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Noether's theorem for a nonholonomic system 

M. HUSSAIN (LAHORE) 

THE PURPOSE of this paper is to extend Noether's theorem .to a conservative linear nonholo
nomic system whose position is specified by generalised coordinates. This extension is based 
upon the concept of admissible infinit~simal symmetry transformation under which the Lagran
gian is divergence invariant. The existence of first integrals depends on the existence of solu
tions of a system of partial differential equations so-called Killing equations. All known results 
regarding the first integrals are deduced as special cases. Finally an example is given for the 
illustration of the theory. 

Zadaniem pracy jest rozszerzenie twierdzenia Noethera na uklad liniowy, za.chowawczy i nie
holonomiczny, kt6rego poloi:enie okreslone jest we wsp~nych uog6lnionych. Rozszerzenie 
to oparte jest na koncepcji dopuszczalnej, infinitezymalnej transformacji symetrii, przy kt6rej 
lagrangian jest niezmienniczy ze wzglctdu na dywergencjct. Istnienie pierwszych calek zalezy od 
istnienia rozwi~n ukladu r6wnan r6zniczkowych CZC\Stkowych zwanych r6wnaniami Kil
linga. Wszystkie znane wyniki dotycZClce pierwszych calek wyprowadzono jako przypadki 
szczeg6lne teorii. Podano na za.konczenie przyklad ilustruj(lcy przedstawion(l teorict. 

3~aqeif pa6oTbi HBJUieTCH paCIIIHpeHHe TeopeMbi Herep Ha JIHHeii:Hylo, KOHcepsaTHBHyro 
H HerOJIOHOMI{qeCKyiD CHCTeMY, iiOJIO>KeHHe KOTOpOH onpeAeJieHO B o6o6I.QeHHbiX KOOpAHHa
Tax. 3ro paciiiHpeHHe mmpaeTcH Ha Ko~e~ AOrryCTHMoroH:, .HH4»HHHTe3HMam.Horo npe
o6pa30BaHHH CHMMeTpHH, npH KOTOpOM JiarpaH>KHaH HHBapHilHTHbiH no OTHOWeHHIO K AH
aepre~HH. CYI.QeCTBoBaHHe nepBbiX HHrerpanoa 3aBHCHT oT CYI.QeCTBOBaHHH pemeHHH: CHc
TeMbi AHqxpepe~am.HbiX ypaBHeHHH B qaCTHbiX npOH3BOAHbiX, Ha3biBaeMOH ypaBHeHHR:MH 
Kwlinmra. Bee H3BeCTHbie pe3ym.TaThi, KacaJOI.QHecn nepBbiX HHTerpanoa, BbiBeAeHbi KaK 
llaCTHbie CJIYlljlH TeopHH. B 3aKJIIOqeHHe npHBeAeH npHMep HJIJilOCTpHpyroi.QHH: npeACTaB
JieHHYJO reopmo. 

'1. Introduction 

NoBTHER's theorem [9] and its applications to finding first integrals play an important 
role in mathematical physics as it is clear from the recent publications [2, 3, 4, 5, 6, 7] 
in which Noether's theorem has been ·given for different types of dynamical systems. 
In all the said works no worthwhile attempt was made to extend Noether's theorem to 
a nonholonomic system. In [3] only, this theorem was given for a nonholonomic system 
whose position is specified by quasi-coordinates but in doing this, nothing was said about 
the ·symmetry transformation whether the changes in coordinates and time due to its 
application satisfy the equations of constraint or not. As a matter of principle, the infini
tesimal changes of coordinates and time, i.e. ~q and ~t, due to the symmetry transforma
tion must sa.tisfy the constraint relations for a nonholonomic system. In view ofthe above, 
the assumption "Pi = 0 made in [3, 8, 6] is unnecessary since it follows automatically 
from the above said property of the symmetry transformation. Hence Noether's theorem 
as given in [3] for a nonholonomic system is incorrect. 
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410 M. HUSSAIN 

A transformation which is consistent with the constraints is called an admissible trans
formation. The object of this paper is to consider an a<!missible transformation for the 
correct formulation of Noether's theorem for a nonholonomic system. 

