On the linear theory of thermo-viscoelastic materials with internal state variables

S. CHIRIȚ̃ (IAŞI)

In this paper we establish the basic equations for the linear theory of thermo-viscoelastic materials with internal state variables. We further prove a uniqueness theorem for the solution of initial-boundary value problems formulated in the context of this theory.

W pracy przedstawiono podstawowe równania liniowej teorii materiałów termo-lepkosprę̇ystych z wewnętrznymi zmiennymi stanu. Dowiedziono następnie twierdzenia o jednoznaczności dla rozwiązań zagadnień początkowo-brzegowych sformułowanych w ramach tej teorii.

В работе представлены основные уравнения линейной теории термо-вязкоупругих материалов с внутренними переменными состояния. Затем доказана теорема единственности для решений начально-краевых задач, сформулированных в рамках этой теории.

1. Introduction

A general theory of thermo-viscoelastic material bodies with internal state variables has been formulated by Coleman and Gurtin [1], Bowen [2] and Valanis [3]. Under some particular constitutive assumptions, an isotropic linear theory was considered by Mihăilescu and Suliciu [4,5] concerning the propagation of acceleration waves in thermo-viscoelastic materials with internal state variables.

The present work considers materials with internal state variables, attention being focussed on the linear theory of anisotropic and inhomogeneous thermo-viscoelastic media. In Sect. 2 we summarize the basic structure for a thermoelastic body with internal state variables [1]. Further, we establish the basic equations for the case of small thermoelastic deformations.

For the case of linear theory, in Sect. 3, we prove the uniqueness of the solution to the initial-boundary value problems appropriate to the dynamics of the thermo-viscoelastic bodies with internal state variables. The method of proof is one based upon a Gronwall type inequality.

The uniqueness results for the internal state variable approach of finite deformations of materials without heat conduction was obtained by Nachlinger and Nunziato [6], in the one-dimensional case, and by Kosiński [7, 8], for the three-dimensional case.

2. Basic equations

In what follows we consider the linear theory of mechanics of continuous media with internal state variables.

We consider a body which, at time $t=0$, occupies the properly regular region V of Euclidean three-dimensional space R^{3} and is bounded by the piecewise smooth surface ∂V [9]. The configuration of the body at time $t=0$ is taken as the reference configuration. The motion of the body is referred to a fixed system of rectangular Cartesian axes.

The integral forms of the law of linear momentum and the law of balance of energy are equivalent to the following differential equations [1]:

$$
\begin{gather*}
t_{j i, j}+\varrho F_{i}=\varrho \ddot{u}_{i}, \tag{2.1}\\
\varrho \dot{U}=t_{i j} \dot{\varepsilon}_{i j}+\varrho r+q_{i, i}, \tag{2.2}
\end{gather*}
$$

where

$$
\begin{equation*}
2 \varepsilon_{i j}=u_{i, j}+u_{j, i} \tag{2.3}
\end{equation*}
$$

and, within the linear approximation,

$$
\begin{equation*}
2 \dot{\varepsilon}_{i j}=\dot{u}_{i, j}+\dot{u}_{j, i} \tag{2.4}
\end{equation*}
$$

In the above relations we have used the following notations: ϱ is the density mass, u_{i} are the components of the displacement vector, U is the internal energy per unit mass, F_{i} are the components of the body force vector per unit mass, r is the heat supply function per unit mass and unit time, $t_{i j}$ are the components of the stress tensor and q_{i} are the components of the heat flux vector. Throughout this paper we shall use the following conventions: a superposed dot denotes the material time derivative; Latin indices have the range $1,2,3$, while the Greek subscripts have the range $1,2, \ldots, n$; summation over repeated subscripts is implied; subscripts preceded by a comma denote partial differentiation with respect to the corresponding Cartesian coordinate x_{i}.

The entropy production inequality has the local form

$$
\begin{equation*}
-\varrho \dot{\psi}-\eta \dot{T}+t_{i j} \dot{\varepsilon}_{i J}+\frac{1}{T} q_{i} T_{, i} \geqslant 0 \tag{2.5}
\end{equation*}
$$

where η is the entropy per unit volume, T is the absolute temperature which is assumed to be always positive, and ψ is the Helmholtz free energy function

$$
\begin{equation*}
\varrho \psi=\varrho U-T \eta \tag{2.6}
\end{equation*}
$$

According to the theory of [1], we define a linear thermo-viscoelastic material with internal state variables by the following constitutive equations:

$$
\begin{align*}
\psi & =\psi\left(\varepsilon_{m n} ; T ; T_{, r} ; \xi_{\beta} ; x_{s}\right), \\
t_{i j} & =t_{i j}\left(\varepsilon_{m n} ; T ; T_{, r} ; \xi_{\beta} ; x_{s}\right), \\
\eta & =\eta\left(\varepsilon_{m n} ; T ; T_{, r} ; \xi_{\beta} ; x_{s}\right), \tag{2.7}\\
q_{i} & =q_{i}\left(\varepsilon_{m n} ; T ; T_{, r} ; \xi_{\beta} ; x_{s}\right), \\
\dot{\xi}_{\alpha} & =f_{\alpha}\left(\varepsilon_{m n} ; T ; T_{, r} ; \xi_{\beta} ; x_{s}\right),
\end{align*}
$$

the functions from the set (2.7) being consistent with the assumptions of the linear theory. In the above equations the scalars $\xi_{\alpha}(\alpha=1,2, \ldots, n)$ represent the internal state variables [1, 2].

