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On the linear theory of thermo-viscoelastic materials 
with internal state variables 

S. CHIRITA (IA~n 

IN Tms PAPER we establish the basic equations for the linear theory of thermo-viscoelastic 
materials with internal state variables. We further prove a uniqueness theorem for the solution 
of initial-boundary value problems formulated in the conte'\t of this theory. 

W pracy przedstawiono podstawowe r6wnania liniowej teorii material6w termo-lepkospr~zy
stych z wewn~trznymi zmiennymi stanu. Dowiedziono nast~pnie twierdzenia o jednoznacz
nosci dla rozwi~ zagadnien POCZC:ltkowo-brzegowych sformulowanych w ramach tej teorii. 

B pa6oTe rrpeACTaBJieHbi OCHOBHbie ypaBHeHIDI mmeHHOH TeOpHH TepMO-B.R3KoyrrpyrBX Ma
TepHaJIOB C BHYTPeHHHMH rrepeMeHHbiMH COCTO.RHIDI. 3aTeM AOI<a38Ha TeopeMa eAHHCTBeH
HOCTH AJ1.R perueHH:H Ha'tlaJILHO-KpaeBbiX 3aAa'll, c<l>opMYJIH110B8HHhiX B paMKax 3TO:it TeopHH. 

1. Introduction 

A GENERAL theoty of thermo-viscoelastic material bodies _with internal state variables 
has been formulated by COLEMAN and GURTlN [1], BoWEN [2] and V ALANIS [3]. Under 
some particular constitutive assumptions, an isotropic linear theory was considered by 
MIHAILESCU and Suucru [4, 5] concerning the propagation of acceleration waves in 
thermo-viscoelastic materials with internal state variables. 

The present work considers materials with internal state variables, attention being 
focussed on the linear theory of anisotropic and inhomogeneous thermo-viscoelastic 
media. In Sect. 2 we ~ummarize the basic structure for a thermoelastic body with internal 
state variables [1]. Further, we establish the basic equations for the case of small thermo
elastic deformations. 

For the case of linear theory, in Sect. 3, we prove the uniqueness of the solution to 
the initial-boundary value problems appropriate to the dynamics of the thermo-visco
elastic bodies with internal state variables. The method of proof is one based upon a Gron
w.a.II type inequality. 

The uniqueness results for the internal state variable approach of finite deformations 
of materials without heat conduction was obtained by NACHLINGER ~nd NUNZIATO [6], 
in the one-dimensional case, and by Kos:INSKI [7, 8], for the three-dimensional case. 

2. Basic equations 

In what follows we consider the linear theory of mechanics of continuous media with 
internal state variables. 
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We consider a body which, at time t = 0, occupies the properly regular region V of 
Euclidean three-dimensional space R3 and is bounded by the pieeewise smooth surface 
o V [9]. The configuration of the body at time t = 0 is taken as the reference configuration. 
The motion of the body is referred to a fixed system of rectangular Cartesian axes. 

The integral forms of the 1aw of linear momentum and the law of balance of energy 
are equivalent to the following differential equations [1]: 

(2.1) 

.(2.2) 

where 

(2.3) 

t1,,1+eF, = eu, 

eU = tuelJ+er+q,,, 

and, within the linear approximation, 

(2.4) 

In the above relations we have used the following notations: e is the density mass, u; 

are the components of the displacement vector, U is the internal energy per unit mass, 
Ft are the components of the body force vector p~r unit mass, r is the heat supply function 
per unit mass and unit time, tu are the components of the stress tensor apd q1 are the 
components of the heat flux vector. Throughout this paper we shall use the following 
conventions: a superposed dot denotes the material time derivative; Latin indices have 
the range 1, 2, 3, while the Greek subscripts have the range 1, 2, ... , n; summation over 
repeated subscripts is implied; subscripts preceded by a comma denote partial differentia
tion with respect to the corresponding Cartesian coordinate x1• 