In what follows we shall employ Einstein's summation convention. Time derivatives 
of a quantity are d~noted by putt-ing dots over it. Different indices and their ranges .of 
values used in the sequel are as follows: 

i,j,k = 1,2, ... ,/, rx,p = /+1, ... ,n, p,r = 1,2, ... ,n. 
Let us consider a conservative nonholonomic system whose position is defined by 

n generalised coordinates q1 , ... , q, and which is subject to (n -I) linear constraints of 
the form 

{1.1) 

where ccx1 are functions of q only. If Lis the Lagrangian of the system, the equations of 
motion obtained after embedding the constraints as in [1 0], are 

{1.2) .!!_ ( oL ) _ aL + c [.!!_ ( oL ) _ aL ] = 0 
dt oq, oq, ' eel dt oiJcx oqcc 

which, together with the relations (1.1), form a system of n equations for determining 
the quantities q1 , q2 , ... , q,. as functions of the time t. 

2. Admissible symmetry transformation 

Consider a continuous one-parameter transformation of generalised coordinates and 
time of the form 

(2.1) 

(2.2) 
t = t + et/J ( t, q, q), 

qP = q,+etpp{t, q, q), 

where q = (q1 , ... , q,.), q = (q1 , ... , q,.), e is a small parameter whose squares and higher 
powers may be neglected and c/J, tp, are functions of at least class C2 • A transformation 
is called a symmetry transformation if the transformed Lagrangian of the system L(i, q, q) 
yields equations of the same form a~ the original Lagrangian function L(t, q, q). We 
assume that the transformation defined by Eqs. (2.1) and (2.2) is a symmetry transforma
tion. 

Now, corresponding to Eqs. (2.1) and (2.2), we have the infinitesimal transformation 
of.the form 

(2.3) ~~ = et/J, ~q, = B1Jlp· 

The infinitesimal transformation defined by Eq. (2.3) is called admissible if it satisfies 
the equations of constraint 

~qcc = Ccct ~q, 

where ~q are arbitrary variations of the generalised coordinates. Hence the necessary 
and sufficient conditions for the admissibility are 

(2.4) 
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Since Eq. (2.3) is a sym1netry transformation by our assumption therefore, proceeding · 
as in [3], the equations of constraint in the new coordinates and velocities assume the 
form 

(2.5) 

where 

~ diit 
q, =--=-· 

dt 

We now express Eqs~ (2.5) in terms of q, lj>, 1p11 and their time derivatives. For doing this, 
we neglect squares and higher powers of e. Using Eqs. (2.1) and (2.2) we get 

or 

(2.6) 

• d1pp 

q"+edt . . . . dtp" 
dt/J = q~~-eq"t/J+e(it 

1+e-
dt 

~ • ( d1pp • ),.) 
q" = q"+e dt -q"'~~ . 

Expanding ca.i (q) in powers of e, we obtain 

( -) ( ) OCa.t Ca.t q = Ca.t q + e-o-1p". 
q" 

(2.7) 

In view of the relations (2.6) and (2. 7), the relation (2.5) yields 

• • ;,. d1pp • OCpt • • ;,. d'f/Jl 
qp-eqp'~~+e-d = cp1q1+-

0
-etp"q1-ecp1qp,-+e-d cp, 

t qp - t 

or using the constraint relations (1.1 ), we get 

(2.8) d1pp d1p, OCpt • 
-Tt = cp,Tt + aq" "P"q'. 