From the relations (2.5) and (2.7) it follows that

$$
\begin{gather*}
t_{i j}=\varrho \frac{\partial \psi}{\partial \varepsilon_{i j}}, \quad \eta=-\varrho \frac{\partial \psi}{\partial T}, \quad \frac{\partial \psi}{\partial T, r}=0 \tag{2.8}\\
-\sigma_{\alpha} f_{\alpha}+\frac{1}{T} q_{i} T_{, i} \geqslant 0 \tag{2.9}
\end{gather*}
$$

where

$$
\begin{equation*}
\sigma_{\alpha}=\varrho \frac{\partial \psi}{\partial \xi_{\alpha}} \tag{2.10}
\end{equation*}
$$

is called the chemical affinity of x_{i} [2].
Taking into account Eqs. (2.8)-(2.10), the relation (2.2) becomes

$$
\begin{equation*}
\sigma_{\alpha} f_{\alpha}+T \dot{\eta}=\varrho r+q_{i, i} \tag{2.11}
\end{equation*}
$$

In the linear theory we consider the temperature θ measured from the absolute temperature T_{0} of the initial state and the internal state variables ω_{α} measured from the internal state variables ξ_{α}^{0} of the initial state. Thus we have

$$
\begin{equation*}
T=T_{0}+\theta, \quad \xi_{\alpha}=\xi_{\alpha}^{0}+\omega_{\alpha} \tag{2.12}
\end{equation*}
$$

Therefore we suppose that the initial state of the body is characterized by the following:

$$
\begin{equation*}
\varepsilon_{i J}=0, \quad T=T_{0}, \quad T, i=0, \quad \xi_{\alpha}=\xi_{\alpha}^{0} \tag{2.13}
\end{equation*}
$$

The initial state of the body is said to be an equlibrium state for the material if

$$
\begin{equation*}
f_{\alpha}\left(0, T_{0}, 0, \xi_{\beta}^{0}, x_{s}\right)=0 \tag{2.14}
\end{equation*}
$$

The initial state is a strong equilibrium state if it is an equlibrium state for which we have

$$
\begin{equation*}
\sigma_{\alpha}\left(0, T_{0}, 0, \xi_{\beta}^{0}, x_{s}\right)=0 \tag{2.15}
\end{equation*}
$$

In our subsequent development we will suppose that the initial state is a strong equilibrium state. In this case, from the inequality (2.9) we get $[2,10]$

$$
\begin{equation*}
q_{t}\left(0, T_{0}, 0, \xi_{\beta}^{0}, x_{s}\right)=0 \tag{2.16}
\end{equation*}
$$

In the linear theory of an anisotropic thermo-viscoelastic material with internal state variables, we assume

$$
\begin{gather*}
\varrho \psi=\frac{1}{2} C_{i j r s} \varepsilon_{i j} \varepsilon_{r s}+\frac{1}{2} D_{\alpha \beta} \omega_{\alpha} \omega_{\beta}-\frac{1}{2} a \theta^{2}-E_{i j} \varepsilon_{i j} \theta+F_{i j \alpha} \varepsilon_{i j} \omega_{\alpha}+G_{\alpha} \theta \omega_{\alpha}, \tag{2.17}\\
f_{\alpha}=m_{i j \alpha} \varepsilon_{i j}+n_{\alpha} \theta+p_{\alpha \beta} \omega_{\beta}+r_{i \alpha} \theta_{, i} \tag{2.18}\\
q_{i}=f_{i j k} \varepsilon_{j k}+g_{i} \theta+h_{i \alpha} \omega_{\alpha}+k_{i j} \theta_{, j} \tag{2.19}
\end{gather*}
$$

In the relations (2.17)-(2.19) the coefficients $C_{i j r s}, D_{\alpha \beta}, E_{i j}, a, F_{i j \alpha}, G_{\alpha}, m_{i j \alpha}, n_{\alpha}, p_{\alpha \beta}$, $r_{i \alpha}, f_{i j k}, g_{i}, h_{i \alpha}$ and $k_{i j}$ are functions of x_{s}, which characterize the thermo-viscoelastic properties of the material with internal state variables. For a homogeneous material these quantities are constants. They satisfy the symmetry relations

$$
\begin{gather*}
C_{i j r s}=C_{r s i j}=C_{j i r s}, \quad D_{\alpha \beta}=D_{\beta \alpha}, \quad E_{i j}=E_{j t}, \tag{2.20}\\
F_{i j \alpha}=F_{j l \alpha}, \quad m_{i j \alpha}=m_{j l \alpha}, \quad f_{l j k}=f_{i k j} .
\end{gather*}
$$