The entropy production inequality has the local form 

(2.5) 

where rJ is the entropy per unit volume, T is the absolute temperature which is assumed 
to be .always positive, and 1p is the Helmholtz free energy function 

(2.6) 

According to the theory of [1], we define a linear thermo-viscoelastic material with 
internal state variables by the following constitutive equations: 

(2.7) 

1p = 'IJl(Emn; T; T,r; ~p; Xs), 

tiJ = tiJ(emn; T; T,r; ~p; Xs), 

'YJ :== 'f}(Em11 ; T; T,r; ~p; X5), 

q, = q,(em11 ; T; T,r; ~p; X 5), 

~ex = fcx(Emn; T; T,r; ~p; Xs), 

. the functions from the set (2.7) being consistent with the assumptions of the linear theory. 
In the above equations the scalars ~ex (~X = 1, 2, ... , n) represent the internal state variables 
[1' 2]. 
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From the relations (2.5) and (2. 7) it follows that 

(hp 01p 
(2.8) ti} = e oelJ , 'YJ = -e oT' 

01p ---ar- = 0, 
,r 

(2.9) 

where 

(2.10) 

is called the chemical affinity of x, [2]. 
Taking into account Eqs. (2.8)-(2.10), the relation. (2.2) becomes 

(2.11) 

In the linear theory we consider the temperature 0 measured from the absolute tem
perature T0 of the initial state and the internal state variables wac measured from the 
internal state variables ~~ of the initial state. Thus we have 

(2.12) T = T0 +0, ~ac = ~~+wac. 
Therefore we suppose that the initial state of the body is characterized by the following: 

(2.13) e11 = 0, T = T0 , T, 1 = 0, ~ex~~~. 

The initial state of the body is said to be an equlibrium state for the material if 

(2.14) 

The initial state is a strong equilibrium state if it is ari equlibrium state for which we have 

(2.15) 

In our subsequent development we will suppose that the initial state is a strong equi
librium state. In this case, from the inequality (2.9) we get [2, 10] 

(2.16) 

In the linear theory of an anisotropic thermo-viscoelastic material with internal state 
variables, we assume · 

(2.17) (!1p = ~ Cl)rs8tj8rs+ ~ DaftWa.WfJ- ~ a02 -El)el)O+Fl)ac8tjWac+Gac0wac, 

(2.18) fa. = muaceu+nacO+pacfJWp+r,acO,, 

(2.19) q1 = flJkeJk+g10+h1acwac+kuO,J. 

In the relations · (2.17)-(2.19) the coefficients CtJru Dacp, E;J, a, FiJac' Gac, muac' nac,PacfJ, 
r;ac,fi.i"' g;, h1ac and ku are functions of Xs, which characterize the thermo-viscoelastic 
properties of the material with internal state variables. For a homogeneous material 
these quantities are constants. They satisfy the symmetry relations 

Curs = Crsl) = CJtrs' DacfJ = D{Ja., EtJ = EJI, 

FlJac = FJtac' muac = mJtac' ft1" = ft~cJ· 
(2.20) 

5 Arch. Mech. Stos. nr 4/82 

http://rcin.org.pl
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In view of the relation (2.17}, from Eqs. ' (2.8) and (2.1 0) we deduce 

(2.21} 

and 

(2.22) 

tu = Curse, .. - Ell() +'Ffia.Wa., 

'YJ = EuetJ+aO-Ga.wa., 

,According to the linear approximation, Eq. (2.11) becomes 

(2.23) 

If we substitute the relations (2.3) and (2.21) into the relations (2.1 ), (2. 7)5 and (2.23), 
we get 

(2.24) 

(2.25) 

(2.26) 

(C,J, .. u,,s),J- (EJ,O),J+ (FJta.wJ;J+eF, = eii, 

To(E,i-lt,J+aO- Ga.roa.) = er+ (f,) lcUj,lc), I+ (g, 0), l + (h,a. Wa.), l + (kl}() ,}), l' 

roa. = mlJa.u1, 1+na.0+Pa.tJWtJ+r1a.0, 1 • 

To these equations we adjoin the initial conditions and the boundary conditions. 
In our hypotheses we assume the following initial conditions: 

(2.27) u,(x .. , 0) = 0, u,(x., 0) = 0, ()(x .. , 0) = 0, Wa.(Xn 0) = 0, on V. 

