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On the dynamics of films of viscous and elastoviscous liquids 

V. M. ENTOV (MOSCOW) 

THE ISOTIIERMAL dynamics of thin liquid film is discussed. General dynamical equations are 
derived. The effects of complicated rheology of the liquid are accounted for. Constitutive equa
tions of elastoviscous liquid of Maxwellian _type are discussed. Stationary motions as wel1 
as small perturbations of film about its stationary position are considered. Some examples 
are given including the equations of capillary waves on the plane film of viscous liquid and the 
growth of thin spherical film of the elastic liquid due to internal pressure. 

Rozwai:ono problem dynamiki izotermicznej cienkich blonek cieczy. Wyprowadzono og6lne 
r6wnania dynamiki uwzgl~niaj~ce zlozone efekty reologiczne. Om6wiono r6wnania konsty
tutywne cieczy lepkospre(i:ystych typu Maxwella. Przedyskutowano ruch ustalony blonek, jak 
r6wniez male odchylenia od takiego ruchu. Podano kilka przyklad6w uwzgle(dniaj~cych r6w
nania fal kapilarnych na plaskiej blonce cieczy lepkiej oraz problem wzrostu cienkiej blonki 
sferycznej pod wplywem cisnienia wewne(trznego. 

PaccMaTpHBaeTCH H30TepMWieci<aH ,lUIHaMHI<a TOHI<HX nneHoi< >KH.AJ<OCTH. BhiBe~eHbl o6~He 
AHHaMJNeci<He ypaBHeHHH, Y'IIIThiBaiOIIUie 3<l><l>ei<Thi ycno>KHeHHoif peonorHH >KH~I<OCTH. 
06cy>K~SIOTCH onpe~eJIHIO~e COOTHOIIIeHIDI ~ ynpyroBH31<HX >KH,lU<OCTeH Mai<CBeJIJIOBCKO
ro nma. PacCMOTpeHbl CTaiUIOHapHbie ~BH>KeHHH H MaJibie KOJie6aHHH OTHOCHTeJILHO CTSI.lHO
HapHoro llOJIO>KeHHH. llpHBe~eHbi · HeKOTOpbie npHMepbi, B TOM tmCJie ypaBHeHHH l<allHJIJIHp
HbiX BOJIH Ha llJIOCKOH nJieHKe BH3l<OH >KH.ln{OCTH H paciiiHpeHHe TOHKOH c<t>epWieCKOH nJieHKH 
ynpyroif >KH,w<OCTH no~ ~eHCTBHeM BHyTpeHHero ~aaneHHH. 

UN'LIKE liquid films moving along solid surface which have been treated rather thoroughly, 
free dynamical liquid films have not been sufficiently investigated. Except for the quasi
-static problems usual in the theory of polymer processing [1, 2], only a few problems 
of dynamical equilibrium of thin films of ideal or viscous fluid have been studied [3-ll]. 
Most important are the ideas of G. TAYLOR [3-6] who considered the experiments with 
dynamical liquid films or sheets ("water-bells") not as a curiosity but as a means of inves
tigating liquid behaviour and its disintegration. The ideas appear to be very fruitful if 
applied to rheologically complex fluids, but in order t'o proceed to the next step we need 
an adequate theoretical framework. The aim of this paper is to develop such a framework. 
Our study includes the derivation of general dynamical equations of a liquid film with 
complex rheology under arbitrary type of motion. Equations of small disturbances of 
the film about its stationary position and some simple examples. are treated as well. -

l. 

Consider a thin liquid film, assuming its thickness h to be small in comparison with 
the characteristic length a~ong the middle surface M of the film. The s:urface M is de
scribed by the equation 

r = r(O\ 02
, t), 
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oa. being the curvilinear coordinates, t- time. We suppose that the surface of the film 
are free of tangential tractions, so there is no shear across the thickness of the film. Hence 
the local dynamical state of sufficiently thin film with traction-free surfaces can be de
scribed by two-dimensional (2D) fields of liquid density (!, vefocity V and film thickness h 

e = e(Ot, 02, t), h = h(01
, 02, t), V= V(Ot, 02, t) . 

The parametrization oa. of the surface M may be chosen at will. The corresponding 
metrics is characterized with the covariant base vectors 

(1.1) ~ = r,a.= orjaoa., et= 1, 2 

contravariant base vectors aa. and eo- and contravariant components of the metric tensor 
aa.p, tf¥-P, det aa.fJ = a. (For the required geometrical formulae see, for example, [11]). 