In view of the relation (2.17), from Eqs. (2.8) and (2.10) we deduce

$$
\begin{align*}
t_{i j} & =C_{i j r s} \varepsilon_{r s}-E_{i j} \theta+F_{i j \alpha} \omega_{\alpha} \\
\eta & =E_{i j} \varepsilon_{i j}+a \theta-G_{\alpha} \omega_{\alpha} \tag{2.21}
\end{align*}
$$

and

$$
\begin{equation*}
\sigma_{\alpha}=F_{i j \alpha} \varepsilon_{i j}+G_{\alpha} \theta+D_{\alpha \beta} \omega_{\beta} . \tag{2.22}
\end{equation*}
$$

According to the linear approximation, Eq. (2.11) becomes

$$
\begin{equation*}
T_{0} \dot{\eta}=\varrho r+q_{i, i} \tag{2.23}
\end{equation*}
$$

If we substitute the relations (2.3) and (2.21) into the relations (2.1), (2.7) ${ }_{5}$ and (2.23), we get

$$
\begin{gather*}
\left(C_{i j r s} u_{r, s}\right)_{, j}-\left(E_{j i} \theta\right)_{, j}+\left(F_{j i \alpha} \omega_{\alpha}\right)_{, j}+\varrho F_{i}=\varrho \ddot{u}_{i}, \tag{2.24}\\
T_{0}\left(E_{i j} \dot{u}_{i, j}+a \dot{\theta}-G_{\alpha} \dot{\omega}_{\alpha}\right)=\varrho r+\left(f_{i j k} u_{j, k}\right)_{, i}+\left(g_{i} \theta\right)_{, i}+\left(h_{i \alpha} \omega_{\alpha}\right)_{, i}+\left(k_{i j} \theta_{, j}\right)_{, i} \tag{2.25}\\
\dot{\omega}_{\alpha}=m_{i j \alpha} u_{i, j}+n_{\alpha} \theta+p_{\alpha \beta} \omega_{\beta}+r_{i \alpha} \theta_{, i} . \tag{2.26}
\end{gather*}
$$

To these equations we adjoin the initial conditions and the boundary conditions. In our hypotheses we assume the following initial conditions:

$$
\begin{equation*}
u_{l}\left(x_{s}, 0\right)=0, \quad u_{l}\left(x_{s}, 0\right)=0, \quad \theta\left(x_{s}, 0\right)=0, \quad \omega_{\alpha}\left(x_{s}, 0\right)=0, \quad \text { on } \bar{V} \tag{2.27}
\end{equation*}
$$

We supplement the above equations with the prescribed boundary conditions

$$
\begin{gather*}
u_{i}=\bar{u}_{i} \quad \text { on } \quad \partial V_{1} \times\left[0, t_{0}\right], \quad t_{i}=t_{j i} v_{j}=\bar{t}_{i} \quad \text { on } \quad \partial V_{2} \times\left[0, t_{0}\right], \\
\theta=\bar{\theta} \quad \text { on } \quad \partial V_{3} \times\left[0, t_{0}\right], \quad q_{i} v_{i}=\bar{q} \quad \text { on } \quad \partial V_{4} \times\left[0, t_{0}\right], \tag{2.28}
\end{gather*}
$$

where $\bar{u}_{i}, \overline{t_{i}}, \bar{\theta}$ and \bar{q} are prescribed functions of x_{s} and t, and $\partial V_{1}, \partial V_{2}$ and $\partial V_{3}, \partial V_{4}$ denote subsets of ∂V such that $\partial V_{1} \cup \partial V_{2}=\partial V_{3} \cup \partial V_{4}=\partial V$ and $\partial V_{1} \cap \partial V_{2}=\partial V_{3} \cap \partial V_{4}=$ ϕ; and ν_{i} are the components of the unit outward normal to ∂V.

By a solution of the considered initial-boundary value problems, we mean the state of deformation $\left(u_{i}, \theta, \omega_{\alpha}\right)\left(x_{s}, t\right)$ satisfying Eqs. (2.24)-(2.26), the designated initial conditions (2.27) and the boundary conditions (2.28).

3. A uniqueness theorem

In this section we establish the uniqueness of solution to the initial-boundary value problems defined by Eqs. (2.24)-(2.26), the initial conditions (2.27) and the boundary conditions (2.28).

