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A study of equilibrium points with application
to constitutive modelling

K. FRISCHMUTH (WARSZAWA)

THE PAPER contains an analysis of the behavior of a general constitutive model during relaxa-
tion processes. Basic definitions and a minimal set of assumptions are introduced to prove some
theorems on equilibrium states as well as on the set of all equilibrium points. The results of
Sect. 5 are the starting point for a discussion of unstable processes. Some of the present results
are generalizations of theorems, which were earlier obtained by other authors. Several restric-
tions for the modelling of viscoplastic media follow from the paper.

Praca zawiera jakos$ciowa analize zachowania si¢ ogélnego modelu konstytutywnego w trakcie
procesOw relaksacji. Wprowadzono podstawowy zbiér definicji oraz minimalny uklad zalozen
by wykaza¢ kilka istotnych twierdzer o punktach i stanach rownowagi jak i o zbiorze punktow
rownowagi. Wyniki uzyskane w punkcie 5 sa punktem wyjécia do dyskusji proceséw niesta-
bilnych. Cz¢$¢ wynikéw pracy uogolnia rezultaty uzyskane przez innych autoréw. Praca naklada
pewne ograniczenia na modelowanie osrodkéw lepkoplastycznych.

B pabote comep)KMTCA KayeCTBEHHBIH aHAIH3 IOBefeHHs oOOIIeH ompenensdiolie MOAeIH
B XOJie TMPOLIECCOB pellaKcaluH. BBOOMTCA OCHOBHOE MHOYKECTBO ONpe/esIeHHIi, a TaroKe MH-
HHManbHasg CHCTeMa NPEAIOJIOYKEHHH UIA BBIABJIEHHSA HECKONBKHX CYILECTBEHHBIX TeopeM
O TOYKAaX M COCTOAHMAX PaBHOBECHA, KaK M O MHOXKXECTBe TOYeK paBHOBecHA. PeaysnbTaThl,
TOJyYeHHEBIE B 5 TOUKE SBJIAIOTCA MCXOJHBIM IYHKTOM K JHCKYCCHHM O HEYCTOMUMBEIX ITpPO-
ueccax. Yacts pesyneraTtoB paboThl 06oblIaeT pesysIbTaThl, MONYyYEHHEIE JAPYTHMH aBTOPAMH.
PaGota HaksagpIBaeT ONMpeje/ieHHbIE OrPaHHYEHHA HA MOMEIMPOBAHHME BASKOIUIACTHUECKHX
cpen.

1. Introduction

IN 1967 CoLEMAN and GURTIN [1] formulated their thermodynamics with internal state
variables. They also introduced the concept of the domain of attraction of an equilibrium
state together with the notion of the (quasi-) asymptotic stability of equlibrium states and
assumed the stability postulate, which for each temperature and deformation requires
the existence of an asymptotically stable in the large equilibrium state.

Using the new language of NoLL’s mathematical theory of materials [9], we can think
of equilibrium states as being “relaxed states” and treat the constitutive model proposed
by Coleman and Gurtin as a semi-elastic material element with internal state variables.
In general, the semi-elastic material element is characterized by a one-to-one correspond-
ence between configurations and relaxed states, so that this element can describe a vis-
coelatic material and is incapable to model a viscoplastic one, which is possible only when
there is a nontrivial dependence of the relaxed state on the past deformation-temperature
history.

In the paper [8] W. Kosmiski and K. C. VALANIS discussed the asymptotic stability
and constitutive continuity of a material with internal state variables. A uniqueness theorem
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for quasi-asymptotically stable equilibrium states was proved, that is a sufficient condi-
tion for the stability postulate was given. Let us note again that under this condition the
constitutive model assumed here cannot describe viscoplasticity.

It results from the above considerations that to formulate a constitutive model of
either a real material or a body, one should check all qualitative features of the behaviour
of the admitted model not to be to restrictive. For example, these features ought to con-
tain the existence, the uniqueness and the continuous dependence of the evolution equa-
tion solution on the initial data, the asymptotic stability and the uniqueness of equilibrium
states and, last not least, the existence of both unstable processes and equilibrium states.

The properties listed here are criteria for the choice of material structures which are
capable to describe the behaviour of a given class of real materials. The aim of the present
paper is twofold. First we prove a theorem for asymptotically stable equilibrium states,
which is a generalization of the uniqueness theorem contained in [8]. Then we consider
the case when asymptotic stability does not occur and prove that in this case there are
nontrivial relations between the mentioned qualitative features of the model. We use the
concept of invariant sets, and point out that the domains of attraction and their bounda-
ries as well as the set of starting points of unstable processes are invariant.