Consider an element of liquid moving along the surface M. Its motion can be de
scribed in two ways: by an explicit formula for the radius-vector of the element R or 
parametrically through the dependence of the coordinates of the element on time 

(1.2) 

(1.3) 

R = R(t) or R = r(tJa.(t)), oa. = &x(t), 

V= it= r,a.&x+r" = aa.&x+r". 

On the other hand, a point of M with the fixed coordinates ()a. possess velocity U = r,1 

so that 

(1.4) 

The relative velocity W of a point on the surface M ·is a "surface vector". Now, the 
fluid motion along the. surface M induces some fictitious motion on the 0182 plane with 
velocity ()1, iJ2. It is seen readily that the liquid mass within the element d8 1d02 of the film 
equals 

(1.5) 

so that, the fictitious flow in the 0102 plane has mass density e* and mass velocity e* W 
and the continuity equation has the form 

(1.6) (ehall2),t+(eha1f2WCI).« = o. 
For the momentum balance refer to Fig. 1 in which the d01d82 element of the film is 

shown, the forces and momentum flux being indicated. The overall momentum within 

F10. 1. 
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the element equals eha112V d(Jld82 , the outflow of momentum across the shaded face is 
[eha112VW1

] 81+d81d(J2, all other fluxes being evaluated in the same way. The resulting 
momentum balance has the form 

(1.7) (eha112V),r+(eha1
'
2 W«V),« = P+N~«· 

Here Pis the external force (body force and surface traction on the "free" surfaces of the 
film) per unit area in the 8182 plane, N« is the "internal surface force", the force acting 
across the line 8« = const per unit of (JP. It can be shown readily [11] that 

(1.8) N« = Na.(!a(l, 

~fl being the symmetrical contravariant surface stress tensor. In the component form 
Eq. (1.7) becomes 

(e*VP) ,t + (e*W«VP) ,« + e*W«V(lr:(l 

(1.9) +n*V«(UfJ + U(lr~- U3b ~IJ\-n*V3(U3 + U"b )a«P = pfJ+N«P+Na.qFfJ . t: .« a.(! a.(! . J t: ,ex «V ,« a.(!' 
(e*V3),r+ (e*WcxV3),cx+e*W«VfJb«P+e*V«(U,!+ UfJb«p) ~ P+N«fJb«p; 

(1.10) 

Here a3 is the unit normal to M, 

~.fJ = ~pa(l+b«tJa3 , a3 ,« = -b«paP, 

J'!«P = ~.pafl, b«fJ = a«.Pa3. 
(1.11) 

Equations (1.6}-(1.1 0) can also be derived from the general theory of Cosserat thin 
shells developed by GREEN' and NAGHDI [12]. The author thanks a referee for mention
ing the reference. 

For steady motion the surface M is stationary and its parametrization can be chosen 
time-independent 

(1.12) r = r (8\ 82
), W = V, V 3 = 0 

so that for the steady case the equations of continuity and momentum reduce to 

(1.13) (eha1
'
2 V«),« = o, 

(1.14) 

(1.15) 

n*V«VP +n*VetV(lT~ = pfJ+Na.fJ+N«flT~ t: ,(% t: 1%(/ ,(% Ct(l ' 

e*V«VfJb«fJ = P+NcxPb«fJ 

and can be further simplified by introducing the stream function 'l' and choosing the 
streamlines for the coordinate curves ('l' = '1'(82 )). 

2. 

Generally we are interested in those cases when the form of the film (i.e. the surface 
M) is unknown and must be found simultaneously with the solution of the dynamical 
problem. First of all we must correlate the evolution of parametrization of M with its 
motion. Sufficiently general parametrization of M can be introduced in the following 
way. Let 8t, 82

, (J3 be an arbitrary time-dependent coordinate system in space: 

(2.1) r = R(Ot, 82 , 83 , t) 
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398 V. M. ENTOV 

and the coordinate curves of the third family (fjl = const, 82 = const) have not more 
than one point of intersection with M. Under these assumptions we can choose 81 and 
()2 as surface coordinates on M and prescribe the surface by equations 

(2.2) 83 = B(fP, 82
, t), r = R(8t, 82

, 8, t). 