In order to prove this we shall need the following assumptions:
(a) the mass density $\varrho\left(x_{s}\right)$ is strictly positive, i.e.

$$
\begin{equation*}
\varrho\left(x_{s}\right) \geqslant \varrho_{0}>0, \quad \text { on } \bar{V} ; \tag{3.1}
\end{equation*}
$$

(b) the specific heat $a\left(x_{s}\right)$ is strictly positive, i.e.

$$
\begin{equation*}
a\left(x_{s}\right) \geqslant a_{0}>0, \quad \text { on } \bar{V} \tag{3.2}
\end{equation*}
$$

(c) $C_{i j k l}\left(x_{s}\right)$ is positive definite in the sense that there exists a positive constant λ such that

$$
\begin{equation*}
\int_{V} C_{i j k l} \xi_{i j} \xi_{k l} d V \geqslant \lambda \int_{V} \xi_{i j} \xi_{i j} d V \tag{3.3}
\end{equation*}
$$

for all second-order symmetric tensors $\zeta_{i j}$;
(d) the symmetric part $\tilde{k}_{i j}$ of the thermal conductivity tensor $k_{i j}$, is positive definite in the sense that there exists a positive constant μ such that

$$
\begin{equation*}
\int_{V} \frac{1}{T_{0}} \tilde{k}_{i j} \zeta_{i} \zeta_{j} d V \geqslant \mu \int_{V} \zeta_{i} \zeta_{i} d V \tag{3.4}
\end{equation*}
$$

for all vectors ζ_{i}.
The above restrictions are currently used in the classical theory of thermoelasticity in order to establish the uniqueness and thermoelastic stability (see e.g. [11], [12]).

Because of the linearity of the problems, it suffices to prove that the considered in-itial-boundary value problems in which $F_{i}=r=0$ and $\bar{u}_{i}=\overline{t_{i}}=\bar{\theta}=\bar{q}=0$ imply that $u_{i}=\theta=\omega_{\alpha}=0$ in $\bar{V} \times\left[0, t_{0}\right]$, provided that the hypotheses (3.1)-(3.4) hold. Therefore we consider the problem P_{0} defined by the following equations:

$$
\begin{gather*}
t_{j i, j}=\varrho \ddot{u}_{i}, \tag{3.5}\\
T_{0} \dot{\eta}=q_{i, t}, \tag{3.6}\\
\dot{\omega}_{\alpha}=f_{\alpha} \tag{3.7}\\
t_{i j}=C_{i j r s} \varepsilon_{r s}-E_{i j} \theta+F_{i j \alpha} \omega_{\alpha}, \\
\eta=E_{i j} \varepsilon_{i j}+a \theta-G_{\alpha} \omega_{\alpha} \tag{3.8}\\
q_{i}=f_{i j k} \varepsilon_{j k}+g_{i} \theta+h_{i \alpha} \omega_{\alpha}+k_{i j} \theta_{, j}, \\
f_{\alpha}=m_{i j \alpha} \varepsilon_{i j}+n_{\alpha} \theta+p_{\alpha \beta} \omega_{\beta}+r_{i \alpha} \theta_{, i},
\end{gather*}
$$

with the initial conditions

$$
\begin{equation*}
u_{i}\left(x_{s}, 0\right)=0, \quad \dot{u}_{i}\left(x_{s}, 0\right)=0, \quad \theta\left(x_{s}, 0\right)=0, \quad \omega_{\alpha}\left(x_{s}, 0\right)=0, \quad \text { on } \quad \bar{V}, \tag{3.9}
\end{equation*}
$$

and the boundary conditions

$$
\begin{array}{rllll}
u_{i}=0 & \text { on } & \partial V_{1} \times\left[0, t_{0}\right], & t_{t}=t_{j i} v_{j}=0 & \text { on } \quad \partial V_{2} \times\left[0, t_{0}\right] \\
\theta=0 & \text { on } & \partial V_{3} \times\left[0, t_{0}\right], & q_{i} v_{i}=0 \quad \text { on } & \partial V_{4} \times\left[0, t_{0}\right] \tag{3.10}
\end{array}
$$

In order to prove the uniqueness of solution of the problem P_{0}, it suffices to show that the function $y(t)$ defined by

$$
\begin{equation*}
y(t)=\int_{V}\left(\dot{u}_{i} \dot{u}_{i}+\varepsilon_{i j} \varepsilon_{i j}+\theta^{2}+\omega_{\alpha} \omega_{\alpha}\right) d V \tag{3.11}
\end{equation*}
$$

vanishes on $\left[0, t_{0}\right]$. Assume to the contrary that $y(t) \not \equiv 0$ on $\left[0, t_{0}\right]$. Then we have the following:

Lemma 1. If $\left(u_{i}, \theta, \omega_{\alpha}\right)\left(x_{s}, t\right)$ is a solution of the problem P_{0} then

$$
\begin{align*}
\int_{V}\left(\frac{1}{2} \varrho \dot{u}_{i} \dot{u}_{i}+\frac{1}{2} C_{i j r s}\right. & \left.\varepsilon_{i j} \varepsilon_{r s}+\frac{1}{2} a \theta^{2}+F_{i j \alpha} \varepsilon_{i j} \omega_{\alpha}\right) d V \tag{3.12}\\
& =\int_{0}^{t} \int_{V}\left[\left(G_{\alpha} \theta+F_{i j \alpha} \varepsilon_{i j}\right) \dot{\omega}_{\alpha}-\frac{1}{T_{0}} q_{t} \theta_{, i}\right] d V d \tau, \quad t \in\left[0, t_{0}\right]
\end{align*}
$$

