
Arch. Mech., 34, 3, pp. 219-230, Warszawa 1982 

Some remarks on non-Newtonian flow in journal bearings 

E. BECKER (DARMSTADT) 

THE FLOW of a non-Newtonian lubricant in a journal bearing is considered. T4e velocity field 
in the gap as well as the force acting on the shaft were calculated for the Prandtl-Eyring fluid 
for different orders of approximation of the Sommerfeld number with respect to the eccentricity 
ratio e. It has beea shown that in engineering calculations the real fluid behaviour may be 
approximated by the Newtonian behaviour with the differential viscosity used as the proper 
viscosity. 

Rozwai:ono przeplyw smaru nienewtonowskiego w loi:yska.ch poprzecznych. Pole pr~dkoSci 
w szczelinie loi:yska jak r6wniez sil~ dzialaj~CCl na wal obliczono dla cieczy Prandtla-Eyringa 
przy r6i:nyeh ~dach przybli:ienia liczby Sommerfelda w zale:ino§ci od mimosrodu e. Wyka
zano, i:e w obliczeniach ini:yrlierskich zachowanie si~ plynu rzeczywistego przyblii:yc mo:ina 
za pomOC(l cieczy newtonowskiej, zast~puj~c zarazem lepkosc rzeczywist~ przez lepkosc r6i:ni
cow(l. 

PacCMaTpHBaeTcH Tel.leHHe HeHLlOTOHOBCI<OH >KH,AI<OCTH ( cMa3I<H) B nonepel.IHhiX noAWH.:. 

IIHHI<aX. C~eJiaH pac1.1e-r noJIH CI<opocre:H B 3a3ope norommmn<a, a Tai<>He CHJibi, ~eiiCTBy
rome:H Ha BaJI, ~ >l<li,W<OCTH flpaH~JUI-3HpHHra IIpH pa3HhJX' CTeneHHX IIpH6JIIDI<eHHH 
l.IHCJia CaMMep<l>e.m.~a, B 3aBHCHMOCTH OT 3I<CQeiiTpHCHTeTa e. lloi<a3aHo, l.ITO B HIDKeHepHbiX 
pacl.JeTax IIOBe~eHHe peam.HOH >I<H~OCTH MO>I<HO npH6JIH3HTb C IIOMOI.I.U>lO HLlOTOHOBCI<OH 

>I<H~OCTblO, 3aMeHHH O~OBpeMeHHO ~eHCTBHTeJILHYJO BH3I<OCTb ~<l><l>epelll.lH&.m.HOH. 

1. Introduction 

IN RECENT years· non-Newtonian fluids have found increasing use as lubricants in diverse 
kinds of bearings in machines. Moreover, the lubricants in the joints of animals and man 
exhibit non-Newtonian behaviour. Therefore it is of some import to generalize the theory 
of lubrication, which is well developed for Newtonian lubricants, to non-Newtonian 
lubr~cating fluids. As prototype of a bearing, the simple cylindrical journal bearing, with 
the gaR completely filled by the lubricant and the shaft rotating with constant speed and 
constant excentricity (Fig. 1), will be studied in this note. 

The differences between the Newtonian and non-Newtonian behaviour of fluids can 
be roughly divided into three mutually overlapping groups, namely nonlinear flow be
haviour (viscosity depending on the shear-rate), normal stress effects and relaxation 
or memory effects. The fl~w in a journal bearing and, consequently, the force on the 
rotating shaft is markedly affected by nonlinear flow behaviour, and also by memory 
effects. In a number of previous papers both types of effects were studied [1-6]. If memory 
effects are neglected, the force on the shaft has a direction perpendicular to the displace
ment between the centers of shaft and casing, just as for Newtonian fluids. In a first-order 
approximation which is linear in the excentricity ratio e = efb this force is given by the 
same expression as for a Newtonian fluid, provided· that the "differential viscosity" 
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b-e e 
FIG. 1. Cy~indrical journal bearing. 

'YJd = d-,;fd~ ( 1:- shear stress, ~-shear rate) is used in that expression instead of the 
viscosity: 

(1.1) 

The differential viscosity, as well ~s the viscosity 'YJ = T/~, depends on the shear rate for 
~ost non:-Newtonian fluids, and in Eq. (1.1) the value of TJ4 pertaining to the mean shear 
rate ~ = U/b in the gap has to be used [4]. 

Memory effects induce a force component parallel to the displacement of the shaft. 
If memory is "weak" [5, 6], this force component can be calculated; for small excentri
city ratio, e ~ 1, this force component is given by the following analytica~ expres-
sion: 

(1.2) 

Here, N(x) is the first normal stress coefficient of the fluid and p(x) is the "second flow 
function"· ~hich was introduced in [5, 6]. The case that the shaft vibrates and the case 
that the gap is not completely filled by the lubricant w~re also studied in [6], and formulas 
for the two force components were derived. 

