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Hydrodynamic interactions between falling solid particles 
of different densities(*) 

F. FEUILLEBOIS and A. LASEK (MEUDON) 

THE VELOCITY of sedimentation of a suspension of rigid spheres in a viscous fluid is calculated. 
Hydrodynamic interactions between a large number of spheres are taken into acc<>unt for 
a small volume concentration ~nd homogeneous distribution of the spheres. A probabilistic 
approach introduced by G. K. Batchelor is used. Results are obtained for spheres of different 
densities and ~ual radii. 

Obliczono pr~dkoSc:i osadzania si~ zawiesiny sztywnych kulek w cieczy lepkiej. Uwzgl~dniono 
oddzialywanie mi~y duq liczb4 kulek przy zaloi.eniu malej koncentracji objc;toSc:iowej i jedno­
rodnego r:ozkladu kulek. Zastosowano podejSc:ie probabilistyczne G. K . Batchelora. Otrzymano 
wyniki dla kulek o r6znej gc;stoSc:i i stalej srednicy. · · 

Bbi'liHCJieHa cKopOCTb oceAamm B3Becu >KeCTKHX wapHKoB B BH3KOH >~<H,W<OCTH. Yl.ITeHbi 
B3aHMOAeHCTBHH Me)I{Ay OOJThWHM KOJIHtleCTBOM wapHKOB, DpH npeAUOJIO>KeHHH MaJIOH 
OO'beMHOH KO~~HTpa:QHH H OAHOPOAHOro pacnpeAeJiemm wapHKOB. llpHMeHeH npo6a6HJIHC­
TWieCKHX DOAXOA r. K. b3Tl.leJiopa. TioJiyl.leHbl pe3yJibTaTbl AJIH wapHKOB c pa3HbiMH DJIOT­
HOCTHMH H DOCTOHHHbiM AUaMeTpOM. 

1. Introduction 

WE CONSIDER the effects-of hydrodynamic interactions upon the sedimentation of spherical 
particles in a fluid. The particles are assumed to be small enough for the creeping flow 
equations to be valid. Moreover, the particles are assumed to be solid, so that the no-slip 
condition applies on their surface. 

The problem of sedimentation of identical spheres was treated by BATCHELOR [1] using 
. ! . . 

a probabilistic ·approach that he devel?ped. for that purpose. The sedimentation of drops 
of diffen;nt radii, but equal densities, using Batchelor's method, was calculated by HABER 
and HETSRONI [6]. 

In the present paper we are concerned with the opposite case of solid spheres of equal 
radius, say a, but different densities. The full calculations to which this paper refers are 
part . of F. FEUILLEBOIS' thesis [5). 

2. The results for two spheres 

Before considering the many spheres problem, we expose the results for two spheres, 
which will be used in the rest of the paper. The problem of creeping flow around two 

(*) This work was done with the aid of "A.T.P. Mecanique et thermodynamique du C.N.R.S." 
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594 F. FEUILLEBOIS AND A. LASEIC 

spheres can be separated into several problems (i.e. motion parallel to the line of centers 
of the spheres in the same direction, plus motion in the opposite directions, plus motion 
perpendicular to the line of centers, ... ) due to the linearity of the Stokes equations of 
fluid motion. 

The separated problems have been considered by many authors. We may refer to, 
for example, WACHOLDER and SATHER [9] who have used these different results to calculate 
the trajectories of one sphere relative to another. The :;case that they consider is general, 
in the sense that the spheres have different radii and different densities. It happens that 
different types of trajectory occur: either open trajectories where one sphere is coming 
from infinity, passing near the other sphere, and going to infinity in the other direction; 
or closed trajectories where ·the sphere number 1 cannot escape from a vicinity of the 
sphere number 2, in despite of the fact that both may have different velocities of sedime­
ntation when falling is isolation. 

This last situation may occur only for certain ranges of the ratio of densities and of 
radii (see WACHOLDER and SATHER's paper). For the case of interest to us, i.e. the same 
radius, the trajectories are all open, which will allow us to calculate the probability distribu­
tion function~ as explained later. It happens that it is easier for the probabilistic calcula­
tion to use the velocities of the spheres expressed in terms of the applied forces, when 
the applied couples are zero, 

(2.1) 

(2.2) 

1 
v,,ll = -6--[AuFtii+A12F211], nap 

1 
v,li = -

6
--[B11 F1.L +B12F 2.L], 
na(L 

1 
v,zll = -

6
--[A21Ft11 +A22F211], nap 

1 
v,z.L = fmap £B21Ft.L +B22F2.1]. 

