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On the linear theory of thermo-viscoelastic materials
with internal state variables

S. CHIRITA (AsD

IN THIS PAPER we establish the basic equations for the linear theory of thermo-viscoelastic
materials with internal state variables. We further prove a uniqueness theorem for the solution
of initial-boundary value problems formulated in the context of this theory.

W pracy przedstawiono podstawowe réwnania liniowej teorii materialobw termo-lepkosprezy-
stych z wewnetrznymi zmiennymi stanu. Dowiedziono nastepnie twierdzenia o jednoznacz-
noéci dla rozwiazah zagadniefi poczatkowo-brzegowych sformulowanych w ramach tej teorii.

B pabote mpepcTaBiieHbl OCHOBHBIE YDABHEHWs JIMHEHHOH TEOPHH TEpPMO-BASKOYNPYTHX Ma-
TEPHAJIOB C BHYTPEHHMMH IIéPEMEHHBLIMH COCTOAHMA. J34TeM IOKASAHA TEOpEMa eIMHCTBEH-
HOCTH [IJIA pellieHHIi HauaJIbHO-KpaeBhIX 33/1a4, choOpMY/IHPOBAHHEIX B PAMKAX 3TOM TEODHH.

1. Introduction

A GENERAL theory of thermo-viscoelastic material bodies with internal state variables
has been formulated by CoLEMAN and GURTIN [1], BoweN [2] and VaLaNis [3]. Under
some particular constitutive assumptions, an isotropic linear theory was considered by
MAILEScU and SuLiciu [4, 5] concerning the propagation of acceleration waves in
thermo-viscoelastic materials with internal state variables.

The present work considers materials with internal state variables, attention being
focussed on the linear theory of anisotropic and inhomogeneous thermo-viscoelastic
media. In Sect. 2 we summarize the basic structure for a thermoelastic body with internal
state variables [1]. Further, we establish the basic equations for the case of small thermo-
elastic deformations.

For the case of linear theory, in Sect. 3, we prove the uniqueness of the solution to
the initial-boundary value problems appropriate to the dynamics of the thermo-visco-
elastic bodies with internal state variables. The method of proof is one based upon a Gron-
wall type inequality.

The uniqueness results for the internal state variable approach of finite deformations
of materials without heat conduction was obtained by NACHLINGER and NuNnziaTo [6],
in the one-dimensional case, and by Kosmiski1 [7, 8], for the three-dimensional case.

2. Basic equations

In what follows we consider the linear theory of mechanics of continuous media with
internal state variables.
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We consider a body which, at time ¢ = 0, occupies the properly regular region V¥ of
Euclidean three-dimensional space R*® and is bounded by the piecewise smooth surface
dV [9]. The configuration of the body at time ¢ = 0 is taken as the reference configuration.
The motion of the body is referred to a fixed system of rectangular Cartesian axes.

The integral forms of the law of linear momentum and the law of balance of energy
are equivalent to the following differential equations [1]:

2.1) tn,y+oF; = oy,
2.2 oU = tiéytor+q..,
where

(2.3) 2e; = wy,ytuy,

and, within the linear approximation,
(2.4) 2é[j = &I,j+£‘1.l‘

In the above relations we have used the following notations: g is the density mass, u;
are the components of the displacement vector, U is the internal energy per unit mass,
F; are the components of the body force vector per unit mass,  is the heat supply function
per unit mass and unit time, #;; are the components of the stress tensor and g; are the
components of the heat flux vector. Throughout this paper we shall use the following
conventions: a superposed dot denotes the material time derivative; Latin indices have
the range 1, 2, 3, while the Greek subscripts have the range 1, 2, ..., n; summation over
repeated subscripts is implied; subscripts preceded by a comma denote partial differentia-
tion with respect to the corresponding Cartesian coordinate x;.
The entropy production inequality has the local form

= . . 1
(2.5) —Qw—ﬂT+I|J£;J+?ql T’i 2 0,

where 7 is the entropy per unit volume, T is the absolute temperature which is assumed
to be always positive, and y is the Helmholtz free energy function

(2.6 ey = eU-Tpy.
According to the theory of [1], we define a linear thermo-viscoelastic material with
internal state variables by the following constitutive equations:
v = Y(emn; T; Tr; &5 XJ),
tyy = tiy(emns T3 T E3 X5),
@7 N = nemns T T, &35 %),
4 = qi(emn; T; T ;5 &5; X),
Ey = ol T T 3 %),

the functions from the set (2.7) being consistent with the assumptions of the linear theory.
In the above equations the scalars £, (@ = 1, 2, ..., n) represent the internal state variables
1, 2.
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From the relations (2.5) and (2.7) it follows that

_ Oy _ Oy dp _
(2-8) Lhy=p0 38,1 s n= Q*a—.f. ﬁj =0,
29) ~oufet 0T >0,
where
oy
2.10 y =
(2.10) O = @ 5

is called the chemical affinity of x; [2]. _
Taking into account Egs. (2.8)-(2.10), the relation (2.2) becomes
(2.11) Oufut+T0) = or+q,,,.