Hence 'Pt should satisfy the relations (2.4) and (2.8). Now Eq. (2.8) in conjunction with 
Eqs. (1.1) and (2.4) yields the relations 

(2.9) ( 
OC(Jt OC(Jj ) • ( OCpt OCpj ) • 
aq} - aq, q,'PJ = ea.} aqa. - - oqa. ea., qJ"Pt· 

3. Fundamental invariance identity 

Let us form the integral 

12 

(3.1) J = f ~(t, q, q)dt 
t 1 
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then, according to [7], J is said to be divergence invariant under the transformation (2.3) 
if there exists a function F(t, q, q) such that 

(3.2) L (- - ~) dt L ( . ) dF 
t, q' q dt - t' q' q = e dt. 

Let us now assume that J is divergence invariant, then differentiating Eq. (3.2) with respect 
to e and afterwards putting e = 0, we get 

(3.3) £[__!___( dt)] + aL [ail + }__£ [ oqp] + ~[ aijp] = dF 
oe dt 0 ot ai Jo oq, oe 0 oqp oe 0 dt ' 

where [ ]0 denotes the operation of putting e = 0 after the operation of differentiation 
is performed. Now the relations (2.1), (2.2) and (2.6) yield 

[:. (~:)1= ~· [!:l =~. [~~1 ='f., 

[ 
oqp] = drpp -. dc/J 
oe 0 dt qp dt , 

and consequently the relation (3.3) becomes 

dc/J oL , a~ oL (drpp . dcp) dF 
(3.4) LTt+Ttc/J+ aqp 1p,+ oq, dt-qpTt = di' 

which is the required fundamental invariance identity. 

4. Noet .. er' s theorem and conservation laws 

For the deduction of conservation laws we first prove the theorem 
THEOREM 1. If the fundamental integral J is divergence invariant under the transforma

tion (2.3), then the following identity holds: 

~ d [ oL . aL ] 
(4.1) E,(L) (VJp-cpqp) = dt Lc/J+VJp oqp -c/Jqp oqp -F , 

where 

E,(L) = ~ ( oL ) _ oL . 
. dt oq, aqp 

Proof. To establish Eq. (4.1) we substitute from the following relations in Eq. (3.4) 

oL ,~_ = !!_(L,~_)- oL . ,~__ oL .. ,~__L dcp 
ot "~' dt "~' . oqp qp'l' oqp qp'l' dt ' 

oL d'f'p d ( oL ) d ( oL ) 
oiJP d! = di oiJp VJp - 'f'p di oqp ' 

oL . ;. d ( aL . ) d ( aL ) . oL .. ,~. 
oiJp qp'l' = di oqp qpc/J - di aqp qpl/J- aqp qp'l' 

and consequently we obtain the identity (4.1). 
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CoROLLARY 1. If we use the relations (1.1) and (2.4) in Eq. (4.1), we get 

( 4.2) ['!'1 - .pq ,J.[E,(L) +c., · E.(L)] = ~ [ L</> + ( 'I'•-</>ilt) ( :t. +c., :~ ) - F]. 

Let L be the Lagrangian which is obtained from L after eliminating the dependent veloc
ities ila. with the help of Eq. (1.1), then 

aL aL aL 
oiJi = oiJ, + ca., · oiJa. 

and consequently the relation (4.2) becomes 

(4.3) [V't -cJ>iJa [Et(L) + ca.iEcx(L)] = ~ [Ic/> + (VJ, -cl>iJt) :~ - F]. 
. qi 

Now the equations of motion (1.2) can be written in the form 

E1(L)+ca.tEa.(L) = 0, 

and consequently Eq. (4.3) qives 

or 

(4.4) 
- iJL 
Le/>+ (V't -c/>q1)~ -F = constant. 

uqt 

The relation (4.4) represents a conservation law or first integral of the equations of motion 
(1.2). Now we can state the theorem: 

THEOREM 2. (Noether's theorem). If the fundamental integral J is divergence invariant 
under the one-parameter continuous transformation (2.3) where 1p satisfy the relations (2.4) 
and (2.8), then the relation ( 4.4) gives the first integral of the nonholonomic system. 