All the results are stated in the framework of a general constitutive model in which
the response is function of a pair of arguments, consisting of the configuration and the
method of preparation [7, 11] (or simply an internal parameter). The evolution of the
parameter is controlled by the process in the configuration space. Specifying the para-
meter, the evolution functions and classes of admissible processes, we can describe ma-
terials with memory or with internal variables as well as rate- or differential -type materials.
The parameter can be a past history, an array of tensors or, for nonlocal theories, — an
element of a space of functions or distributions defined on a material body. In order to
include the case, when 5 is not a metric space, but the topology of X" is generated by
a uniformity using the constitutive functional [9], we assume 2 to be a Hausdorff space.
The special case when 2" is a Banach function space of past histories [3] is studied in [5].
In this paper another uniqueness theorem is proved and conclusions for viscoplastic
modelling are given.

2. Constitutive assumptions

In most of all theories of dissipative materials we are concerned with a response func-
tion which is determined by a pair of arguments. One of them, the actual value of the pro-
cess, governs the reaction in (thermo-) elasticity. The other one characterizes the history
of the process. This argument can be an element of a space of past histories, but often it
is more convenient to express the essential features of the past history by a finite number
of parameters. Thus each process being a continuation of the history determines a change
of the second argument. We assume that the evolution of the second argument is deter-
mined entirely by its actual value and by the process, so that the constitutive equation has
the form

Z = F(P,K),
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where Z is the reaction, P is the configuration, i.e. the actual value of the process, K is
a parameter and F is the response function.
Then we admit that the configuration and the reaction are elements of Banach spaces
and K belongs to a Hausdorff space 2. Hence
F:BxX) — B,.
We denote the evolution functions by T,
T.: xC([0,t], B)y =2, teR™.

If at the beginning of a process I, I1:[0, t] — B, the value of the parameter is equal to K,
then at the end it takes the value T,(K,II) = K(t).

At last the classes of admissible processes C([0, t], B) =: C, are assumed to include
all constant functions, and the family of evolution functions T;( -, - ) to satisfy the following
axiom:

Vt,t2eR*WII, €C, , I, e C,NKe X I *1], €C, 4,
s 'Tﬁ(T;,(K! HZ))HI) = 'I‘I'l-!—t,(K’Hl *HZ):
where
IT,(t) for tel0,t,)
UL, 11,)(1) = {Hl(t'—tz) for te[ty, t,+1,].
Let us now assume the evolution functions to possess the continuity property given by

PosTULATE 1. W teR* Y IT € C, T,(+,II): 4 — 2 is continuous.

REMARK. When we consider a process (configuration) in a subspace B, of B, for
example in the subspace of all configurations with a vanishing temperature gradient, we
will write zz(p) instead of ZI(P). Furthermore we will identify each constant process and its
corresponding configuration.

DeriNiTION. IfV t € RY T(K, p) = K, then we call the pair (K, p) an equilibrium state

and K — an equilibrium point corresponding to p.
PosTULATE 2 of asymptotic rest property.

VK € X'VYp € BoAK o € 'K, = lim T;(K, p).
t—o0
LemMma 1. If K, is the limit of a relaxation process ¢+ T;(K, p), then (K, p) is an

equilibrium state.
Proof. Ty(Kx,p) = T(lim Ty (K, p), p) = lim T;,.(K, p) = K.

We denote T(K, p) := lim T,(K, p).
REMARK. The lcmm:;ields the following equality:
Vte R*p e BoWK e " T,(T(K, p), p) = T(K, p).
On the other hand from the definition of T(X, p) we have
Vt e R*Vp e BoVK € #” T(Ti(K, p), p) = T(K, p).
PoSTULATE 3 of asymptotic contuinuity.
Vp € B, T(+, p):X - is continuous.

4 Arch. Mech. Stos. nr 3/82
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3. Quasi-asymptotic stability

DEeFINITION. For a given equilibrium state (K, p) we define its domain of attraction

D(K, p) by i i
D(K,p):= {KeX: T(X, p) = K}.