Proof. By using Eqs. (3.5)-(3.8), the boundary conditions (3.10), the geometric relations (2.3) and the symmetry relations (2.20), we get

$$
\begin{align*}
& \frac{d}{d t} \int_{V}\left(\frac{1}{2} \varrho \dot{u}_{i} \dot{u}_{i}+\frac{1}{2} C_{i j r s} \varepsilon_{i j} \varepsilon_{r s}+\frac{1}{2} a \theta^{2}+F_{i j \alpha} \varepsilon_{i j} \omega_{\alpha}\right) d V \tag{3.13}\\
&= \int_{V}\left(\varrho \dot{u}_{i} \ddot{u}_{i}+C_{i j r s} \varepsilon_{r s} \dot{\varepsilon}_{i j}+a \theta \dot{\theta}+F_{i j \alpha} \dot{\varepsilon}_{i j} \omega_{\alpha}+F_{i j \alpha} \varepsilon_{i j} \dot{\omega}_{\alpha}\right) d V \\
&= \int_{V}\left[\dot{u}_{i} t_{j l, j}+\left(C_{i j r s} \varepsilon_{r s}+F_{i j \alpha} \omega_{\alpha}\right) \dot{u}_{i, j}+\theta\left(\dot{\eta}-E_{i j} \dot{\varepsilon}_{i j}+G_{\alpha} \dot{\omega}_{\alpha}\right)\right. \\
&\left.+F_{i j \alpha} \varepsilon_{i j} \dot{\omega}_{\alpha}\right] d V=\int_{V}\left[\left(G_{\alpha} \theta+F_{i j \alpha} \varepsilon_{i j}\right) \dot{\omega}_{\alpha}-\frac{1}{T_{0}} q_{i} \theta_{, i}\right] d V
\end{align*}
$$

We now integrate on $[0, t], t \in\left[0, t_{0}\right]$ and we use the initial conditions (3.9) so that from Eq. (3.13) the identity (3.12) follows. This completes the proof.

Lemma 2. Let $\left(u_{i}, \theta, \omega_{\alpha}\right)\left(x_{s}, t\right)$ be a solution of the problem P_{0}. We assume the hypothesis (d) to be satisfied. Then there exist positive constants m_{1} and m_{2} so that

$$
\begin{align*}
\int_{V}\left[\left(G_{\alpha} \theta+F_{i j \alpha} \varepsilon_{i j}\right) \dot{\omega}_{\alpha}-\frac{1}{T_{0}} q_{i} \theta_{, i}\right] d V & \leqslant-m_{1} \int_{V} \theta_{, i} \theta_{, i} d V \tag{3.14}\\
& +m_{2} \int_{V}\left(\varepsilon_{i j} \varepsilon_{i j}+\theta^{2}+\omega_{\alpha} \omega_{\alpha}\right) d V, \quad t \in\left[0, t_{0}\right]
\end{align*}
$$

Proof. By using the relations (3.7) and (3.8) $)_{3,4}$, we can write

$$
\begin{align*}
& \int_{V}\left[\left(G_{\alpha} \theta+F_{i j \alpha} \varepsilon_{i j}\right) \dot{\omega}_{\alpha}-\frac{1}{T_{0}} q_{i} \theta, i\right] d V=-\int_{V} \frac{1}{T_{0}} \tilde{k}_{i j} \theta_{, i} \theta_{, j} d V \tag{3.15}\\
&+\int_{V}\left(H_{i j r s} \varepsilon_{i j} \varepsilon_{r s}+I \theta^{2}+J_{i j} \varepsilon_{i j} \theta+K_{i j \alpha} \varepsilon_{i j} \omega_{\alpha}+L_{\alpha} \omega_{\alpha} \theta\right. \\
&\left.+M_{i j k} \varepsilon_{i j} \theta_{, k}+N_{i} \theta_{, i} \theta+P_{i \alpha} \theta_{, i} \omega_{\alpha}\right) d V
\end{align*}
$$

where we have used the notations

$$
H_{l j r s}=\frac{1}{2}\left(F_{r s \alpha} m_{l j \alpha}+F_{i j \alpha} m_{r s \alpha}\right), \quad I=G_{\alpha} n_{\alpha}
$$

$$
\begin{align*}
J_{i j} & =m_{i j \alpha} G_{\alpha}+F_{i j \alpha} n_{\alpha}, & K_{i j \alpha} & =F_{i j \beta} p_{\beta \alpha}, \tag{3.16}
\end{align*} r L_{\alpha}=G_{\beta} p_{\beta \alpha}, ~=N_{i}=G_{\alpha} r_{i \alpha}-\frac{1}{T_{0}} g_{i}, \quad P_{i \alpha}=-\frac{1}{T_{0}} h_{i \alpha} .
$$