The coefficients are then called "mobility coefficients". We have written them in the form 
developed by BATCHELOR [3]. The index 11 (resp. ..L) denotes the motion parallel (resp. 
perpendicular) to the line of centers of the spheres. 

The index p 1 (resp. p 2 ) stands for particle 1 (resp. particle 2). By symmetry 

(2.3) 

The coefficients A 11 , A 12 for the motions parallel to the line of centers are found from: 
(i) the friction coefficient calculated for both spheres moving in the same direction 

by StiMSON and JEFFERY [8] the inverse of which is 

[
4 . '\.'; n(n+l) { 4sinh

2
(n+ ~) cx-(2n+l}

2
sinh

2a}]- 1 

A +A = -smh a ) 1 - . . 11 12 3 f:t (2n-1)(2n+3) 2smh{2n+ l)a+{2n+ l)smh2a 

(2.4) 
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with ex given by 

(2.5) cosht:x = _ r_ 
2a 

and r is the center to center distance; 

595 

(ii) the friction coefficijmt calculated by BRENNER [4] for two spheres moving towards 
each other (in fact it is calculated for the equivalent problem of a sphere moving towards 
a plane free surface);, the inverse of this coefficient is 

[ 
4 . ; n(n + 1) {4cosh

2
( n + ~)a+ (2n + 1)

2
sinh

2
a }] -t 

Au-A12 = 3smh<X It (2n-1)(2n+3) 2sinh(2n+ l)a-(2n+ l)sin2a -I · 

(2.6) 

The coefficients B11 , B12 cannot be given in such a closed form. A few values of the 
friction coefficients have been calculated by O'NEILL and MAJUMDAR [7], with the use 
of a computer, and the corresponding values of B11 , B12 are given by BATCHELOR [3]. 

For intermediate ranges of the separation distance between the two spheres, we had 
to interpolate between these values. For a vanishingly small gap between the spheres, 
A 11 , A12 are regular, whereas B11 , B12 vary fast, with a logarithmic singularity. 

For a large separation distance between both spheres, the results from the method 
of reflexions given by BATCHELOR [3] are 

(2.7) 

15 (a )4 (a )6 

A 11 = 1-T r +0 r , 

Au = ~ ~ -(~)\o(~)'. 

B11 = 1+0(~)". 

B12 = ! ~ + ~ ( ~ r + 0 ( ~ )'. 

3. Statistics for · many spheres 

For a sphere A falling in isolation, the limit sedimentation velocity is given from the 
Stokes drag, balanced with weight and buoyancy: 

(3.1) 2a2(e,A-e)g 
.VpA• = 9p, ' 

where e,A is the density of sphere A and e is the fluid density; a is the sphere radius, g is 
the gravity. 

For many spheres, multiple interactions may modify the Stokes drag and hence the 
limit sedimentation velocity. 
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These interactions may be either direct actions of other spheres onto the sphere A 
"test" considered, or indirect actions of other spheres such as back action from another 
sphere, or chai.n actions between several spheres. 

In this paper we will assume that the spheres are uniformly distributed in the fluid, 
and that their volume concentration is low, so that no cluster of more than two spheres is 
present. We will use statistics, assuming 'that there are large numbers of spheres: 

NA ~ I spheres A of density (!pA and radius a, 
N 8 ~ I spheres B of density (!pB and the same radius a. 

We assume, moreover, that the spheres are in a large container, and that wall effects are 
negligible, that the spheres rotate freely (i.e. no external couple is applied to them), and 
that no force other than that due to gravity (buoyancy plus weight) and fluid drag is 
exerted on the spheres. We neglected here, in particular, any Brownian force. 

The statistics we use is basically that defined by BATCHELOR [1], except that jt is gen­
eralized here to the case of two types of spheres. We define the probability of existence 
of a configuration near _the configuration CC N as 

(3.2) P(CCN)dCCN = P(x+r.tt,, x+r.tt2 , • •• , x+rAN"' 

x+r8 ,, x+r82 , ••• , x+rsNB)d3rA,d3 r.tt 2 •• • d3 rAN"d3r8 ,d3r82 • • • d3rsNIJ· 
This- means the probability that, simultaneously, 

the center of sphere Al is in the small volume d 3rA, in the vicinity of x+rA,; 
the center of sphere A 2 is in the small volume d 3rA

2 
in the vicinity of x+rA

2 

(.. . . .. ); 
the center of sphere BNB is in the small volume d 3 rsNB in the vicinity ofx+r8 NB' 

Here 
N = NA+NB. 