REMARKS. D(K, p) is a) non-empty because K € D(K, p) and b) the inverse image of

the point K under the function 7(-, p)

D(K, p) = T(-, p)"*({K}).
Thus K; # K, = D(K;, p)nD(K;, p) = 0 and if P3 holds, then all the domains D(K, p)
are closed.

DEFINITION. If there exists a neighbourhood Ug,, > K, such that Ux,, < D(K,p), an
equilibrium state (K, p) is called quasi-asymptotically stable.

An equilibrium state (K, p) is called Liapunov stable, if for each neighbourhood V of K
there exists a neighbourhood U3 K such that \f t € R* T,(U,p) < V.

An equilibrium state is asymptotically stable if it is both quasi-asymptotically and Lia-
punov stable.

Now we can formulate

THEOREM 1. If P2 and P3 hold, then for any p € B, the existence of a quasi-asympto-
tically stable equilibrium state (K, p) excludes the existence of another equilibrium point K,
different from K, which corresponds to the configuration p and belongs together witk K to the
same connected component of the parameter space X .

Proof. Let (K,p) be a quasi-asymptotically stable equilibrium state. Then in
view of P3 D(K, p) is closed. Let us now show that it is also open. By the assumption
there exists an open set Uy,, = D(K, p) with K € Ux,,. Since the domains of zttraction
are disjoint, in the set Uy , there are no equilibrium points different from K, which cor-
respond to the configuration p. Thus

T(:,p)"'(Ux,) = {KexX': T(K,p)eUx,} = {Kex: T(K,p) = K} = DK, p).

Because of the assumed continuity of 7(-, p) the first set being the inverse image of the
open set Uy,, is open. Hence we proved that D(K, p) is a non empty open-closed subset
of J, which implies that D(K, p) is a whole connected component of the space X"

CoroLLARY 1. If K, and K, are two different equilibrium points corresponding to
the same configuration p, and the pair (K;, p) forms a quasi-asymptotically stable state,
then there is not any continuous process in the space o, K(-):[0, t] - o', with K(0) = K,
and K(?) = K,.

COROLLARY 2. If all the equilibrium points of the assumed model correspending to
all the configurations p € B, are quasi-asymptotically stable and X" is connected, then
there exists a one-to-one correspondence between the configurations and the relaxed
states, which means that the model is semi-elastic.

REMARK. Usually & is a Banach space and consequently connected. Moreover, if we
assume that

a) ITeC,t <t implies that 7|y, € C;, and

b) 7 T(K, |, is continuous for each ITe | J C, and Ke X

teR*
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and at last restrict X to contain an element, from which by an admissible process in the
configuration space each other element can be reached, then 5" will be arcwise connected.

In [8] the authors considered the material structure with internal variables. They
assumed X to be a connected subset of R" and the solution of the evolution equation to
exist for all # € R* and to depend continuously uniformly with respect to time on the initial
value and on the process. Thus our postulates P1 and P3 together are weaker than the
assumption of constitutive continuity made by KosiNsk1 and VALANIS. At last our postulate
P2 is equivalent to the so-called postulate of asymptot icstability introduced in [8]. Hence
the main result of [8), i.e. the uniqueness of the quasi-asymptotically stable equilibrium
state under the assumptions mentioned above, is a special case of our Theorem 1,

It should be pointed out that the proof in [8] is based on the assumption that there
are two distinct quasi-asymptotically stable equilibrium states corresponding to one con-
figuration, which yields a contradiction. Thus the result that a quasi-asymptotically stable
equilibrium state (X, p) excludes the existence of even non-quasi-asymptotically stable
equilibrium points corresponding to p, is essentially new.

4. Invariant sets

In what follows we assume that the postulates P1, P2 and P3 hold, that J¢ is connec-
ted, and consider the equilibrium point set E, without the assumption of quasi-asymptotic
stability. By Theorem 1 an equilibrium state is not quasi-asymptotically stable if and only
if there exists another equilibrium state for the same configuration.

THEOREM 2. If the postulates P1, P2, P3 hold and the parameter space X" is connected,
then for each given p the set of equilibrium points E, = X" corresponding to p is connected.

Proof. For equilibrium points K we have T(K,p) = K, and on the other hand
P1 implies that for each p € B, and K € " T(K, p) is an equilibrium point. Thus we can
represent E, in the form

E,:={KexX:3Kex T(K,p) = K} = T(X, p)
from which we conclude that E, being the image of a connected set under a continuous
function is connected.(!)