CoROLLARY 2. Let the integral J be absolutely invariant under the transformation 
(2.3), then the relation (4.4) yields the first integral of the form 

- oL 
(4.5) Le/>+ (1p, -cJ>q,)~ = constant. 

uqt 

5. Generalised Killing equations 

· d<J> dF 
If in the fundamental invariance identity (3.4) we put the values of dt and dt, 

we get the identity 

ocJ> ocJ> • ocJ> .. aL aL aL 01f'p 
L~ +L-!l -qP+L~qp+ ~cl>+ -!:)-?pp+~-!:)-

ut uqp .. uqp ut uqp uqp ut 

oL o1pp . aL o1pp .• . oL ocJ> . oL ocJ> . 
+ oqp oqr qr+ oqp oqr qr-qp oqp -----at -qp oqp oqr qr 

. oL o<J> .• oF oF . oF .. 
0 -qp oqp oqr qr- Tt- oqp qp- oqp qp = . 
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Since this identity is true for arbitrary values of q, it follows that 

a4> a4> . aL aL BL a1p, aL a1p, . 
Lat + L aq, q, +at tP + aq, 'PP+ aq, 7ft + aq, aqr qr 

(5 1) 
. aL a4> . . aL a4> aF aF . 

. -q, aq, Tt -q,qr aq, aqr ,- Tt- aq, q, = O, 

a4> BL a'Pr . aL a4> aF 
L aq, + aqr aq, - qr aqr aq, - aq, = O; 

(5.2) 

( 
acpt acpj ) . ( acp, acpj ) . 

(5.3) aq
1 

- aq
1 

q,_1PJ = ea.~ aq(% - aq(% c(%, q11p,. 

The· (n+ 1) equations (5.1) together with (2n-21) equations'(5.2) and (5.3) form the system 
of generalised Killing equations for the nonholonomic system. These equations can be 
used for finding t/J and V'Pand then using these values to obtain the first integrals by means 
of Noether's theorem. In this connection we can formulate the theorem: 

THEoREM 3. If the generalised Killing equations (5.1), (5.2) and (5.3) admit a solution 
in t/J and 'PP' then the equations of motion of the system (1.2) have the first integral ( 4.5). 

6. Applications of Killing ,equations and Noether's theorem 

6.1. The energy integral 

Let us assume that the Lagrangian L does not depend explicitly on time, i.e. aLfat = 0. 
In this case on~ of the possible solutions of the Killing equations (5.1) is either t/J = t/Jo = 

constant, 'PP = 0, for F = 0 or tjJ = 0, 'PP= qP for F = L. The first solution obviously 
satisfies Eqs. (5.2) and (5.3); the second solution satisfies Eq. (5.3) automatically and 
it also satisfies Eq. (5.2) in view of the constraints (1.1). Corresponding to these values 
Of tP anQ 'fjJp We have the infinitesimal transformatiOnS 

t = t+et/J0 , q, = q, for F= 0, 

t = t, q, = q,+ eq, for F = L. 

Hence the integral J remains invariant under the above two transformations. Consequently 
Noether's theorem gives the first integral 

. aL 
q1-a -L = const, q, 

. which is in fact the energy integral of the nonholonomic system. 

6.2. The momentum integr:al 

Let us assume that Lis independent of a particular coordinate say q~., so that a L/ aq 1 = 0, 
then Eqs. (5.1) are satisfied by the values t/J = 0, 1p1 = constant, tp2 = 1p3 = ... 1p, = 0, 
F = 0. Putting these values in Eq. (5.2), we get cp1 = 0 and similarly Eqs~ (5.3) yield 

ac{Jl . 0 
aq1 q, = · 
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Taking into account the independence of q1, ... , q1, the last relations give 

ocp, = 0 oq, , 

415 

i.e. the constraint coefficients cp1 are independent of the coordinate q1 • Corresponding 
to the above values of 4> and "'' we have the infinitesimal transformation. 

-
t=t, qt=ql+e, q2=q2, ... ,qn=qn. 