We write the normalization condition 

(3.3) 

by integrating each r over the large volume v containing all spheres, and remarking that 
spheres A (resp. B) can be interchanged without changing the flow field. 

We define also the. conditional probability (1) 

(3.4) P(CC I ) = P(CCN+l) 
N Xo P(xo) ' 

where P(~0) is the probability to find a sphere about x0 ; this probability is uniform by 
assumption. 

The average sedimentation velocity of a "test" sphere, say "A" sphere, located at x0 , 

is defined as 

(3.5) 

Our purpose is to calculate this average velocity. 

(1) The P are densities of probability but we will call them only "probabilities" for simplification. 
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HYDRODYNAMIC INTERACTIONS BETWEEN FALLING SOLID PARTICLES 597 

4. The reduction to two spheres 

The formula (3.5) is quite general, and in order to simplify it and take on further the 
calculation, we may use the assumption that only two spheres may be in the same vicinity. 

Considering only two spheres, the test A sphere at x0 plus a· second sphere (either A 
or B) at x0 +r, one would obtain, in place of Eq. (3.5) 

(4.1) 

The formula has a question mark because we may ask whether the integral written in this 
way is convergent. 

In fact it is not, as can be seen from the mobility coefficients for large r, Eq. (2.7), 
which contain terms in 1 fr, 1 fr 3

, and also from the fact that 

(4.2) P(x0 +rlx0) --+ P(x0 +r) = const for r--+ oo, 

i.e. that spheres do not interact when well :separated. The remedy to this situation has been 
given by BATCHELOR [1]. The idea is that the influence of other spheres of the suspension 
should be taken into account (two spheres · are not enough) by specifying the average 
velocity at .any ·point of the suspension. 

We take the frame of reference such that this average velocity is identically zero: 

(4.3) 

N A!~B! .r V2Y00 (Xo, reN)P(r~N)d~N = 0, 
V 

where Y00 (x0 , re N) is the velocity at a point x0 located either in the fluid or in a particle, 
due to all N spheres in the reN configuration. We write first the expression (3.5) to be 
calculated in the form 

(4.4) 

We have written it this way because for two spheres the quantity between braces reduces 
then to the Faxen formula (containing all terms in 1/r, 1fr3

), plus an interaction term 
which ·is 0(1 fr4 ). 

Combining Eqs .. (4.3) with (4.4), we may obtain terms. of the form 

Voo(Xo' re N) [P(re' Nlxo)- P(re N)] 

under the integral sign. 
The quantity between brackets vanishes for spheres far apart, and permits the sim­

plified expression for two spheres 

V00 (X0 , X0 +r)[P(x0 +rlx0)- P(xo +r)] 

to be integrable. 
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The expression for the average velocity of sedimentation is then calculated from Eqs. 
(4.3) and (4.4) to be 

(4.5) •,A(x0 ) = v,,.. +v' +v" +w 

with 

v' = J Voo(Xo, Xo+r.J[P(xo+rAixo)-P(xo+r..t)]d3r A 

(4.6) 

+ 

v,x0 efluid 

+ J V00(X0 , X0 +r8) (P(x0 +r8 lx0)-P{x0 +r8)]d3r8 -cAV,A-CBVpB; 
v;Xoefluid 

2 

V'' = J a
6 

[V2 Voo(X, x+rA)]x=xJP(x0 +rAixo)-P(xo+rA)]d3r A 

v,Xoefluid 

J a: [V2V00(X, x+rB)]x=Xo[P(x0 +r8 lx0)-P(x0 +r8)]d3rB+ ~ cAv,A. + ~ cBv,B.· 
t~;Xoefluid 

The second particle is either a particle A (at x0 +rA) or a particle B (at x0 +rB). 
The integrated terms in Eq. (4.6) contain eA, c8 which are the volume concentrations 

of particles A (resp. B). These terms originate from integration of Eq. (4.3) for situations 
where the point x0 is located in the particles (A or B). The expression for w results from 
straightforWard integration of the interaction term w in Eq. (4.4) which decreases fast 
enough · for wP to be integrable 

(4.7) w = J w(xo., Xo+rA)P(x0 +rAix0)d3r A+ J w(x0 , x 0 +rB)P(xo+rBixo)d3rB. 