Now we have for a material element moving along the surface 

(2.3) 

(2.4) 

V= drfdt = A 6cx+A (8 iJcx+B )+u ~ 3 ,ex ,t ' 

u = R,o A1 = oRfo81
• 

It follows from Eqs. (2.2)-(2.4) that 

iJcx = wcx = (V -u)Acx, B,r = (V -u)A3 -B,cxW't, 
(2.5) 

acx = Acx+A39,cx. 

The second equation in the set (2~5) serves to describe the evolution of the surface M, 
as soon as the instantaneous velocity field V is known. 

Now Wi! have to correlate the surface stress in the film with its deformation. First 
of all we need some "surface" (2D) form of kinematics of continua which may be formu
lated by analogy with the 3D case [13]. 

Let us choose the film configuration at t = t0 as reference configuration. Correspond
ing coordinates of material elements can be used as Lagrangian coordinates 

ecx = (}CX(to). 

As usual, deformation is the mapping of the reference configuration onto the actual- one: 

ecx--+ {JCX(~t). 
Locally the deformation is characterized by the deformation gradient F which can be 
defined as a linear operator transforming any infinitesimal vector dX of reference configur
ation into the infinitesimal vector dx of the actual configuration consisting of the 
same material points 

(2.6) dx = FdX 

All the consequent kinematics of 2D deformation of continua can now be formulated 
by direct analogy with the 3D case. The only significant difference consists in the fact 
that there is no common 2D Cartesian coordinate system for the reference and actual 
configurations. Thus. it becomes necessary to distinguish explicitly between tensors ( oper
ators) which act in the reference configuration (C = FTF), in the actual configuration 
(B = FFT) and from one of the configurations into another (F and F~'). The tensors B 
and C are the familiar measures of deformation, the left and the right Cauchy-Green 
tensors. 

Now we proceed along the well-known path. Let Fr('r) be the relative deformation 
gradient, i.e. the gradient of deformation at time T with the actual configuration as the 
reference one and let 

(2.7) 
. d . I dF ( t) -1 

G = Fr(t) = dT Fr(T) T=t = ~ F (t), 
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ON THE DYNAMICS OF FILMS OF VISCOUS AND ELASTOVISCOUS LIQUIDS 399 

G is the deformation rate and its symmetric and skew-symmetric parts are the strain rate 
tensor D and rotation rate tensor A respectively 

(2.8) 

For the time derivatives of the measures of deformation we get [13) 

dCfdt = C = 2FrDF, 

dB/dt = B = DB+BD+AB-BA. 
(2.9) 

Some staightforward but tedious calculations lead to the following explicit formulae: 

(2.10) 

G~~ = a«Gap = V~p+ VPJ';p- V 3b«p = VfiV«~ V 3bypaYCt, 

1 
IY:p = T(G~iJ+ff-PG~~a,p), 

1 
!P.{J = T(GrT:(J-tf-PG~Pa,p); 

(2.11) JfX~ = ~;B"P + D~~B"«+!Jat;B"P -D~;lfX" 
- WPV plfXP- B"PV, u« -lfX"V, uP+ U3(B"P~;. + B•·cxbfl,). 

For the stationary film these equations become 

(2:12) 

(2.13) WPVPJfXP = ncx,B"P+Dfl,B"«+~;B"P-Q~;lfX", 

V p being the covariant derivative. 

3. 

Now we have all the prerequisites necessary to obtain the 2D constitutive equations 
for. the liquid film. Consider, along with the 2D tensors, their three-dimensional counter
parts (D*, F* et~). Due to the thinness of the film, the deformation of the material in 
the direction normal to the film surface reduces to pure elongation. So we have 

F* = (7 ~). B* = (~ ;~)· 
(3.1) C* = (~"" ;~), detB* = detC* = I, 

. (D«p 0) D*-
- 0 YJ ' 

a* = (fFXP 0 ) . 
0 (J3 

Here u* is the 3D stress tensor, a is its 2D counterpart, the fluid is considered to be incom
pressible. It is easy to show that 

(3.2) 

(3.3) 

Na.(l = ha112 oa.(l, 
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The tensors er*, D* and B* are connected by means of the constitutive law of the liquid 
considered. For the extremes of viscous fluid and incompressible elastic material we get, 
respectively, 

er* = -p&+21JD*, 

er*= -p&+2L,11 B-2L,12B- 1 , 
(3.4) 

(3.5) /1 = ur-Paa.fJ, /2 = UXYBP.flaypapa.. 