We supplement the above equations with the prescribed boundary conditions 
-

u, = Ut On oVl X (0, to), t, = tJt11J = t, On oV2 X (0, to), 

() = 0 on oV3 X (0, to), qt11t = q On oV4 X (0, to), 
(2.28) 

where Uf, ft, if and q are prescribed functions Of Xs and t, and oV1 , oV2 and oV3, oV4 
denote subsets of oVsuch that oV1 uoV2 = oV3uoV4 = oVand oV1 noV2 = oV3noV4 = 
cl>; and v1 are the components of the unit outward normal to o V. . 

By a solution of the considered initial-boundary value problems, we mean the state 
of deformation (u1, (), wa.) (x .. , t) satisfying Eqs. (2.24}-(2.26), the designated initial 
CQnditions (2.27) and the boundary conditions (2.28). 

3. A uniqueness theorem 

'In this section we establish the uniquene~s of solution to the initial-boundary value 
problems defined by Eqs. (2.24)-(2.26), the initial conditions (2.27) and the boundary 
conditions (2.28). 

In order to prove this we shall need the following assumptions: 
(a) the mass density e(x .. ) is strictly positive, i.e. 

(3.1) 

(b) the specific heat a(xs) is strictly positive, i.e. 

(3.2) a(x.) ~ a0 > 0, on V; 
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(c) CiJkt(Xs) is positive definite in the sense that there exists a positive constant A. such 
that 

(3.3) j CiJkl;lJ;kldV ~ A. j ;,1;ildV, 
V V 

for all second-order symmetric tensors Ci1 ; 

(d) the symmetric part kiJ of the thermal conductivity tensor kii, is positive definite 
in the sense that there exists a positive constant ft such that 

f + kuCtCJdV ~ ft J C,C,dV, 
V 0 V 

(3.4) 

for all vectors Ci· 
The above restrictions are currently used in the classical theory of thermoelasticity 

in order to establish the uniqueness and thermoelastic stability (see e.g. [11], [12]). 
Because of the linearity of the problems, it suffices to prove that the considered in

itial-boundary value problems in which Fi = r = 0 and ui = i; = 0 = q = 0 imply that 
ui = 0 = wcx = 0 in Vx [0, t 0 ], provided that the hypotheses (3.1)-(3.4) hold. Therefore 
we consider the problem P 0 defined by the following equations: 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

tj, ,} = eii,, 

ToiJ = q,,, 

til = Curs Ers- EuO + Fil« Wa., 

'YJ = E11 eil+a0-Ga.wa., 

q, = hJkEJk+g,O+h,cxwa.+kil0,1 , 

with the initial conditions 

(3.9) u1(xn 0) = 0, u1(x5' 0) = 0, O(xn 0) = 0, wcx(x,, 0) = 0, on V, 

and the boundary conditions 

Ut = 0 On oVl. X [0, to], t, = tj(VJ = 0 On oV2 X [0, to], 

(j = 0 on 0V3 X [0, to], q,v, = 0 On oV4 X [0, to). 
(3.10) 

In order to prove the uniqueness of solution of the problem P 0 , it suffices to show that 
the function y(t) defined by 

(3.11) y(t) = J (u1u1+eileil+02 +wa.wa.)dV 
V 

vanishes on [0, t 0 ]. Assume to the contrary that' y(t) :;E: 0 on [0, t0 ]. Then we have the 
following: 
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LEMMA 1. If (u, 0, wcx) (xs, t) is a solution of the problem P 0 then 

(3.12) f ( ~ eU,U,+ ~ C,1.,e,1 e.,+ ~ a02 +Fu.euw.)dv 
V 

t 

= J J [(GcxO+Fucxeii)wcx- + q,o,,] dVd-r, t E [0, t0]. 