In the linear theory we consider the temperature 6 measured from the absolute tem-
perature T, of the initial state and the internal state variables w, measured from the
internal state variables £2 of the initial state. Thus we have

(2.12) T=To+0, & =&+tw,.
Therefore we suppose that the initial state of the body is characterized by the following:
(2.13) &g;=0, T=T1, T,=0, &=¢&.

The initial state of the body is said to be an equlibrium state for the material if
(2.149) £.0, T,,0, 52, x) = 0.
The initial state is a strong equilibrium state if it is an equlibrium state for which we have
(2.15) 0,00, To, 0, &3, x,) = 0.

In our subsequent development we will suppose that the initial state is a strong equi-
librium state. In this case, from the inequality (2.9) we get [2, 10]

(216) qi(O: To, 09 53, xs) = 0'

In the linear theory of an anisotropic thermo-viscoelastic material with internal state
variables, we assume

1 1 1
217) oy = 5 Cijrs€ijrst+ > D s wq wp— T a0 — E;&,,0 + Fij0 81y0,+ G, 0y,

(2.18) Jo = My &+n,0+pagwptri,0 o,
(2.19) @ = finen+80+h,0.,+k;0 ;.

In the relations (2.17)-(2.19) the coefficients Cjj.5, Dag, Eij, @5 Fijys Gus Mijas Pas Paps
Tixs fijks 8is i and ky; are funttions of x,, which characterize the thermo-viscoelastic
properties of the material with internal state variables. For a homogeneous material
these quantities are constants. They satisfy the symmetry relations

Curs =Ly = C_ﬁrs: Daﬂ = Dﬂau Eu = E.m

Fiu= Fuay Mg =My, fi = finse

(2.20)

5 Arch. Mech. Stos. nr 4/82
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In view of the relation (2.17), from Egs. (2.8) and (2.10) we deduce

hy = Cl..'n Eps— EU 0 "-‘IFU“CU“ ’

@21)

n= Ei.:311+“5—Guwas
and
(222) Oy = Fljc: B‘j+G¢8+Dagwp.

According to the linear approximation, Eq. (2.11) becomes
2.23) Toiy = er+qu,u.

If we substitute the relations (2.3) and (2.21) into the relations (2.1), (2.7)s and (2.23),
we get

(2.29) (Cijrstir, s), ;= (Ep0), ;+ (Fjiawy), ;+0F, = oty
(2.25) To(E,iy, 3+ af—G,b,) = or+(finty, ), 1+ (2.0, i+ (higwy),  + (k130 5) 4y
(2.26) Wy = Myyethy j+N,0+ppwp+r,0 ;.

To these equations we adjoin the initial conditions and the boundary conditions.
In our hypotheses we assume the following initial conditions:
227 w(x,0)=0, i(x,00=0, 06(x,,0)=0, . (x;,0)=0, onV.
We supplement the above equations with the prescribed boundary conditions
228 u = ) on aV,x[0,t), ti=tyy, =1 on aV,x|0,1,],
6=0 on JVix[0,1], qvi=9qg on dV,x][0,1,],

where #;, 1;, 0 and g are prescribed functions of x; and ¢, and oV, d¥, and dV,, @V,
denote subsets of ¢V such that oV, udV, = dV,udV, = dVand dV,NdV, = dVindV, =
¢; and »; are the components of the unit outward normal to dV.

By a solution of the considered initial-boundary value problems, we mean the state
of deformation (u;, 0, w,) (x,, t) satisfying Eqgs. (2.24)-(2.26), the designated initial
conditions (2.27) and the boundary conditions (2.28).

3. A uniqueness theorem

In this section we establish the uniqueness of solution to the initial-boundary value
problems defined by Egs. (2.24)-(2.26), the initial conditions (2.27) and the boundary
conditions (2.28).

In order to prove this we shall need the following assumptions:

(a) the mass density o(x,) is strictly positive, i.e.