The intermediate case of the elastoviscous liquid is much more complicated and is con
sidered separately. The 3D constitutive laws are transformed into the respective 2D con
stitutive laws taking into account the fact that 0': is constant across the film due to its 
thinness and, consequently, is prescribed by the boundary conditions. For the free film 
0': = 0. 

In the case of viscous liquid we have, for example, 

(3.6) 
<1: = -p+21JD:3 = 0, p = 21Jh- 1(h,r+h,«Wa.), 

~(/ = -p~+217na.(/ = 217 [~-h-
1 (h,r+ wa.h,a.)(tX'1]. 

For very thin films it is necessary to take into account the surface tension; thus instead 
of_Eqs. (3.2) and (3.6), we get 

(3.7) 

(3.8) 

N«(l = ~half2+2all2z~, 

p = _xh.aJJaa./J + 217h- 1 (h,t +h,a.wa.), 

where x is the surface tension. 

4. 

Now we shall try to formulate a simple model of elastoviscous Maxwe~lian liquid 
which is similar to the model of [14, 15] but differs from it in some aspects. 

By "Maxwellian liquid" we understand a liquid in which instantaneous elimination 
of stress is followed by instantaneous elastic recoil. So for ari arbitrary state of strain 
and stress of an element of the liquid it is possible to define the gradient of elastic deform
ation 4t corresponding to the deformation from the unloaded to the actual state. It is 
then possible to write ~or the deformation gradient and deformation tensors 

(4.1) 

(4.2) 

F = .N, 

B = FFT = fltA.T, A = NNT, 

where A is the local inelastic deformation tensor. 
Let 

(4.3) 
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It is seen readily that 

(4.4) 

(4.5) 

n = ne+n', n = ne+n", 
:Be = neue +Bene+ neue-uene. 

401 

The main problem of closure is that we must introduce some constitutive hypotheses 
relating the stress a to the elastic and inelastic deformation. We assume the following: 

a. The elastic as well as the total deformation is isochoric 

(4.6) /3B - /3Be = 1. 

b. The elastic deformation tensor Be is connected with the stress tensor a in the same 
way as in an elastic material. This means that Eqs. (3.5) are valid with Be substituted 
for B. 

c. The inelastic deformation rate n' is determined uniquely by the elastic deformation 
and stress. Keeping in mind our assumption b, we see that n' is uniquely determined 
by Be (or a). In an isotropic material the tensors Be, np and CJ have common principal 
axes, So we postulate that 

(4.7) 

In the case of isotropic viscosity 

(4.8) f = 1}-1&. 

Viscosity 1J generally speaking depends on the invariants of Be. 
These constitutive assumptions are almost identical with those of [14, 15]. However, 

they are not sufficient for the closure of the model as the elastic rotation rate ne remains 
indefinite. In [14, 15] it is assumed that 

(49) 

Comparing Eqs (4.9) and (4.3), we see that n and ne are implicitly identified. The 
reasons for such identification are not clear. Taking into account the intrinsic isotropy 
of tiie material, it seems more reasonable to assume that 

d. Unloading of an element of the Maxwellian liquid proceeds· without rotation; 
This means that the tensors ce, 4t and Be are coaxial and the following additional 

identity holds: 

(4.10) 

Using Eq. (4.5) we can rewrite the equation as 

(4.11) 

Equation ( 4.11) serves to determine ne through ne and the attained state of elastic 
deform~tion Be. 

Below we shall use the following constitutive equations for the isotropic elastic Max
wellian liquid: 

(4.12) 

(4.13) 
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(4.14) 

(4.15) 

(4.16) 

Assuming the Mooney-Rivlin form of the elastic potential [16] 

(4.17) 

we get from Eq. (4.13} 

(4.18) 

5. 

W = G[(f!-3)+a(/2-3)], 

V. M. ENTOV 

The main goal of this section is to obtain linearized equations for small perturbations 
of the steady motion of the liquid film. On the surface M 0 of the unperturbed film we 
introduce the stationary coordinate syste~m 01

, (Jl, so that the dynamical equations take 
the form (1.13)-(1.15). The perturbed film surface M will be referred to the same para
meters fJX. Let a~ be the · ~mit normal to M 0 at the point (01

, 02
).- The point of M which 

lies on the same normal will, by definition, have the same coordinates 01
, 02

• So we get 

(5.1) 

(5.2) 

r(01, (J2, t) = r0 (01
, 02)+5(01, 02 , t), 

5(01, 02
, t) .= ~(0 1 , 02

, t)a~(0 1 , 02
). 

