)_ (3J(y-2JL)_ ]} 
-(e kjajbk) + ]( (ersVrbs)(ajVj) + ,. (ersVras)(bkvk) . 

(3 \.y + 4~t) (3Ar + 4JL) 

For small deformations, these results reduce to those of [10] (eij ~ 0 and {3 ~ 1) for 
non-associated plasticity and those of Hill in the case of associated plasticity [3]. When 
j = 0 we obtain the familiar expressions for elastic waves, which are independent of the 
direction v. If the wave speed is zero, the condition for static localization of RICE [15] is 
obtained from Eq. ( 4.8). 

5. Conclusions 

The flow laws for the isothermal and adiabatic processes were derived and on the basis 
of this, we have investigated the propagation of acceleration waves. The similar problems 
in small deformations were considered by RANIECKI [13] and by NGUYEN [20] for finite 
deformation of isotropic materials. Acceleration waves relate directly to the problem of 
stability. When plastic normality applies and Q is symmetric, then all velocities p.02 are 
real, as shown in [4], for each direction v, the plastic wave velocity is not greater than the 
corresponding elastic wave veloci~y. So, in this case there is stability or not according to 
whether the smallest plastic wave velocity is positive or negative. When it is negative, we 
have 'divergence' instability. 

For nonassociated plasticity, tensor Q is nonsymmetric, i.e. it is possible to have 
complex velocity p.02: 'flutter' growth may occur. It is shown in [10] that for a very 
broad class of nonassociated plasticity models, 'flutter' instability cannot occur. Here, 
deviation from plastic normality is caused by the plastic spin and, depending on the form 
of the plastic spin applied, the possible complex values of velocity may exist. The basic 
theory of uniqueness in relation to localizations and stationary waves is not yet adequately 
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developed for materials deviating from normality and the present paper suggest that it 
deserves further study. 
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