We now make use of the hypothesis (d). An application of the Schwarz inequality and the arithmetic-geometric mean inequality

$$
\begin{equation*}
a b \leqslant \frac{1}{2}\left(\frac{a^{2}}{\pi^{2}}+b^{2} \pi^{2}\right), \tag{3.17}
\end{equation*}
$$

to the last terms in Eq. (3.15) gives, for arbitrary positive constants π_{1}, π_{2} and π_{3},

$$
\begin{align*}
& 2 \int_{V}\left[\left(G_{\alpha} \theta+F_{i j \alpha} \varepsilon_{i j}\right) \dot{\omega}_{\alpha}-\frac{1}{T_{0}} q_{i} \theta_{, i}\right] d V \leqslant\left(-2 \mu+\pi_{1}^{2}+\pi_{2}^{2}+\pi_{3}^{2}\right) \tag{3.18}\\
& \times \int_{V} \theta_{, i} \theta_{, i} d V+\left(\frac{M_{1}^{2}}{\pi_{1}^{2}}+M_{4}^{2}+M_{5}^{2}+M_{6}^{2}\right) \int_{V} \varepsilon_{i j} \varepsilon_{i j} d V \\
&+\left(\frac{M_{2}^{2}}{\pi_{2}^{2}}+M_{7}^{2}+2\right) \int_{V} \theta^{2} d V+\left(\frac{M_{3}^{2}}{\pi_{3}^{2}}+M_{8}^{2}+1\right) \int_{V} \omega_{\alpha} \omega_{\alpha} d V
\end{align*}
$$

In the above inequality we have used the notations

$$
\begin{array}{ll}
M_{1}^{2}=\max \left(M_{i j k} M_{i j k}\right)\left(x_{s}\right), & M_{2}^{2}=\max \left(N_{i} N_{i}\right)\left(x_{s}\right), \\
M_{3}^{2}=\max \left(P_{i \alpha} P_{i \alpha}\right)\left(x_{s}\right), & M_{4}^{2}=2 \max \left[\left(H_{i j m n} H_{i j m n}\right)\left(x_{s}\right)\right],{ }^{1 / 2} \tag{3.19}\\
M_{5}^{2}=\max \left(J_{i j} J_{i j}\right)\left(x_{s}\right), & M_{6}^{2}=\max \left(K_{i j \alpha} K_{i j \alpha}\right)\left(x_{s}\right), \\
M_{7}^{2}=2 \max \left|I\left(x_{s}\right)\right|, & M_{8}^{2}=\max \left(L_{\alpha} L_{\alpha}\right)\left(x_{s}\right), \quad \text { on } \bar{V} .
\end{array}
$$

We choose the arbitrary constants π_{1}, π_{2} and π_{3} so that the quantity m_{1} defined by

$$
\begin{equation*}
m_{1}=\mu-\frac{1}{2}\left(\pi_{1}^{2}+\pi_{2}^{2}+\pi_{3}^{2}\right) \tag{3.20}
\end{equation*}
$$

is strictly positive. Thus, from Eq. (3.18) we deduce the inequality (3.14), provided we choose

$$
\begin{equation*}
m_{2}=\frac{1}{2} \max \left(\frac{M_{1}^{2}}{\pi_{1}^{2}}+M_{4}^{2}+M_{5}^{2}+M_{6}^{2}, \quad \frac{M_{2}^{2}}{\pi_{2}^{2}}+M_{7}^{2}+2, \quad \frac{M_{3}^{2}}{\pi_{3}^{2}}+M_{8}^{2}+1\right) \tag{3.21}
\end{equation*}
$$

The proof of the lemma is complete.
Lemma 3. Let $\left(u_{i}, \theta, \omega_{\alpha}\right)\left(x_{s}, t\right)$ be a solution of the problem P_{0}. We assume the hypotheses (a)-(d) to be satisfied. Then there is a positive constant m_{3} so that

$$
\begin{align*}
\int_{V}\left(\dot{u}_{i} \dot{u}_{i}+\varepsilon_{i j} \varepsilon_{i j}+\theta^{2}+\omega_{\alpha} \omega_{\alpha}\right) d V \leqslant m_{3} \int_{0}^{t} \int_{V}\left(\dot{u}_{i} \dot{u}_{i}+\right. & \varepsilon_{i j} \varepsilon_{i j} \tag{3.22}\\
& \left.+\theta^{2}+\omega_{\alpha} \omega_{\alpha}\right) d V d \tau, \quad t \in\left[0, t_{0}\right]
\end{align*}
$$

Proof. In view of the hypotheses (a)-(c), we note that

$$
\begin{equation*}
m_{0} \int_{V}\left(\dot{u}_{i} \dot{u}_{i}+\varepsilon_{i j} \varepsilon_{i j}+\theta^{2}\right) d V \leqslant \int_{V}\left(\varrho \dot{u}_{i} \dot{u}_{i}+C_{i j r s} \varepsilon_{i j} \varepsilon_{r s}+a \theta^{2}\right) d V, \tag{3.23}
\end{equation*}
$$

where

$$
\begin{equation*}
m_{0}=\min \left(\varrho_{0}, \lambda, a_{0}\right) \tag{3.24}
\end{equation*}
$$