(All the unperturbed quantities have the sub- or superscript "0"). A straightforward 
calculation gives for the geometry of M 

~=a~+ ~.exag- ~b~ag, 83 = ag- ~.exa~, 

(5.3) aexfJ = a~p-2~b~p, a= a0(1-2~x0), " = aetf1hexth 

f!p = F2S- ~.cxh8,arf- ~.ph2,a"6(} + ~b~,r3: a'011
- ~b~,.pat(! + ~r2~b~a0Q; 

(5.4) bexfJ = h2p+ ~:ex/J- ~.,r2;- ~b~b8,d6Y. 

Further, let 

(5.5) 
h(01

, 02
, t) = h0(01, 02 )+A(6 1

, 02
, t), 

W = W0 +w, N = N0 +n etc. 

Perturbations of other quantities are also designated by respective small letters. Per
turbations of the components of the vectors and tensors include contributions of both 
these "proper" perturbations and of the geometry perturbations. Let L = L0 +I be an 
arbitrary vector on M. Using Eqs. (5.3) and (5.4), we get 

(5.6) 

We also have 

(5.7) 

Lex= Laex = L~+lex+L~~.Qifol!+~b~oL'b; 

L3 = L~+J3-L~~•"'' /"' = laex ~la~. 

wex = W~+wex+~aet/b8ewe, 

vex= wex+uz. = wex, 
tf% = 0, u

3 = ~ ·" 
Vl = u3 = ~.r· 
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Now let S = S0 + s be a 2D tensor on M. It is convenient to consider S as a 3D tensor 
having the normal to M as one of the principal axes with the corresponding eigenvalue 
equal to unity. Using Eqs.- (5.3) and (5.4), we get 

(5.8) 

Substitution into the dynamical equations (1.6)-(1. 7) gives 

(5.9) aA'2 A.,, -h0 a&'2 "o <5 ,r +hoaA12W~(lho 1 - <5"o),cc + [hoaA12 (wcc + <5~/Jb~,W6)1,cx = 0, 

(5.10) leA.aA12 wg -eho <5"owg +ehoaA12wfJ + eho Jl'ao-<5 

x t/ocxb2,W6),, + (eA.aA12W~wg-eho d"ow~wg +eh0 aA'2W~ ,vfl +ehoa&11Wgwcc 

+ eho aA'2 dagvb~,W~W0 + eho a6'2 d~"b~,W6Wg) ,ex 

+eh0 a&'2W~Wf>y~11 +eA.a&12W~Wtf~11 -(!hod"oW~Wf>F~11 +(!hoa~12W~w!!f~ 

+ nh a1 12 ~,Q(Jb0 wcxwv ftJ +nh a1' 2W(lwccftJ +nh a1 12 ~df.(Jb0 W' .. W 11 ftJ ~:: o o uwo fJv o o cx(J ~:: o o o ccQ ~:: o o u o fJy o 0 <XQ 

- (!ho aA12 <5 ,,W~b211 afl/ = p/J +next; cc+ ( dN'tfag"b~11) ,cc+ n<X(l f~11 
+ <5Ng"afld'b~,F!11 +N~fly~(J + (<5Nf/arfb~).cc + <5N'fl~"b~,f~ 

+ P0 d ,(Jag11 + <5P8bl11 ; 

(5.11) ehoNao <5 ,u + 2eh0 aA'2Wgd ,rcx +eA.aA12W~Wgb2p 

- eho d"o'W~wgb2p + 2eho a&12wcxwgb2p + 2eho aA'2 dtfo"b~,b2pWgW 6 

+ eho aa12W~wgpcxfJ = p + ncc11b2p + 2dNttfag"b~Qb2p + N~fJ PcctJ- Pg<5 ,cc; 

(5.12) 
YitJ = - <5,cxb~pa~fl- d,pb2,dfl- db2,.parf+ db2,hpaofl + <5f:.pb~,aofl, 
PcctJ = d .a.tJ- <5b~, b~p at"- <5 ,(I f:tJ . 