In [3] it was maintained, and supported by plausible arguments, that the -approxi
mation (1.1) for Fl., derived for e ~ 1, is 'quite acceptable for values of e up to 0.5. This 
statement is justified in the following sections by the results of numerical calculations for 
the Prandtl-Eyring fluid and by a direct calculation of the e3-contribution to Fl. for 
arbitrary fluids. Memory effects are neglected here. 

2. FJow between parallel plates 

The starting point for· the following derivations is the flow law of the fluid, i. e. the 
relation between shear stress and she~r rate in viscome~ric flow [4, 6, 7]: 
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(2.1) "= ~: g( :. ). 
Here, 'YJ* and -r* are reference quantities with the meaning of a characteristic viscosity 
and a characteristic stress; '1/* is chosen as the lower Newtonian viscosity: '1/• = lim -rfx. 

,. ..... o 
For each particular fluid g is assumed to be given. 

As a prerequisite for studying the flow in the gap of the bearing we study the flow 
between two parallel walls, one of which is fixed whereas the other one moves with 
constant velocity U. A pressure gradient A.= opfox acts in the direction of the motion 
of the wal' (Fig. 2a). By using a frame of reference which moves with the velocity U/2 
in the x-direction, we obtain the situation depicted in Fig. 2b. The shear stress is given by 

(2.2) -r = -r0 +A.y. 

a 

b 

l-¥-J 
FIG. 2. Flow in a straight channel with moving wall. 

The velocity distribution u(y) satisfies the following equation obtained by combining 
Eqs. (2.1) and (2.2), with " = dufdy 

(2.3) du -r* ( -r0 A.y) -=-g -+-
dy . 'YJ. -r * -r * . 

The following · dimensionless quantities are now introduced: 

(2 4) u . - 2y A.h c. = -r * h 
. v: .= U' ~.- h' B: = 2-r*' . rJ*U' S·-~ . - . 

- T* 

Thereby Eq. (2.3) is transformed into 

dv C 
(2.5) (if= T g(S+B~), 
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which is to be solved with the boundary conditions 

(2.6) 1 
v( -~1) = 2 ,. 1 

v(+1) = - 2 . 

E. BECKER 

The flow volume in the original frame of reference (in which the upper wall is at rest) is 

+~2 +1 

(2.7) V='}+ J udy= ~h(1+ J v(~)d~). 
-h~ -1 

This can be nondimensionalized as follows: 

(2.8) 

Integration of Eq. (2.5) and taking into account the boundary condition v( -1) = 1/2 
yields 

S+B; 

(2.9) 1 c J v = 2 + 2B g(a)da. 
S-B 

The boundary condition v( + 1) = -1/2 leads to 

S+B 

(2.10) 2~ J g(a) da = -1. 
S-B 

This equation determines the parameter S as a function of B and C. Inserting S = S(B, C) 
into Eq. (2.9) yields v = v(~; B, C) and, using this as integran d in Eq. (2.8), finally leads to 

I 

(2.11) 

where 
1 S+B 

(2.12) f(B, C)= J v(~; B, C)d~ = 2~2 J (8_-a)g(a)da. 
-1 S-B 

This completes the determination of the .flow between two parallel plates. It is clear that f 
is an odd function of B; furthermore f(O, C) = 0. Hence f = a 1 B + a3 B3 + ... , where 
the a1 are functions of C; (see Sect. 5). 

3 • . Flow in the narrow gap of a journal bearing 

In a journal bearing (Fig. I) the. mean gap width b is much smaller than the radius 
of the shaft: b/R ~I. Therefore, in ·order to determine the flow in the bearing, the gap can 
be unrolled into a straight gap of varying width h (Fig. 3): 

(3.1) h = b(l + ecoslf>), 
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with 

(3.2) 4> = xfR. 

223 

Furthermore, inertia forces are usually negligible for the motion of the lubricant. Under 
these circumstances, and because memory effects of the fluid are neglected, one can assume 
that locally, for every value of 4>, the flow is the same as that between two parallel walls, 
which has been discussed in the preceding section. According to Eq. (2.11), the flow volume 
at every position 4> within the gap is given by 

(3.3) · Uh ) Uho V=T(1+f(B,C) =-
2
-. 

y 

u X = R¥1 

FIG. 3. Straight gap with variable width h. 