(3.1) o(x) 200 >0, onV;
(b) the specific heat a(x,) is strictly positive, i.e.
3.2 a(x,) 2 ay, >0, on V:
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(c) Ciju(x;) is positive definite in the sense that there exists a positive constant 4 such
that

(3.3) [ Coméibudv > 2 [ &6 av,
Vv V

for all second-order symmetric tensors {;;;
(d) the symmetric part k;; of the thermal conductivity tensor k;;, is positive definite
in the sense that there exists a positive constant x such that

1 -
(3.4) f—kijC(deV = 2 ICI CidV’
7 To 4

for all vectors ;.
The above restrictions are currently used in the classical theory of thermoelasticity
in order to establish the uniqueness and thermoelastic stability (see e.g. [11], [12]).
Because of the linearity of the problems, it suffices to prove that the considered in-
itial-boundary value problems in which F; = r =0 and &; = ; = 0 = ¢ = 0 imply that
u; =0 = w, = 0 in Vx[0, t,], provided that the hypotheses (3.1)-(3.4) hold. Therefore
we consider the problem P, defined by the following equations:

(3.5 L,y = O,
(3.6) Ton = qu,1,
3.7 O = fos

tyy = Ciyrs&rs— Eyj0+ Fijq0q,
3.8) n = E;e,;+a0 -G, w,,
4 = finen+80+hgwe+k;,0 5,
Jo = Mype+n0+pgwstr,0
with the initial conditions
(3.9) u(x,,0) =0, i(x;,0)=0, 0(x,,0)=0, wy(x,,0)=0, on V,
and the boundary conditions
uy=0 on dVyx[0,1], H=t=0 on aV,x][0, ],

(3.10)
8 =0 on 3V3 X [0, :o}, q;v, = 0 on 3V4 X [0, fo].

In order to prove the uniqueness of solution of the problem Py, it suffices to show that
the function y(z) defined by

(3.11) y(t) = J. (qu«l‘;+susu+92+wuw¢)dV
v

vanishes on [0, #,]. Assume to the contrary that y(¢) # 0 on [0, #,]. Then we have the
following:

5%
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LemMa 1. If (4, 0, w,) (xs, ) is a solution of the problem P, then

| 1 1
(3.12) j (“2— ouu+ 7 Ciirs€ij&est 7 ab? + Fyy, sijwu) av
v

r
= f f[(Gae +FU¢: Eu)d)“— “}—E—Q(G,g] dVdr, te [0, to].
(1]
oV

Proof. By using Egs. (3.5)-(3.8), the boundary conditions (3.10), the geometric
relations (2.3) and the symmetry relations (2.20), we get

d s DT | 1
(313) —gt— (Tgﬂlﬂ;'l'7Cuueuen'l'?aﬂz+ﬂm811w¢) dv
V

= f(gﬁ‘lii;+CU,.,E,.,Eu-i-aﬁé-i-ﬂnéuw¢+FU¢£Ud)a)dV
v
= f (150, 5+ (Cigrs s+ Fria 0a)iy,  + 007 — Eyy 15+ G 6)
v

+Fum€ué)¢]dV = f [(Gae+F[ja€u)d)¢"‘ 'Tl— q(OJ] dav.
v 0
We now integrate on [0, 7], ¢ € [0, #,] and we use the initial conditions (3.9) so that
from Eq. (3.13) the identity (3.12) follows. This completes the proof.

LemMMA 2. Let (i, 0, o) (x5, t) be a solution of the problem P,. We assume the hypoth-
esis (d) to be satisfied. Then there exist positive constants m, and m, so that

(3.14) f[(G,e+Fmsu)a;¢-TLoq,o.;] dv < —my fe,.e,idv
vV 14

+m2 f(SUBU'*'ez +w“m¢)dV, te [0, lo].
vV
Proof. By using the relations (3.7) and (3.8); ,, we can write

(3-15) fl:(Gms +F[j¢£u)d)¢— ""L qlﬂ"] av = — f—l— Eue'(ﬂ'JdV
v To ¢y To

+ f (Hljrssusrs'i'lez+J.USUB+‘KUG£UUJ¢+L¢CUG6
v

+ M, 650 x+N,0 0+ P, 0 0,)dV,
where we have used the notations

1
Hu" = _i”(‘_FrnmUa'l'Fuamrm)! I = Gyn,,

(3'16) JIJ = ml}c:Ga"' -Fijancn Kuu = Euﬂpﬂm L, = Gﬂpﬁas
1 1 1
My = Em'km——fgfm» Ny = Garig— Tog“ Py = __ﬁhia'
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We now make use of the hypothesis (d). An application of the Schwarz inequality
and the arithmetic-geometric mean inequality

(3.17) g A2 s
2 \ #? :
to the last terms in Eq. (3.15) gives, for arbitrary positive constants #;, 7, and 73,

(3.18) 2 f [(G,9+F,_,¢eu)fu¢— Tio q,e,,] dV < (—2u+ni+ai+al)
v

X fﬂ};ﬂ_,dV—{- +M4+M5+M6) fﬁuﬁudv
V

2
+(‘:f;: )fww(”a +M§+1) fwawde
V

In the above inequality we have used the notations
M} = max(M M) (x5), M3 = max(N,N)) (x,),

e

(3.19) M3 = max(PiPy,) (x,), M2 = 2max[(H, jmn Hijmn) (X511
' M2 = max(J,;Jy) (x,), M2 = max(K.K0) (%)),
M3 = 2max|I(x), M} = max(L,L,) (x;), on V.