The set of four equations of the set (5.9)-(5.12) serves to find the four unknown variables 
<5, A, wee provided the external force perturbation vector p is known and the perturbation 
of the surface stress tensor n is expressed through the kinematical variables. To get the 
last e·xpression <5, we must make use of the liquid rheology (see below). The simplest 
possible case is that of the initially plane film. For the case in question 

(5.13) 
a0 = 1, 

r:fJ = 0, a = 1 

and Eqs. (5.9)-(5.12) give 

(5.14) A.,, +h0 Wg(A.h0 1),cx + (h0 wcx),cx = 0, 

(5.15) A.,,wg+ho w~t + (A.W~wg +h0W~wfl +h0 Wgwcc),cx = (p/J +na.f!cc + Po <5,p)e-I, 

{5.16) hob,tt +2hoW~b.cxt = (!- 1 (Ngflb,cxtJ+P+ <5,cxJ><6). 

For the film of constant thickness (h0 = const) moving with constant velocity 
(W~ = W, W~ = 0) in the absence of external force (P 0 = p = 0) we get 
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h0 1 A.,t+WA.,t_ +w~ex = 0, 

A,tw +ho W~t+ (A.W2 +2~oWW1),1 +hoWw~2 = e~ 1nex.l ex, 

ho W~t+hoWw?t = e-lnex.2 ex; 
(5.17) 

~.tt+2W~.tt+W2 ~.u = (eho)- 1N?/~.cxfJ· 

Consider this last equation in more· detail assuming that the principal axes of N 0 coincide 
with the coordinate curves. We have 

~.tt+2W~.tt+W2 ~.u = cf~.u +c~~.22' 
2 - Nu/ h z - N22j h Ct- 0 (! 0' C2- o · (! 0• 

(5.18) 

For the wave solutions of the form 

(5.19) 

the dispersion relation is 

(5.20) 

~ = L1exp[i(wt+k01 +UJ2)] 

If 0 < W < cH then for the arbitrary wave vector (k, I) there are two WfLVes- one 
propagating downflow and the other propagating in the opposite direction. Equation 
(5.18) in this case is a hyperbolic equation analogous to the equation of the vibrations 
of a membrane. It is therefore not unreasonable to consider two-sided boundary value 
problems, for example, the problem of free oscillations with prescribed values at the 
entrance and exit. Thus we may consider unidimensional oscillations of a finite length 
of the film, 0 < 01 < L, under the conditions ~ ,2 =:= 0, ~ (0, t) = ~(I, t) = 0. 

If W > c1 , then all the waves run in the downflow direction (wfk < 0) and the cor
rectly stated problem for Eq. (5.18) is the problem of propagation of disturbances in the 
direction of the flow. For example, we can prescribe ~((J2, t) and ~. 1 ((J2, t) at 01 = 0. 
In that case the problem of fre·e oscillations of the film fixed along a closed contour is 
incorrectly posed. 

It is worth noting that the equation of transverse oscillations of liquid film (5.17) 
does not depend on the perturbed stress tensor n. This means that the transverse membrane 
oscillations of the film . do not depend on the liquid rheology and are determined exclus
ively by the initial (stationary) surface stress in the film. 

Consider now the perturbations of the thickness of the film. In the Cartesian coordi
nate system x = (Jl- Wt, y = 02 , w~ = u, w2 = v and Eqs. (5.17) give 

_1 ~+~+~=0 
ho ot ox oy ' 

(5.21) 
ou on11 on21 

ehoat =----;)X+ --ay' 
OV on12 on22 

eho- = -- + --. ot ox oy 
It is obvious that stress perturbations are of primary significance if we are interested in 
the change of thickness. Consequently the material rheology must be taken into account. 
For the viscous liquid we then get 

(5.22) n(%(} = h0 aA'2 [17 (w~,+ w~ex)- 21]ho 1 (A,t + A,xW) ~ex,+ A.,,pxa<f~ex ,]al)(l. 
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Substitution into Eq. (5.21) results in 

.1 aA. au av 
h;;Tt = - ax- ay' 

(5.23) 
au a2u a2v a2u a A. 

ea~= 41J ax2 +1] axay -1] ay2 +xL1-ax, 

av a2v a2u a2v a A. 
ea~= 41J ay2 +1] axay -1] ax2 +xL1-ay· 

In the inviscid case (1J = 0) Eq. (5.23) reduces to the well-known equation [17] 

e a2 A. 
(5.24) 7i;; at 2 = - xLP A.. 