Note that in Eq. (3.3) the quantities h, B, C depend on 4>; h is given by Eq. (3.1) and, 
using Eq. (3.1), one can write B and C in the f<;>rm 

(3.4) B = B0 (1 + ecos4>), C = C0 (1 + ecos</>), 

where B~ and C0 have the following meaning: 

(3.?) Bo = .}!!_ Co = T *b . 
2-r*' 11.u 

Of course, the flow volume V must be independent of 4> and hence constant. This constant 
value of V defines the parameter h0 on the right hand side of Eq. (3.3). The parameter h0 

still has to be determined. For that purpose Eqs. (3.1) and (3.4) are inserted into Eq. 
(3.3); this yields 

h 
(3.6) (1 + ecos 4>) {1 + f(B0 (1 + e cos</>), C0 (1 + e cos</>))} = b~ • 

Equation (3.6) can be solved, in principle, for B0 : 

(3.7) B 0 = B0 (ecos4>, C0 , h0 /b). 
2n 

Since the pressure must be m-periodic in the variable 4>, the relation J J.d4> = 0 must 
0 

be satisfied or 
2n 

(3.8) J B0 d4> = 0. 
0 
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224 E. BECKER 

From Eq. (3.8) one can now determine the parameter h0 /b as a function of the two given 
parameters e and C0 • Inserting this result for h0 /b into Eq. (3.7) yields B0 as a function 
of cJ> and the parameters e and 'C0 • 

The force acting on the rotating shaft per unit length is given by [3, 5, 6]: 

2n 2n 

(3.9) F J. = R2 J ).. cosc/> de/> ~= 2
R:-r * J B0 cosc/> de/>. 

0 0 

Since, according to Eq. (3.7), B0 depends on 4J only through cos 4J, it is clear that. the force 
component F11 is zero; this is due to the ~eglect of memory effects. The result of the in
tegration (3.3) can ,be written in the form 

R2U'I'J* 
(3.10) FJ. = ~ ·So(e, C0). 

Here the dimensionless quantity So is the "Sommerfeld number" [4]. 

4. Results for the Prandtl-Eyring fluid 

It is obvious that for a general flow law, i.e. for a general function g(-r/-r*), the calcu
lations described in Sects. 2 and 3 can be p_erformed only numerically, with the exception 
of a few particularly simple cases. One of these cases is the Newtonian flpid with visco
sity 'I'J•, for which g( -r/-r*) = -r/-r*. For that fluid one obtains the well-known results 
(see [8]) 

(4.1) 

and 

(4.2) 

f(B, C)= 
BC 
3 

6ne 
So = -------------

¥I - e2 (I + ; )" 

The Sommerfeld number depends on e only. This is to be expected for a Newtonian 
fluid because the flow law x = -rf'YJ* is independent of an arbitrary reference stress value -r*; 
therefore the result for So must also ·be independent of -r* and hence of C0 • The series 
expansion of So with respect to powers of e starts with 

(4.3) So = ·6ne+O(e5). 

Because the term following the liqear term is already a fifth-order term it is to be expected 
that the linear approximation is quite satisfactory up to moderately high values of E. 

A comparison of the linear approximation with the exact result for So in Fig. 4 confirms 
this surmise: for e ~ 9.5 the deviation of the linear approximation from the exact result 
is practically .negligible. 

Another fluid for which simple analytical results are at least partly possible is the 
Prandtl-Eyring fluid. The flow law is here 

(4.4) 
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30~------~----~------~----~--~~ 

1 
So 

10 

0.2 0.4 0.6 1.0 
FIG. 4. Sommerfeld number for Newtonian lubricant. Exact result: Eq. (4.2); linear 

approximation: Eq. (4.3). 

'100.-------,r--------r-----r----. 

20 

• 
So I 2t---c~-+-~~~-¥,,.r..=:..---l 

' 0.1 L.....L..-r---t-..l........t---+---+---.---+...J.._t---r-....J 

0 0.5 
£ 
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FIG. 5. Sommerfeld number for Prandtl-Eyring fluid as lubricant. Linear e1-approximation: Eqs. (4.6), 
(4.7); third order e3 .. approximation: Eqs. (5.16), (5.18). 
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This is a shear-thinning fluid; the viscosity decreases with increasing stress -r or increasing 
shear rate "· For the Prandtl-Eyring fluid the calculations of Sect. 2 can be performed 
analy.tically with the result [5, 7, _9] 

(4.5) f(B, C) = - [I+ ( ~ sinhB rr (cothB- ~). 
However, the calculations of Sect. 3 have to be performed numerically. Some of the re
sults (obtained by G. BoHME, HAMBURG [7], and also by W. OcHs, DARMSTADT) are shown 
in Fig. · 5 as the solid curves. Also shown are the approximations which are linear in e. 
As has been shown elsewhere [4, 6, 7], these linear approximations are given by 

(4.6) 

where 'Y/d is the differential viscosity pertaining to the mean shear rate, "o = U/b, in the 
gap of the bearing. The ratio 'Y/df'YJ* is a function of C0 • For the Prandtl-Eyring 
fluid 

(4.7) 
VI +C~ 

(Note that without loss of generality C0 > 0 is assumed). 