0 V 
0 

Proof. By using Eqs. (3 ~ 5)-(3.8}, the boundary conditions (3.10), the geometric 
relations (2.3) and the symmetry relations (2.20), we get 

(3.13) ~ f ( ~ eU,U,+ ~ Cu,.eue,.+ ~ a02 +Fu,.euw.) dV 
V 

= J (eu, u, + Ctjrs Ers Eu + aOO +Fiji% Eu Wcx + Fl}C% eu Wcx) dV 
V 

= J [u,t1,,1 +(CursErs+Fucxwcx)u,,1+ 0(~-Eueu+Gcxwcx) 
V 

+Fu.euWJdV = f r (G.O+F,1.eu>W.- ;o q,o,,] dV. 

We now integrate on [0, t], t e [0, t0 ] and we use the initial conditions (3.9) so that 
from Eq. (3.13) the identity (3.12) follows. This completes the proof. 

LEMMA 2. Let (uh O,wcx) (xs, t) be a solution oftheproblemP0 • We assume the hypoth
esis (d) to be satisfied. Then there exist positive constants m1 and m2 so that 

J3.14) J[(Ga.O+FucxeiJ)wcx-+q,O,;]dv~ -m1 f 0,,0, 1dV 
V 

0 
V 

+m2 I (euEtJ+02+wcxwcx)dV, t E [0, t 0 ]. 

V 

Proof. By using the relations (3.7) and (3.8}3 , 4 , we can write 

(3.15) f[(GcxO+Fucxeu)wcx- ; . q1P,,]dv =- J T.~kli0, 1 0,1dV 
V 0 V 0 

·where we have used the notations 

(3.16) fu = mucxGcx+Fucxncx, 
1 

MtJk = Fucxrkcx- To htJ, 

+ J (Hurs Eij Ers + 102 +JlJ elJO + Ki}C% EtjWcx + Lcx Wcx (J 
V . 

+ MtJk EtJ(JJk + N, 0, i 0 + P,a.O, 1 Wcx)dV, 

Lcx = GpPpcx, 

1 
P,cx = - To htcx· 

http://rcin.org.pl



ON THE LINEAR THEORY OF THERMQ-VISCOELASTIC MATERIALS 461 

We now make use of the hypothesis (d). An application of the Schwarz inequality 
and the arithmetic-geometric mean inequality 

(3.17) b 1 ( a
2 

b2 2 ) a ~2-;t2+ n' 

to the last terms in Eq. (3.15) gives, for arbitrary positive constants n 1 , n 2 and n 3 , 

(3.18) 2 J [ (G.9+ Fli.e,1)W.- ;. q,o,}w.; ( -2p+ni+n~+n~) 

x J o,,o,,av+ ( ~l +Ml+Mg+M'/,) J siJsudv 
V 1 V 

In the above inequality we have used the notations 

Mr = max(M,1kMt1k) (xs), Mi = max(N,N,) (x")' 

Mi = max(P,a.Pta.) (xs), Ml = 2max[(HiJmnHiJmn) (x 5)],
112 

Mg = max(Jufu) (xs), Mg = max(Kua.K11J (x 5), 

(3.19) 

Mi = 2maxl/(xs)1, Mi = max(La.La.) (x5), on V. 

We choose the arbitrary constants n 1 , n 2 and n 3 so that the quantity m1 defined by 

(3.20) 

is strictly positive. Thus, from Eq. (3.18) we deduce the inequality (3.14), provided we 
choose 

(3 21) 1 ( Mr 2 2 2 
• m2 = 2 max ni +M4+M5 +M6 , 

The proof of the lemma is complete. 
LEMMA 3. Let (ui, 0, wa.) (x5 , t) be a solution ofthe problem P0 • We assume the hypoth

eses (a)-(d) to be satisfied. Then there is a positive constant m3 so that 

I 

(3.22) J (u,ut+siisiJ+02+wa.wa.)dV ~ m3J J (utu,+sueu 
V 0 V 

+(F+wa.wa.)dVd-r:, t E [0, t0 ]. 

