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A study of equilibrium points with application 
to constitutive modelling 

K. FRISCHMUTH .(WARSZAWA) 

THE PAPER contains an analysis of the behavior of a general constitutive model during relaxa­
tion processes. Basic definitions and a minimal set of ~sumptions are introduced to prove some 
theorems on equilibrium states as well as on the set of all equilibrium points. The results of 
Sect. 5 are the starting point for a discussion of unstable processes. Some of the present results 
are generalizations of theorems, which were earlier obtained by other authors. Several restric­
tions for the modelling of viscoplastic media follow from the paper. 

Praca zawiera jakoSciow~ analiz~ zachowania si~ og6lnego modelu konstytutywnego w trakcie 
proces6w relaksacji. Wprowadzono podstawowy zbi6r definicji oraz minimalny uklad zaloien 
by wykazac kilka istotnych twierdzen o punktach i stanach r6wnowagi jak i o zpiorze ·punkt6w 
r6wnowagi. Wyniki uzyskane w punkcie 5 s~ punktem wyjScia do dyskusji proces6w niesta­
bilnych. C~c wynik6w pracy uog6lnia rezultaty uzyskane przez innych autor6w. Praca naklada 
pewne ograniczenia na modelowanie osrodk6w lepkoplastycznych. 

B pa6oTe CO~ep:>KHTCH KatteCTBeHHbiH aHaJm3 IIOBe~eHIDI o6~e:H orrpe~eJIHIO~eH · MO~eJIH 
B xo~e rrpOI.\eccoa peJiaKcalUfil. Bao~CH OCHOBHoe MHO>Kecrao orrpe~eJieHHil, a TaK>Ke MH­

HHMam.HaH CHCTeMa rrpeAIIOJIO>KeHHH AJIH BbUIBJieHIDI HeCI<OJI&I<HX ~eCTBeHHbiX TeopeM 
o TOq}{ax H cocroHHIDIX paaHoBecHH, KaK H o MHomecrae rotteK paaHoaecHH. PeayJIDTaTbi, 
IIOnyqeHHbie a · 5 TOq}{e HBJIHIOTCH HCXO~IM rrym<TOM K ~CKyCCHH 0 HeyCTOHqJ~BbiX rrpo-
1.\eccax. 't.IaCTL peaym.TaToB pa6oTbi o6o6~aeT peaym.TaTbi, rronyqeHHbie ~pyrHMH aBTopaMH. 
Pa6oTa HaKJI~IBaeT orrpe~eJieHHbie orpaHHtteHHH Ha Mo~eJIHpoaaHHe BH3KOilJI&CTHtteCKHX 
cpe~. 

1. Introduction 

IN 1967 CoLEMAN and GURTIN [1] formulated their thermodynamics with internal state 
variables. They also introduced the concept of the domain of attraction of an equilibrium 
state together with the notion of the (quasi-) asymptotic stability of equlibrium states and 
assumed the stability postulate, which for each temperature and deformation requires 
the existence of an asymptotically stable in the large equilibrium state. 

Using the new language of NoLL's mathematical theory of materials [9], we can think 
of equilibrium states as being "relaxed states" and treat the constitutive model proposed 
by Coleman and Gurtin as a semi-elastic material element with internal state variables. 
In general, the semi-elastic material element is characterized by a one-to-one correspond­
ence between configurations and relaxed states, so that this · element can describe a vis­
coelatic material and is incapable to model a viscoplastic one, which is possible only when 
there is a nontrivial dependence of the relaxed state on the past deformation-temperature 
history. 

In the paper [8] W. KosiNSKI and K. C. V ALANIS discussed the asymptotic stability 
and constitutive continuity of a material with internal state variables. A uniqueness theorem 

http://rcin.org.pl



264 K. FRISCHMUTH 

for quasi-asymptotically stable equilibrium states was proved, that is a sufficient condi­
tion for the stability postulate was given. Let us note again that under this condition the 
constitutive model assumed here cannot describe viscoplasticity. 

It results from the above coasiderations that to formulate a constitutive model of 
either a real material or a body, one should check all qualitative features of the behaviour 
of the admitted model not to be to restrictive. For example, these features ought to con­
tain the existence, the uniqueness and the continuous dependence of the evolution equa­
tion solution on the initial data, the asymptotic stability and the uniqueness of equilibrium 
states and, last not least, the existence of both unstable processes and equilibrium states. 