Further, we use the Schwarz inequality and the arithmetic-geometric mean inequality (3.17) so that

$$
\begin{equation*}
2\left|\int_{V} F_{i j \alpha} \varepsilon_{i j} \omega_{\alpha} d V\right| \leqslant \pi_{4}^{2} \int_{V} \varepsilon_{i j} \varepsilon_{i j} d V+\frac{M_{9}^{2}}{\pi_{4}^{2}} \int_{V} \omega_{\alpha} \omega_{\alpha} d V, \tag{3.25}
\end{equation*}
$$

for an arbitraty constant π_{4}, where

$$
\begin{equation*}
M_{9}^{2}=\max \left(F_{i j \alpha} F_{i j \alpha}\right)\left(x_{s}\right) \quad \text { on } \bar{V} . \tag{3.26}
\end{equation*}
$$

If we now take into account the relations (3.14), (3.23) and (3.25), from the identity (3.12) we get

$$
\begin{align*}
& m_{0} \int_{V}\left(\dot{u}_{i} \dot{u}_{i}+\varepsilon_{i j} \varepsilon_{i j}+\theta^{2}\right) d V \leqslant \pi_{4}^{2} \int_{V} \varepsilon_{i j} \varepsilon_{i j} d V+\frac{M_{9}^{2}}{\pi_{4}^{2}} \int_{V} \omega_{\alpha} \omega_{\alpha} d V \tag{3.27}\\
& \quad-m_{1} \int_{0}^{t} \int_{V} \theta_{, i} \theta_{, i} d V d \tau+m_{2} \int_{0}^{t} \int_{V}\left(\varepsilon_{i j} \varepsilon_{i j}+\theta^{2}+\omega_{\alpha} \omega_{\alpha}\right) d V d \tau, \quad t \in\left[0, t_{0}\right] .
\end{align*}
$$

On the other hand, by using the initial conditions (3.9) and the relations (3.7) and (3.8) $)_{4}$, we obtain

$$
\begin{align*}
\int_{V} \omega_{\alpha} \omega_{\alpha} d V=\int_{0}^{t} \frac{d}{d \tau}\left(\int_{V}\right. & \left.\omega_{\alpha} \omega_{\alpha} d V\right) d \tau=2 \int_{0}^{t} \int_{V} \omega_{\alpha} \dot{\omega}_{\alpha} d V d \tau \tag{3.28}\\
& =2 \int_{0}^{t} \int_{V}\left(m_{i j \alpha} \varepsilon_{i j} \omega_{\alpha}+n_{\alpha} \omega_{\alpha} \theta+p_{\alpha \beta} \omega_{\alpha} \omega_{\beta}+r_{i \alpha} \omega_{\alpha} \theta, t\right) d V d \tau
\end{align*}
$$

An application of the Schwarz inequality and the arithmetic-geometric mean inequality to the left side of the relation (3.28) gives

$$
\begin{align*}
2 \int_{V}\left(m_{i j \alpha} \varepsilon_{i j} \omega_{\alpha}+n_{\alpha} \omega_{\alpha} \theta+p_{\alpha \beta} \omega_{\alpha} \omega_{\beta}\right. & \left.+r_{i \alpha} \omega_{\alpha} \theta_{, i}\right) d V \tag{3.29}\\
& \leqslant m_{4} \int_{V}\left(\varepsilon_{i j} \varepsilon_{i j}+\theta^{2}+\omega_{\alpha} \omega_{\alpha}\right) d V+\pi_{S}^{2} \int_{V} \theta_{, i} \theta_{, i} d V
\end{align*}
$$

for an arbitrary constant π_{5} and

$$
\begin{align*}
& m_{4}=\max \left(M_{13}^{2}, 1, \frac{M_{10}^{2}}{\pi_{5}^{2}}+M_{11}^{2}+M_{12}^{2}+1\right), \\
& M_{10}^{2}=\max \left(r_{i \alpha} r_{i \alpha}\right)\left(x_{s}\right), \quad M_{11}^{2}=2 \max \left[\left(p_{\alpha \beta} p_{\alpha \beta}\right)\left(x_{s}\right)\right]^{1 / 2}, \tag{3.30}\\
& M_{12}^{2}=\max \left(n_{\alpha} n_{\alpha}\right)\left(x_{s}\right), \quad M_{13}^{2}=\max \left(m_{i j \alpha} m_{i j \alpha}\right)\left(x_{s}\right) \quad \text { on } \bar{V} .
\end{align*}
$$

From the relations (3.28) and (3.29) we obtain, for an arbitrary constant π_{6},

$$
\begin{equation*}
\pi_{6}^{2} \int_{V} \omega_{\alpha} \omega_{\alpha} d V \leqslant \pi_{6}^{2} m_{4} \int_{0}^{t} \int_{V}\left(\varepsilon_{i j} \varepsilon_{i j}+\theta^{2}+\omega_{\alpha} \omega_{\alpha}\right) d V d \tau+\pi_{6}^{2} \pi_{5}^{2} \int_{0}^{t} \int_{V} \theta_{, i} \theta_{, i} d V d \tau \tag{3.31}
\end{equation*}
$$