5. Calculation of the conditional probabUity 

The conditional probability to find a sphere A at x0 +rA when a sphere test A is fixed 
at x0 is written using the uniformity assumption, plus the condition that both spheres 
do not overlap: 

(5.1) 
if r A < 2a, 

if r A> 2a, 

where nA is the numb~r of spheres A per unit volume of the mixture. The conditional 
pro bability to find a sphere B at x0 + r8 when a sphere A test is fixed at x0 is more compli­
cated, as both spheres have a relative motion which tnay influence this probability: 

(5.2) {
0 if r8 <-2a·, 

P(xo+rBixo) = ( ) ·r 2 n8 p r8 . 1 r8 > a. 

Here we introduce p(r8 ) which has to be calculated from the hydrodynamic interactions 
between both spheres in relative motion. For convenience, we will drop the subscript B 
in this calculation. 

The equation satisfied by the conditional probability is a Fokker-Planck type equation, 
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HYDRODY1NAMIC INTERACTIONS BETWEEN FALLING SOLID PARTICLFS 599 

describing the continuity of the cloud of all possible positions of the center of the B sphere 
in the surroundings of the A sphere. For p(r) this is written as 

(5.3) 
op 
-+V·(p · u)=O. at · 

The same equation was used by BATCHEWR and GREEN' [2] in the related problem of two 
spheres in a pure straining motion flow. Here p. is the rei:ative velocity of both sphere~ 
due to gravity effects. From Eqs. (2.1) and (2.2) 

(5.4) u = 6n~p [(A11 -A12) ~ +(B11 -B12+- ~ )l (F.-F.,), 

where 1 is the identity tensor; F .. , F 8 , are the forces (weight plus buoyancy) applied to 
A, B, respectively. The boundary condition to be applied to Eq. (5.3) with Eq. (5.4) is 
a cot(dition at infinity, i.e. for spheres far apart. 

We see here that it is important that sphere B may effectively come from and go to 
infinity relative to sphere A, as announced at the beginning of the paper. If it were not 
so, the boundary condition to apply would pose a serious problems. 

The boundary condition has already been given in Eq. (4.2), on physical grounds. 
We will show in the next paragraph that this result can be obtained rigorously, yielding 

(5.5) r -+ oo, p(r) -+ 1. 

The integration of Eq. (5.3) with Eqs. (5.4) and (5.5) can be performed with the same 
kind of analysis as the one used by BATCHEWR and GREEN' [2] for the case of two spheres 
in a pure straining motion flow, although the expression for u is here diff~rent. The analyti­
cal results is a function of the nondimensional distance rfa: 

00 

() - ()-Q(')- I f2(A 11 -A12 -B11 +Bl2)dR p r - q r - - - exp , 
a A 11 -A12 R(A11 -A12) 

r 

(5.6) 

where A 11 , A 12 , B11 , B12 are functions of this nondimensional distance also. For large 
rfa, this expression can be developed using Eq. (2.7) 

(5.7) 

For other values of rfa, we have calculated numerically the integral in Eq. (5.6). The 
resulting function is shown in Fig. I. For closed spheres, Q is going to infinity, suggesting 
a strong attraction pot~ntial. The result is due to the friction coefficient which becomes 
(paradoxically) infinite in Stokes flow when particle B is moving towards particle A, 
and very close to it. But th~n other physical phenomena may be important and, in particu­
lar, the Brownian motion should be non-negligible as shown recently by Batchelor (paper 
to be published in J. Fluid. Mech.). 

For spheres far apart, we will give some more details. We have not used until now the 
normalization condition for the conditional probability. This condition may be written as 

(5.8) J P(x0 +rlxo)d3r = Ns, 
V-Vex 
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R 

where Vex is the volume excluded by the presence of the A sphere. The ·normalization con­
dition of the single probability for the sphere B is written by stating that ·the same number 
N 8 of spheres B is still present in v: 

(5.9) J P(x0 +r)dlr = N 8 • 

V 

In fact 

(5.10) 

by the uniformity assumption. 
Let us write the conditionaL probability for r > 2a in the form 

(5.11) P(xo+rlx0) = K · n8 • Q( :). 
where Q(r/a) is the fun~tion found precedently, and K has to be found. 