For the unidimensional motion we get from Eq. (5.23) (v = 0, atay = 0) 

a2A. xho a4A. a3l 
(5.25) at2 = - -e- ax4 +4P ax2at ' p = 1Jfe. 

The spatially-periodic solutions of Eq. (5.25) 

(5.26) A. = A ePt+iA:x, I' = k2 [- 2P ± (4P2- xho/e)1
'
2

] 
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describe running (xhofe > 2P) or stationary (xhofe < 2P) harmonic waves of decreasing 
amplitude. Consider further the unidimensional wave pattern generated by a stationary 
generator. The waves are described by the solution A. = exp(iwt)X(E) 

(5.27) - (xhofe)X1v +4PWXm+(4viw-W2)X"-2iwWX' +w2X = 0, 

~being the distance from the generator. It can be shown that Eq. (5.27) has two linearly 
independent solutions which vanish at infinity (E --+ oo ). Hence the physically reasonable 
problem with prescribed values of film thickness and velocity at E = 0 is stated correctly 
and unidimensional perturbations do not lead to film disintegration. 

6. 

As another elementary example we shall consider the dynamics of the spherical film 
of the elastoviscous liquid under internal pressure. Let R be the radius of the film, h ~ R 
its thickness, V= -dRfdt, q the internal pressure. Introducing 81 and (J2 as geographical 
coordinates on the sphere, 81 = 8, 02 = q;, we get 

au = R2, at2 = a2t = a21 = a12 = 0, au = R-2, 

(6.1) a22 = R- 2 (sin0)- 2
, a= R4 sin28, b«fl = R- 1 a«fl' 

V«= U~ = W« = 0, V3 =V. 

The equations of continuity and dynamics (1.6) and (1.10) give 

(ha1!2),, = 0 

e(ha112V),, = P+N«flb«fl. 
(6.2) 

http://rcin.org.pl



406 

According to Eq. (~.10), 

(6.3) 

so that from Eq. (2.11) 

(6.4) ~t =0. 

This means that for the isotropic and homogeneous initial state 

(6.5) 

V. M. ENTOV 

where B is a scalar. From Eq. (4.11) ·it also follows for the elastic deformation that 

(6.6) K~f- (2VfR)K«P = 2K«Y L~,, K = Be, L = De. 

For the isotropic initial state 

(6.7) 'K = K&, L = L&. 

Using Eqs (4.17) and (4.16) with ex= 0, we get 

(6.8) G = L'& = 2G(K-K- 2 )&, 

Substitution into Eqs. (4.14) and (4.13) results in 

(6.9) 
D• = (3~)G(K-K-2)&, 
L = - V/R-(Gf3'YJ) (K-K- 2 ). 

Using Eqs. (6.9) and (6.1), Eq. (6.6) reduces to 

(6.10) K- (2R/R)K = - (G/3'Y}) (K-K- 2) ~ 

The last equation is in a sense a "net constitutive equation" of the spherical elastoviscous 
film. 

Using Eqs. (6.8) and (3.7), we get 

(6.11) N«(J = 2ha112 [G(K-K- 2 1+ zR2/h0 Rl,]~, 

(6.12) h0 = h(O), R0 = R(O), P = -qa112
• 

Substitution into Eq. (6.2) results in 

d 2 R q R'J, 4 [ _ 2 . R 2 
] 

(6.13) e dt2 = h;; Rl, - R G(K-K )+ x ·hoRl, , . 

Equations (6.13) and (6.10) are the resulting set of equations of the problem under 
consiqeration. For a sufficiently thin film it is possible to neglect the inertial forces putting 
e = 0. Assuming in addition that K ~ 1, we get from Eq. (6.13) 

(6.14) 

and from Eq. (6.10) 

(6.15) 
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Assuming that the volume of gas within the sphere is constant and that the elastic strain 
is initially equal to zero (K0 = 1), we get 

(6.16) 
( )

1/2 
R = _!_R qRo 

2 ° x+Gh0 exp( -t/38) . . 

This equation may be used to estimate the properties of the liquid. 
In conclusion we mention that a more comprehensive treatment of the problem under 

consideration can be found in the preprint by the author [18]. 
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