CoroLLARY 3. If X is a connected metric space and the family T,(-, - ) satisfies the
postulates P1, P2 and P3, then for a given configuration p the set E, is either a sin-
gleton or uncountable.

THEOREM 3. If P1 and P2 hold, then E, is closed.

Proof. Since X is a Hausdorff space and each T,(-,p) is continuous, each set

F,:= {KedX: T,(K, p) = id(K) = K}

is closed as the set on which two continuous functions T;( -, p) and id (- ) are equal. But
by the definition there is

E,= (VF, = {KeX:VYteR* T(K,p) = K}.
teR+
Hence E, as an intersection of closed sets is closed.
(*) For definitions and theorems from topology see [4].

4%



268 K. FRISCHMUTH

ReMARK. In the special case, when o satisfies the first countability axiom, we can prove
this result in terms of sequences, namely

R=00

Ti(e, p) = T(lim e,, p) = limTy(es, p) = lime, = €
=00 n—=+w

for any t € R* when {e,}§ < E, and e = lim e,.
DEFINITION, For a given p € B, a subset I < A" is called an invariant set if

VieR*T.(I,p) = I.

REMARKS. a) @ and X" are invariant for each p.

b) Since for each te R*, pe B, and Ke X T(T,(K, p), p) = T(K, p) each domain
of attraction is an invariant set.

c) For a fixed p the sum and the intersection of each family of invariant sets are invar-

iant.
d) If P1 holds, then the closure of an invariant set is invariant.
Proof. d) Because T;(-, p) is continuous, for each subset I = % we have

Ti(clZ, p) = cl T;(1, p).

For an invariant I we have T,(I, p) < I, and consequently
cl T, (I, p) < cll.

These inclusions yield T;(cll, p) < cll, which ends the proof.

Lemma 2. If the postulates P1 and P2 are fulfilled, then the boundary of each domain
of attraction is an invariant set.

Proof. Inview of remark b) D(K, p) is invariant for each equilibrium state (X, p).
Thus by d) clD(X, p) is invariant. So it remains to show that a point from the boundary
frD(K, p) cannot enter the interior intD(K, p). Indeed, since

T(T.(K,p),p) = T(K, p)
we have
T.(-,p)"*(D(K,p)) = D(K, p).

But it follows from the continuity of T;(-, p) that

T.(+, p)~*(intD(K, p)) < int T,( -, p)~* (D(K,, p)),
which in turn shows that

T.(-, p)~* (intD(K, p)) < int D(K, p),
or T, (A#\intD(K,p), p) =o' \intD(K, p).
So both clD(K, p) and 2"\ intD(K, p) are invariant and, consequently, by c) the set
clD(K, p)n (" \intD(K, p)) = frD(K, p)

is invariant.

REMARK. It should be pointed out that the condition K, € frD(K, p) is not sufficient
for another equilibrium point K, to exist, so that K, e frD(K,, p). However, in some
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cases, for instance if E, is finite, such an implication can occur. In such circumstances the
lemma becomes a straightforward consequence of the remarks and of the equality
frD(K,p) = U (cID(K, p)nel DK, p)).
KeEyp
K#K

COROLLARY 4. The intersection of an attraction domain closure family is invariant.

CoroLLARY 5. If P1, P2 and P3 hold, ¢ is connected, and at least two equilibrium
points corresponding to p exist, then each of them lies on the boundary of its domain of
attraction.

Proof. By the continuity of 7T(-, p) the boundary frD(K, p) is contained in
D(K, p), and frD(K, p) is not empty because D(K, p) is a proper subset of . Thus we
can take a K, € frD(K, p). Now, by the lemma 2 we have

V‘ eR* T;(KO’ P) € fl'D(K, P)’

and hence the limit lim T;(K,, p) = T(K,, p) = K belongs to frD(K, p).

t—00

ReMARK. This fact can be also proved making use of the Theorem 2,

REMARK. In many practical cases T;(K, p) is the solution of an initial-value problem
for an ordinary differential equation, starting at XK. Under well-known conditions this
solution depends continuously on K and ¢, and at t = 0 we have T, (K, p) = K for each K.
If we assume an equilibrium state (I"f, p) to be Liapunov stable, then we have the following
properties:

a) VKeXVpeB, To(K,p) =K,

b) the function T,: R* x D(K, p) » D(K, p),

T(t, K) := {T}(K,p) ) for t< o0,
TK,p) =K for t=o
is continuous.