Substracting Eq. (5.9) from Eq. (5.8) and using Eqs. (5.10) and (5.11) we get 

(5.12) 

00 

f [Q(R)-l]R 2dR = NB-NBK+8c8 K ~ _v_[_1 _1]. 
· 3c ·K 4 K 

2 B -:real 
3 

The Integral on the left hand side has been calculated ~ 3.6. On the right hand side, 

vf~ :real is very large. This shows t~at K ~ 1 and K-+ 1 for v-+ oo. Thus Eq. (5.5) is 

demonstrated. Note that if we had supposed a priori that K = 1, then the first part of 
Eq. (5.12) would have given the necessary value 8/3 for the integral of the left hand side. 
But the preceding development shows that this integral should not have any given particu­
lar value. 
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6. Result for the . average velocity 

The average velocity of sedimentation of the test- A sphere is calculated from Eqs. ( 4.5), 
(4.6) and (4.7), using the values calculated for the probability, the classical expression of 
the flow field V00 due to a single sphere in Stokes flow, and the expression for w from 
the two-spheres problem. 

The result is 

(6.1) 

The particle A is thus slowed down by other particles A and B. But an imprecision on our 
calculated coefficients is to be taken into account. An error calculation (FEUILLEBOIS' 
thesis [5]) shows that the precision on the probability Q is of the order 

(6.2) LIQ - 2 7 LI(Bu -B12) 
Q- . ~-B12 . 

By interpolation between tabulated values of B 11 , B 12 , we could get only a 1 o- 2 precision 
on B11 - B12 • The resulting error for integrals on Q may then be large, e.g. 

00 

(6.3) Ll f [Q(R)-1]R 2dR = 0.3. 
2 

New more recent and more precise results for B11 , B12 by Jeffrey (to be published in 
J. Fluid. Mech.) have allowed Batchelor and Wen to get more accurate results (to be 
published in J. Fluid. Mech.). 

Formula (6.1) for two types of spheres of different densities can 1>e compared with 
BATCHELOR'S [1] formula for one type orspheres: 

(6.4) 

The difference between our coefficient (6.7) (for c8 = 0 in Eq. (6.1)) and the coefficient 
6.55 of this formula is probably due to the precision problem on B11 -B12 • 

7. The problem of nearly identical spheres 

Another serious problem arises: ,if we let f!pA = (!ps (both spheres of the same density), 
thus vP, = Vp..t, = Vp8 , and c =eA +c8 , we do not obtain the same limit value fqr vP 
as when we take c8 = 0. · 

In fact the physical phenomena leading to the coefficients (6.7) and (2.7) in Eq. (6.1) 
are of a different nature. 

The first coefficient is the one for one type of spheres, and is obtained from a probabil­
ity distribution function (5.1) uniform by assumption. 

However, the second coefficient is .the one for coupled A and B spheres ((!pA =I= (!p8 ), 

and is obtained from the probability distribution function calculated from hydrodynamic 
interactions. Now one may wonder what the probability distribution function (and hence 
the friction coefficient) may be for nearly identical spheres such as f!pA ~ (!ps· . We may 
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put the problem in another way: consider the characteristic time of separation of two 
spheres 

a " (! (7.1} 18 """ - """--' , 

U a' g (!11B-(!11 A 

where v is the kinematic viscosity of the fluid. Consider a characteristic time for the ex­
periment where particles fall in a box of the height /: 

(7.2) 
l . , 

t · """ -- """--· 
e 'VIIA• a2g 

(! .[. 
e,A -e 

· Defining the small number 

(7.3) 

we see that 

(7.4) 
l 

te """ E • ..-- t8 • 
a 

Three possible cases may occur: 

1) I >- : , v > (: )', I, >- I,. 

The box is large enough and we wait long enough for all possible loc~tions of the sphere 

B with tespect to the sphere A to he attained. The conditional pro))ability is then n.Q(~): 

2) I < : , v < (: r I, = I,. 

The volume of the experiment is too small to observe any relative motion of the two 
sph~res. Then the assumption of uniformity takes over and the conditional probability 
is nB: 

3) 

This is the most general case. During the time te of the experiment, the sphere B takes only 
a limited fraction of its possible positions on the trajectory relative to sphere A. Thus th~ 
condition at infinity (5.5) that we used to integrate the equation for the probability dis­
tribution function is no more valid here. A special treatment of this case should be con­
sidered. 

We can remark that a related problem would arise for cases involving spheres of dif­
ferent radii, when the relative trajectories are c;:losed (W ALCHOLDER and SATHER [9]). 
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