Hence using Noether's theorem, we get the first integral 

oL 
~ = constant, 
uql 

which is the usual momentum integral corresponding to the coordinate q1 • These con
siderations lead to the theorem: 

THEOREM 4. Sufficient conditions for the existence of momentum integral corresponding 
to a coordinate qi are (i) L is independent of q1 , (ii) the constraint equations (1.1) do not 
contain the velocity components q1 and (iii) the constraint coefficients cpi are indt(pendent 
ofqt. . 

This theorem was first proved by C. AGOSTINELLI [4]. 

6.3. An example of a nonholonomlc system 

Let us consider the free motion of a rigid body in a horizontal plane in the case when 
the projection of the centre of m.ass coincides with the point of contact of a sharp-edged 
wheel and the plane (a special case of Chaplygin's sleigh). 

Let (x, y) be the coordinates of the centre of mass referred to fixed rectangular axes 
Oxy in the plane, and() the angle between the plane of the wheel and the axis Ox. Let K 
be the radius of gyration of the body, supposed to be of unit mass, about an axis passing 
through the point of contact of the wheel and the plane and perpendicular to the plane, 
then 

(6.1) 

Since the wheel has a sharp edge, the velocity of the centre of mass is always directed along 
the plane of the wheel. This qives rise to the nonholonomic constraint 

y = xtan8. 

Taking q1 = 0, q2 = x, q3 = y, the relations (2.4) and (2.8) for the problem under con
sideration become respectively 

(6.3) 1p3 = '1'2 tan 0, 

(6.4) d1p3 = tanO d1p2 + 1/J xsec20 
dt dt rl ' 

or using Eq. (6.3) in Eq. (6.4), we get 

(6.5) 
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Assuming that cp and 1p are functions of q only and F = 0, then the relations (5.1) yield 

(6.6) oL O'f/Jp • L. ocp - 0 -
oqp oqr qr- qp oqp - . 

Using the constraint relations (6.2) after substituting for L from Eq (6.1) in Eq. (6.6) 
and then equating the coefficients of different powers of q equal to zero, we obtain the 
system of partial differential equations 

oc/J 
7fO = 0, 

oc/J oc/J ax +tanOTy = 0, OVJJ = 0 
ao ' 

K 2 O'f/J1. +K2 tan0 °VJ1 OVJ +tanO 0VJ 3
- = 0, 

ox oy + ao ay 
0

VJ2 +tanO 0VJ 2 +tanO 0VJ 3 +tanO 
0

VJ 3 = 0. ox ay ax oy 

Possible solutions of these equations are: (i) cp = constant, VJ1 = VJ2 = 'f/J3 = 0, (ii) 
4> = 0, 1p1 = w (constant), 1p2 = A cos 0, VJ 3 =A sinO, where A is a constant. Correspond
ing to the first solution the relation· (4.5) gives the energy integral 

L =constant 

or 

(6.7) 

and the second solution similarly gives the integral 

(6.8) wK20 + AxsecO = C2 • 

-Putting the values of VJ1 , VJ2 , 1p3 from the solution (ii) in Eq. (6.5), we get 

(6.9) x = A/wcos.OiJ, 

and consequently the relation (6.2) yields 

(6.10) y = AfwsinOfJ. 

P.utting the value of .X from Eq. (6.9) into Eq. (6.8), we get 

O(wK2 +A2 /w) = c2. 

Choosing C2 = w 2K 2 +A 2 , the last relation gives 

8 = w, 

or 

(6.11) 0 = wt, 

assuming that the constant of integration is zero. Substituting from Eq. (6.11) into Eqs. 
(6.9) and (6.1 0), we obtain 

x = Acoswt, y = Asinwt, 

or by integration 
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where b2 and b3 are constants. Thus the centre of mass moves with a constant speed A 
in a direction that rotates with a constant angular velocity w, i.e. the centre of mass de
scribes a circle of radius A/w. This agrees with the solution of the problem given in [8]. 
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