5. Third order analytical results 

The diagram in Fig. 5 allows to assess the range of e for which the simple and useful 
approximation (4.6) is practically sufficient if the lubricant is a Prandtl-Eyring fluid. 
In order to establish the range of validity of the approximate result ( 4.6) in the case of 
a general fluid, a third order approximation in e is derived in this section. The derivation 
is based on the fact that the pressure gradient A., and hence also B, vanishes if e = 0. As 
a matter of fact, B is proportional to e for sufficiently small values of _e. To derive a third 
order result in e it is. therefore sufficient to use approximations to the formulas of Sects. 
2 and 3 which are of third order in B. 

The details of the routine calculations are omitted . here, only the most important 
steps on the way to the final result are sketched. For a given value of S the expansion of 
the boundary condition· (2.IO) yields 

(5.I) 

The expansion of the velocity v is (cf. Eq. (2.9)) 

(5'.2) v(~) = _i_+ CB {g'(S)a2 -I)+B g"(S) (~3 -~)+B2 g"'(S) (~4 ~I)}+O(B4) 
2 4 ' 3 I2 . 

Integrating this expression yields, according to Eq. (2.I2), 

(5.3) BC , { . g"'(S) B2
} 

f(B, C) = --3- g (S) I+ g'(S) :uf . 
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One has to keep in m1nd that Eq. (5.3) is not yet the final third order result for /because S 
depends on B, C, too (cf. Eq. (2.10)); therefore g'(S) and g"' (S) must also be expanded 
with respect to powers of B. In order to perform this expansion, we assume that the flow 
function g satisfies the following differential equation: 

(5.4) g' = l/J(g). 

This equation permits a simple interpretation: 

(5.5) 1 dg T*dg d" 'YJ* 
g = d(T/T*) = ~ = 'YJ*{h = -:;;· 

Hence 

(5.6) 

Therefore the function 4> (g) is known for every fluid once the dependency of the differential 
viscosity on the non dimensional shear rate, 'YJ*"f-r., is known. We note the following 
identities (the dot denotes differentiation of 4> with respect to g): 

(5.7) 

Taking account of Eq. (5.1), one derives 

(5.8) 

or 

(5.9) 

Since the second term on the right side of Eq. (5.9) is already of second order in B, we 
can approximate the coefficient g"(S) by 

(5.10) g"(S) = l/>( -C- 1) ~( -C- 1). 

Likewise the term g"'(S)fg'(S) appearing in Eq. (5.3) can be approximated by 

(5.11) g'"(S)fg'(S) =(/)(-e-t) 4>( -c-t)+~2( -e-t). 

This leads to the final third order result 

(5.12) 

where 1p and y are the following functions of C: 

(5.13) 1 
tp(C) = Cl/>' 

The argument of l/J, l/J, <P is -e-t, or, because· (p is an even function, e-t. 
For the Prandtl..-Eyring fluid Eq. (5.14) yields 

1 1 3C2 -2 
'P = V 1 + c 2 ' 'Y = 30 1 + C2' • 

(5.14) 
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Inserting these expressions into Eq. (5.12) gives the result 

(5.15) ji(B C) = - B yf+C2 {t .!!:___ 3C~ -21 
' 3 + 30 1 +C2 • 

The &ame res1,llt is easily derived by direct expansion of Eq. (4.5). 
With the generally valid approximation (5.12) one can now perform the calculations 

outlined in Sect. 3 in order .to find an approximation to the Sommerfeld number which 
is of third order in the excentricity ratio e. 

The necessary calculations are straightforward but tedious; therefore they are omitted 
here. The result can be written in the form 

(5.16) So = 6nerJ.frJd · (l-Fe2
), 

with 

(5.17) T(Co) = ! { 3q'I'"'1'+4~~''1'-4C~vP -27y'I'2-J }· 

0.2 ..----,----r-----,;-------r------.----. 
- ~ 

I 
0 

-0.2 +---1"--+----+----+----+-----+--

-0.4 +--r--1-----1-----4-----~-----r 

-0.8 

I --+---+------+-
1 

2 4 
Co 

6 

FIG. "6. Third order correction term F for Prandtl-Eyring tlui<l, Eq. (5.18). 