We choose the arbitrary constants m,, 7, and 75 so that the quantity m, defined by
(3.20) my = pu— % #+a3+n3)
is strictly positive. Thus, from Eq. (3.18) we deduce the inequality (3.14), provided we
choose

M3

2
3.21) mz_lmax(‘:f; FMIEMIEME, 2 MI+2, M3
1 2

: o).

The proof of the lemma is complete.

LeEMMA 3. Let (u4;, 0, w,) (x5, t) be a solution of the problem P,. We assume the hypoth-
eses (a)-(d) to be satisfied. Then there is a positive constant m; so that

t
(322) f(l}‘il|+8u€u+62+wmw¢)dif < msf f(ﬁg&('i‘SuEU
vV oV

+0*+w,w)dVdr, tel0,1].
Proof. In view of the hypotheses (a)-(c), we note that

(3.23) Mg f (#t+ &85+ 6%)dV < f (it + Cjrs 158 +a0?)dv,
v v

where

(324) my = min(gth A, ao)°
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Further, we use the Schwarz inequality and the arithmetic-geometric mean inequality
(3.17) so that

(3.25)

mes,_,wadV| 3!4 f&'uSUdV'l‘ fwuw,dV

for an arbitraty constant 7, , where
(3.26) M3 = max(F, ;o F,;) (x;) on V.

If we now take into account the relations (3.14), (3.23) and (3.25), from the identity
(3.12) we get
2
29 fwa w.dV
V

! r
-—m,f fﬂ_{&_idVdf+M3f f(eusu-l-92+w¢wa)dVdr, te {0, to].
0V [l 4

327 m, f(“( U+ & 8+0%)dV < 7} f
Vv Vv

On the other hand, by using the initial conditions (3.9) and the relations (3.7) and
(3.8),, we obtain

629 Jonontt = [ & [ ononar)ar =2 [ ouiaavi

= 2f f(m,me,_,wa+nmw“8+p¢w¢wp+rmw“ﬂ,,)dl’dt.
o ¥

An application of the Schwarz inequality and the arithmetic-geometric mean inequal-
ity to the left side of the relation (3.28) gives

(329 2 Vf (Mg 81y D+ My 020+ Pop Do 0+ 10050 ) AV
< my [ (erye0+ 02 + 0, 0,)dV + 73 ! 0,0 ,dV,
vV
for an arbitrary constant s and
my = max(M”, 1, Mn—g" +Mf,+Mfz+1),

(3.30) M3o = max(rigria) (xy), 31 = 2max[(pap Pup) (X173,

M?; = max(meny) (X)),  M?Z3 = max(myemy,)(x,) on V.

Il

From the relations (3.28) and (3.29) we obtain, for an arbitrary constant 74,

t

f
(3.31) =2 fwuwadV.s :r:§m4f f(e,_,e,_,+82+wam,)dVdr+n§:r§f fﬂ,(B'Idth.
v o oV
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Now, from the inequalities (3.27) and (3.31) we deduce

2
5
7

(3.32) mg f(l},ﬁ;+92)dV+(mo—:ﬂ:§.) f&'ué’udV*" (ng— M, ) fﬂ)awudV
Vv v v

I 4 '
< —(mx.—ﬂ§3§)f fﬂ,is,thdT'i'(mz +n§m4)f f(e,_,su
oV 0oV

+0*+w, w)dVdr, tel0, t,].

Then, we choose the arbitrary constants ., s and mg so that

M2
(3.33) ms = mo—ni >0, mg=ni— e 0, m;,=m—nain}>0.
4

With these in mind, the inequality (3.22) follows from the inequality (3.32), provided
(3.34) my = (my+ngms)/min(m,, ms, me).

The proof of the lemma is now complete.
Obviously the inequality (3.22) and Gronwall’s lemma [13] imply

y(f) — f(ﬁ;f«f¢+8,;s,1+92+waw,)dl/ =0 on [0,l .!‘0],
Vv

which contradicts our initial assumption concerning the uniqueness.

Thus we have

THEOREM 1. Under the hypotheses (a)-(d) there is at the most one solution of the initial-
-boundary value problems defined by Egs. (2.24)-(2.26), with the initial conditions (2.27)
and the boundary conditions (2.28).
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