Taking a closed invariant subset J = D(K, p), we infer that K € I and the function
H:Ix[0,1]|- 1

H(i, x) = T,,(l%,f)
is a homotopy.
Since a sphere in R" cannot be contracted to a point and is no retract of the closed ball,

the following facts are worth-while mentioning:
a) neither a domain of attraction nor its boundary can be homeomorphic with a sphere
in R".
b) The equilibrium point set E, cannot be the boundary of a set which is homeo-
morphic with the closed ball in R".
Examples. a) A" = R, E, = [a, b]
(—o0,x] for x=a,
D(x,p) = {{x} for x € (a,b),
[, +0) for x=

b) By our last remark the following situation cannot occur
X =R? E,={(x,0:x>0}, D((x,0),p)= {(u,v):u*+2? = x?}.
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5. Existence theorems for unstable equilibrium states

Let us now assume that P1 and P2 hold, but T(-, p) is not a continuous function. In
this case several equilibrium states corresponding to p must exist, and more than one of
them can be asymptotically stable. The aim of this section is to prove the existence of
Liapunov unstable equilibrium states for p. For the sake of simplicity we start from the
special case in which one of the domains of attraction is not closed, and make use of the
Lemma 2. Then, in order to give a general proof of the existence of instability points, we
consider the set SING(p) of all points at which the function 7'(-, p) is not continuous.

THEOREM 4. When P1 and P2 hold and one of the domains of attraction D(K, p)
is not closed, then there exists an equilibrium state (K,, p), K, € ft D(K, p), which is not
Liapunov stable.

Proof. By assumption, there exists a point K, € frD(K, p)\ D(K, p). Again,
as in Corollary 5, we conclude that X, := T(K,, p), different from K by choice, lies on the
boundary of D(K, p), and is also an equilibrium peint corresponding to p. We can take
disjoint neighbourhoods U and U, of correspondingly K and K, . Since each neighbourhood
V of K, contains a point Ky from D(K, p), there exists a time #, such that T},(Ky, p) € U,
and, consequently, T;,(Ky,p)¢ U,. Now, because ¥ was arbitrary, K, is Liapunov
unstable.

REMARK. The assumptions of Theorem 4 are satisfied if

a) P1, P2 hold,  is connected, (K, p) is quasi-asymptotically stable and 7'(-, p) is
not continuous.

Proof. By the Lemma 2 D(K, p) and its boundary frD(K, p) are then disjoint,
so that D(K, p) is open and cannot be closed because otherwise T'( -, p) would be a constant
and, consequently, a continuous function.

b) P1, P2 hold, E, is finite and 7(-, p) is not a continuous function.

Proof. If E, is finite, then T(-, p) is continuous if and only if all domains of
attraction are closed, so that there must exist one domain of attraction which is not closed.

c) P1, P2 hold and the boundaries of two domains of attraction have common points,
i.e. clD(K,, p)neclD(K,, p) # 0.

Proof. Because D(K,, ppnD(K,, p) = @ either D(K,, p) or D(K,, p) cannot be
closed.

COROLLARY 6. If o is connected, P1 and P2 hold and (X, p) is a quasi-asymptotically
stable equilibrium state, then either K is the only equilibrium point corresponding to p
or there exists at least one Liapunov unstable equilibrium state (K,, p) with K, at the
boundary of D(K, p).

Let us now consider the following example:

A = R*3(x,y,2), T((x,5 2),p) = (x,ye”"*",0),
where a is a positive function of p.

It is easy to see that

a) T, # id is the projection on the x-y-plane,

b) P1 and P2 hold,

¢) T((x,y, z), p) is discontinuous in all points of the form (0, y, z) with y # 0,

d) E, = {(x,»,0):x = 0vy = 0} is connected.
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For x = 0 we have D((0,y,0),p) = {(0,y,2):z€ R} and for y =0, x # 0 there is
D((x,0, 0),p) = {(x,y,2):y€R,ze R}. So all the domains of attraction are closed.
But all the points (0, y,0) with y s 0 are Liapunov unstable because all the points
(x,y,0) with x # 0 are attracted to points which lie outside the y/2-ball with the center
in (0, y,0).

This example suggests that the thesis of Theorem 4 holds even in more general cases.
To prove this hypothesis, we introduce the following:

DEFINITION. We say, that K € X" satisfies sing (p) with V, if V is an open neighbourhood
of T (K, p) and for each open neighbourhood U of K there exists a point K € U such that
T(K,p)¢ V.