The argument of 1p, y, 1p', 1p" in Eq. (5.17) is C0 • Specialisation to the Prandtl-Eyring 
fluid gives 

(5.18) 

Figure 6 shows r, according to Eq. {5.1 8), as a function of C0 • One notes that lim r = 0; 
Co-+ 00 

in this limit the fluid is Newtonian with viscosity ?]*. In that case the third order term 
in Eq. {5.16) vanishes in agreement with Eq. (4.3). Howeyer, the third order term vanishes 

also for C0 = V2/3 because for that value of C0 the coefficient r is also zero. 
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6. Conclusion 

Figure 7 presents a comparison of different approximations for the Sommerfeld 
number. The figure shows the exact value of the Sommerfeld number for a Prandtl
Eyring lubricant with C0 = 0.1 as solid line. The e1-approximation is given by the dashed 
line and th~ e3-approximation by the dotted line. The dash-dotted line in Fig. 7 was ob
tained by assuming that the fluid behaves strictly Newtonian for all values of e, and that 
the viscosity of the fluid is the differential viscosity 1]4 pertaining to the mean shear rate 
Ufb. Under these circumstances the Sommerfeld-number is given by the expression (4.2), 
multiplied by the ratio 1]4 /1]* (as given by Eq. (4.7)). Fore-+ 0 the exact result is approach
ed asymptotically because the linear approximation ,to · the dash-dotted line is, of course, 
given by Eq. (4.6) and is therefore identical wi~h the linear approximation to the exact 
result. 

So 

10 ~----~~---+--~~ 

2 1-------++~----~--~~~--~ 

· + 
++ 

+ 
· '1-*-----!----~~"'---·-+--

l 
+ 

0.5 -t-7++'------Jo"<-------t-------t----·--t 

0 

+ 
t 

0.5 e ·- 1.0 
FIG. 7. Comparison of different approximations with exact result for Sommerfeld number; Co = 0.1. 
Linear approximation: - --; third order approximation: ---; Newtonian result with fJ4 as viscosity: 

-.-.-; Newtonian result with fJ as viscosity: + + + +. 

As can be seen the dash-dotted line is a fairly good approximation to the solid line, 
representing the exact result, in the whole range of excentricity ratios e for which the 
curves have been drawn {up to e ~ 0.9). The approximation is still better for higher val
ues of the parameters C0 (for C0 -+ oo the fluid becomes progressively more Newto
nian; for C0 = 0.1 the fluid behaves ~arkedly non-Newtonian). Therefore it seems expe
dient to recommend for engineering purposes the use of the Newtoniah _ expression (4.2) 
for _the Soonmerfeld number multiplied by the ratio 1]4 /1]*, where 1'/d is determined by the 
mean shear rate U/b. This amounts to a completely Newtonian theory for the force Fl. 
with the viscosity given by 'Y/d. The approximation obtained thereby is asymptotically 
correct in the limit e -+ 0. 
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If one· uses, unjustifiably, the viscosity TJ instead of the differential viscosity TJd in such 
a calculation, the result is far off the mark if the fluid behaves strongly non-Newtonian. 
The valu~ of So thus calculated for C0 .:::: 0.1 is for all values -of e three times the value 
calculated by using T}4 as viscosity. This ·causes an unacceptably large deviation from the 

/ . 
correct value, as may be inferred from Fig. 7, where the Newtonian result based on TJ 
is shown as the crossed curve. These results make clear that in certain situations it is 
useful to approximate .the real fluid behaviour by Newtonian behaviour, as is done often 
in engineering calculations. However, the viscosity to be used is not always the viscosity 
proper but the differential viscosity. The flow in a journal bearing illustrates this state
ment. 

A final conclusion may be drawn from the foresoing discussion: The result that 
a Newtonian approximation is a fairly good one, and is even asymptotically correct for 
e -+ 0, is a consequence of the fact that the· pressure distribution in the gap of the bearing 
is also approximately the same as for a Newtonian fluid. This means that for a given 
value of the force Fl. ·the m,aximum and the minimum value of the pressure in a non
Newtonian lubricant will be approximately the same as in a Newtonian lubricant. If 
e -+ 0, the pressure distribution becomes exactly the same as in a Newtonian lubricant. 
Engineers claim that the use of shear-thinning lubricants dec~eases the pressure peaks 
for a given load on the bearing. The remarks just made show that the effect cannot be 
very drastic and that it must di~ppear for s.inall values of e, i.e. for weakly-loaded bear
ings; numerical calculatiqns of the pressure distribution confirm this (see, e.g. [I 0]). 
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