Pro of. In view of the hypotheses (a)-( c), we note that 

(3.23) mo J (ui Ut+ eiJ eu + fJ2)dV ~ J (eu1 u1 + Ciirs eii Ers + a02 )dV, 
V V 

where 

(3.24) 
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Further,:we -use the Schwarz inequality and the arithmetic-geometric mean inequality 
(3.17) so that 

(3.25) 

for an arbitraty constant n 4 , where 

(3.26) 

If we now take into account the relations (3.14), (3.23) and (3.25), from the identity 
(3.12) we get 

(3.27) m 0 f (u1u1+EtJBtJ+02)dV ~ :n~ f EtJElJdV+ ~! J WaWadV 
V V 

4 
V 

t t 

-mt f f 0,i0,;dVth+m2 f f (E;JEiJ+02+wawJdVdr, t E [0, to). 
0 V 0 V 

On the other hand, by using the initial conditions (3.9) and the relations (3. 7) and 
(3.8)4 , we obtain 

t t 

(3.28) f WaWadV = f ~ ( f WaWadV) dr = 2 J J WaWadVth 
V 0 V 0 V 

t 

= 2 f f (mtJaEtJWa+nawa0+prxfJWaWfJ+r1aWa0, 1)dVdr. 
0 V 

An application of the Schwarz inequality and the arithmetic-geometric mean inequal
ity to the left side of the relation · (3.28) gives 

(3.29) 2 J (mtJa e;1 wa +na WaO + PafJ Wa wp+ r1awa0, 1)dV 
V 

~ m4 f (eue11 +02 +wawa)dV+n~ f O,,(),,dV, 
V V 

for an arbitrary constant n 5 and 

m4 = max(M~3 , I, ~~0 +M~1 +M~2+ 1), 
(3.30) Mfo = max(r,arta) (xs), Mft = 2max[(pafJPaP) (xs)Jl 12, 

Mf2 = max(nana) (xs), Mf 3 = max(miJamiJa) (xs) on V. 

From the relations (3.28) and (3.29) we obtain, for an arbitrary constant n 6 , 

t t 

(3.31) n~ f WaWadV ~ :n~m4f f (e,Jelj+02 +wrxwa)dVdr+n~:n;J f o,,O,,dVdr. 
V 0 V 0 V 
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Now, from the inequalities (3.27) and (3.31) we deduce 

m 0 J (u1u1+82)dV+(m0 -ni) J BtJeiJdV+(n~~ ~f) J wa.wa.dV 
V V 

4 
V 

(3.32) 

t t 

~ -(m1. -n~ni) I .f n.io,idVd-r:+(m2+n~·m4) I J (ei)ei1 
0 V 0 V 

+ 82 +w« wa.)dV d-r:, 

Then, we choose the arbitrary constants n 4 , n 5 and n 6 so that 

(3.33) 2 M~ , 
m6 = n 6 --2- > 0, 

7&4 

t e [0, t0 ]. 

With these in mind, the inequality (3.22) follows from the inequality (3.32), provided 

(3.34) m 3 = (m2 +n~m4)/min(m0 , ms, m6). 

The proof of the lemma is now complete. 
Obviously the inequality (3.22) an:d Gronwall's lemma [13] imply 

y(t) = J (u1u,+e11 eu+82+wa.mJdV = 0 on [0, t 0 ], 

V 

which contradicts our initial assumption concerning the uniqueness. 
Thus we have 
THEoREM 1. Under the hypotheses (a)-( d) there is at the most one solution of the initial

-boundary value problems defined by Eqs. (2.24)-(2.26), with the initial conditions (2.27) 
and the boundary conditions (2.28). 
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