DEeFINITION. SING (p) is the set of all K € " which satisfy sing (p) with some V = X",

RemArRk. T(-, p) is discontinuous if and only if SING (p) is non-empty.

LemmA 3. If P1 and P2 hold, then for each p SING(p) is an invariant set. Moreover,
if K satisfies sing(p) with V, then for each te R* T,(K, p) satisfies sing(p) with the
same V.

Proof. Let us take an arbitrary open neighbourhood U, 3 T,(K, p). Because
T,( -, p) is continuous, we can find an open U, 5 K, such that T;(U,, p)  U,. Because K
satisfies sing(p) with ¥, there exists a point K € U, such that T(K, p) ¢ V. Hence we have

K@) := T,(K,p) e U,
and

T(K.,p) = T(T(K,p),p) = T(K,p) ¢ V.
On the other hand there is the relation
T(T.(K,p),p) = T(K,p)e V.

This proves that T,(K, p) satisfies sing(p) with V.

LemMMA 4. Provided that P1 and P2 hold, and if K satisfies sing(p) with V¥, then T(X, p)
satisfies sing(p) with the same V.

Proof. For each open neighbourhood U>s T(K,p) there exists a time f€ R*
such that T,(K, p) € U. By Lemma 3, T;(K, p) satisfies sing(p) with V. So in the set U
there are points which are attracted to equilibrium points outside V. To complete the
proof let us recall that T(-, p) is idempotent, so that ¥ is an open neighbourhood of
T(T(K, p), p) = T(K, p).

REMARK. In the last example SING(p) is not closed, which illustrates the fact that
it is essential for 7;(K, p) to satisfy sing(p) for all t € R* with the same V. Now we can
formulate.

THEOREM 5. If X is a regular space and P1, P2 hold, but T(-, p) is not continuous,
then there exists an equilibrium point K, corresponding to p, which is Liapunov unstable.

Proof. SING(p)isnon-empty, so by Lemma 4 there exists in SING(p) an equilib-
rium point K, corresponding to p. Let us assume that K satisfies sing(p) with V. Then,
since )" is regular, an open neighbourhood W s K, such that cl W < ¥, can be found. Now,
for an arbitrary open neighbourhood U of K, there exists a point Ky in U such that
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T(Ky, p) ¢ V, and, consequently T(Ky, p) ¢ cl W. Thus there must exist a time 7, € R*
with T;,(Ky, p) ¢ c1 W, which proves that there is the relation

VU2 K3Ky e Uqty e R* T,,(Ky, p) ¢ W.
This is exactly the negation of the definition of Liapunov stability.

REMARK. The assertion that 7(-, p) is discontinuous in K means that the process
t— T,(K, p) in & is unstable in the following sense. Small perturbations of the initial
value may cause large perturbations for large times. By Lemma 3 we see that we can
perturbate the process ¢t — T;(K, p) at an arbitrary time ¢ € R* to get the same large per-
turbations for times = > #. So an unstable process cannot become stable for large times
and, moreover, even the limit of an unstable process is unstable. The existence of such
unstable processes implies the existence of unstable equilibrium points. According to this
we can consider the unstable case without introducing a concept of stability of processes.
This is the most interesting conclusion from this section.

Concluding remarks

Thermodynamic conditions are well known not to ensure the stability of the evo-
lution equation solution [1, 2]. However, GURTIN [6], by constructing a Liapunov function
for the motion of a material body subjected to some special kind of loading and inter-
face conditions, proved a generalization of the energy criterion for the stability of non-
elastic bodies. He made use of a thermodynamic inequality and assumed the asymptotic
stability in the large for the evolution in the parameter space. When the evolution of the
parameter is a contraction in a complete metric space, this assumption together with
the postulates P1, P2 and P3 are fulfilled. This suggests that the introduction of parameters
lying in a Hilbert space, which are controlled by dissipative evolution equations [10],
cannot change qualitatively the stability behaviour of the body.

If one intends to create in the sense of our postulates a continuous model of a visco-
plastic material and to endow this model with the asymptotic stability, which is physically
desirable, then a new concept of an asymptotic stability has to be introduced. Namely,
the domains of attraction should be neighbourhoods of the equilibrium points with res-
pect to a constitutive topology, introduced in accordance with the real stability behaviour
of the material.
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