Now, from the inequalities (3.27) and (3.31) we deduce

$$
\begin{array}{r}
m_{0} \int_{V}\left(\dot{u}_{i} \dot{u}_{i}+\theta^{2}\right) d V+\left(m_{0}-\pi_{4}^{2}\right) \int_{V} \varepsilon_{i j} \varepsilon_{i j} d V+\left(\pi_{6}^{2}-\frac{M_{9}^{2}}{\pi_{4}^{2}}\right) \int_{V} \omega_{\alpha} \omega_{\alpha} d V \tag{3.32}\\
\leqslant-\left(m_{1}-\pi_{6}^{2} \pi_{5}^{2}\right) \int_{0}^{t} \int_{V} \theta_{, i} \theta_{, i} d V d \tau+\left(m_{2}+\pi_{6}^{2} m_{4}\right) \int_{0}^{t} \int_{V}\left(\varepsilon_{i j} \varepsilon_{i j}\right. \\
\left.+\theta^{2}+\omega_{\alpha} \omega_{\alpha}\right) d V d \tau, \quad t \in\left[0, t_{0}\right] .
\end{array}
$$

Then, we choose the arbitrary constants π_{4}, π_{5} and π_{6} so that

$$
\begin{equation*}
m_{5} \equiv m_{0}-\pi_{4}^{2}>0, \quad m_{6} \equiv \pi_{6}^{2}-\frac{M_{9}^{2}}{\pi_{4}^{2}}>0, \quad m_{7} \equiv m_{1}-\pi_{6}^{2} \pi_{5}^{2}>0 \tag{3.33}
\end{equation*}
$$

With these in mind, the inequality (3.22) follows from the inequality (3.32), provided

$$
\begin{equation*}
m_{3} \equiv\left(m_{2}+\pi_{6}^{2} m_{4}\right) / \min \left(m_{0}, m_{5}, m_{6}\right) \tag{3.34}
\end{equation*}
$$

The proof of the lemma is now complete.
Obviously the inequality (3.22) and Gronwall's lemma [13] imply

$$
y(t)=\int_{V}\left(\dot{u}_{i} \dot{u}_{i}+\varepsilon_{i j} \varepsilon_{i j}+\theta^{2}+\omega_{\alpha} \omega_{\alpha}\right) d V=0 \quad \text { on }\left[0, t_{0}\right]
$$

which contradicts our initial assumption concerning the uniqueness.
Thus we have
Theorem 1. Under the hypotheses (a)-(d) there is at the most one solution of the initial--boundary value problems defined by Eqs. (2.24)-(2.26), with the initial conditions (2.27) and the boundary conditions (2.28).

References

1. B. D. Coleman and M. E. Gurtin, Thermodynamics with internal state variables, J. Chem. Phys., 47, 597-613, 1967.
2. R. M. Bowen, On the thermochemistry of reacting materials, J. Chem. Phys., 49, 1625-1637, 1968.
3. K. C. Valanis, Unified theory of thermomechanical behaviour of viscoelastic materials, Symp. Behav. Mater. Dyn. Loads, 1967, Springer-Verlag 1968, 343-364.
4. M. MiHÄilescu and I. Suliciu, Finite and symmetric thermomechanical waves in materials with internal state variables, Int. J. Solids Structures, 12, 559-575, 1976.
5. I. Suliciu and M. Mihăilescu-Suliciu, On the semilinear theory for materials with internal state variables, An. St. Univ. Iaşi, Matematică, 24, 403-416, 1978.
6. R. R. Nachlinger and J. W. Nunziato, Wave propagation and uniqueness theorems for elastic materials with internal state variables, Int. J. Engng Sci., 14, 31-38, 1976.
7. W. Kosiński, A uniqueness theorem for the dynamic initial-displacement boundary-value problem in the theory with internal state variables, Quart. Appl. Math., 38, 129-134, 1980.
8. W. Kosísski, On weak solutions, stability and uniqueness in dynamics of dissipative bodies, Arch. Mech., 33, 2, 317-321, 1981.
9. G. Fichera, Existence theorems in elasticity, in: Handbuch der Physik VIa/2, Springer, Berlin, Heidelberg, New York 1972.
10. N. Cristescu and I. Suliciu, Viscoplasticity [in Romanian], Ed. tehnică, Bucharest 1976.
11. R. J. Knops and E. W. Wilkes, Theory of elastic stability, in: Handbuch der Physik VIa/3, Springer, Berlin, Heidelberg, New York 1973.
12. C. M. Dafermos, On the existence and the asymptotic stability of solutions to the equations of linear thermoelasticity, Arch. Rat. Mech. Anal., 29, 241-271, 1968.
13. J. Dibudonne, Foundations of modern analysis, Academic Press, New York 1969.

MATHEMATICAL SEMINARIUM UNIVERSITY OF IASI, ROMANIA.

Received September 15, 1981.