The properties listed here are criteria for the choice of material structures which are 
capable to describe the behaviour of a given class of real materials. The aim of the present 
paper is twofold. First we prove a theorem for asymptotically stable equilibrium states, 
which is a generalization of the uniqueness theorem contained in [8]. Then we consider 
the case when asymptotic stability does not occur and prove that in this case there are 
nontrivial relations between the mentioned qualitative features of the model. We use the 
concept of invariant sets, and point out that the domains of attraction and their bounda­
ries as well as the set of starting points of unstable processes are invariant. 

All the results are stated in the framework -of a general constitutive model in which 
the response is function of a pair of arguments, consisting of the configuration and the 
method of preparation [7, 11] (or simply an internal parameter). The evolution of the 
parameter is controlled by the process in the configuration space. Specifying the para­
meter, the evolution functions and classes of admissible processes, we can describe ma­
terials with memory or with internal variables as well as rate- or differential-type materials. 
The parameter can be a past history, an array of tensors or, for nonlocal theories,- an 
element of a space of functions or distributions defined on a material body. In order to 
include the case, when :K is not a metric space, but the topology of :K is generated by 
a uniformity using the constitutive functional [9], we assume :K to be a Hausdorff space. 
The special case when :K is a Banach function space of past histories [3] is studied in [5]. 
In this paper another uniqueness theorem is proved and conclusions for viscoplastic 
modelling are given. 

2. Constitutive assumptions 

In most of all theories of dissipative materials we are concerned with a response func­
tion which is determined by a pair of arguments. One of them, the actual value of the pro­
cess, governs the reaction in (thermo-) elasticity. The other one characterizes the history 
of the process. This argument can be an element of a spa~e of past _histories, but often it 
is more convenient to express the essential features of the past histo~y by a finite number 
of parameters. Thus each process being a continuation of the history determines a change 
of the second argument. We assume that the evolution of the second argument is deter­
mined entirely by its actual value and by the process, so that the constitutive equation has 
the form 

Z = F(P,K), 
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where Z is the reaction, P is the configuration, i.e. the actual value of the process, K is 
a parameter and F is the response function. 

Then we admit that the configuration and the reaction are elements of Banach spaces 
and K belongs to a Hausdorff space %. Hence 

F:Bx% ~ Br. 

We denote the evolution functions by Tr 

Tr:.x" X C([O, t], B)~%, t ER+. 

If at the beginning of a process II, II: [0, t] ~ B, the value of the parameter is equal to K, 
then at the end it takes the value Tr(K, II) = K(t). 

At last the classes of admissible processes C( [0, t], B) = : Ct are assumed to include 
all constant functions, and the family of evolution functions Tr( ·,·)to satisfy the following 
axiom: 

Vtl' tz E R+VIIl E ct~,II2 E CrlVK E% Ill*II2 E c,l+t2 

~ T,l(Tr 2 (K,Il2),Ill) = Ttt+t
2
(K,Ill •Il2), 

where 
t E [0, t2) 

t E [t2, t1 +t2]. 

Let · us now assume the, evolution functions to possess the continuity property given by 
PosTULATE I. V t ER+ VII E CrTr( ·,II):% ~% is continuous. 
REMARK. When we consider a process (configuration) in a subspace B0 of B, for 

example in the subspace of all configUrations with a vanishing temperature gradient, we 
will write n(p) instead of II(P). Furthermore we will identify each constant process and its 
corresponding configuration. 

DEFINITION. JfV t ER+ Tr(K,p) = K, then we call the pair (K,p) an equilibrium state 
and K- an equilibrium point corresponding top. 

PosTULATE 2 of asymptotic rest property. 

VK E .x"Vp E B0 3Kco E.x"Kco = lim T,(K, p). 

LEMMA 1. If Kco is the limit of a relaxation process t 1-+ Tr(K, p), then (Kco, p) is an 
equilibrium state. 

P r o o f. Tr(Kco, p) = Tr(lim T-r(K, p), p) = lim Tt+-r(K, p) = Kco. 

We denote T(K,p) := lim Tr(K,p). 
I-+ CO 

REMARK. The lemma yields the following equality: 

Vt E R+p E B0VK E% T,(T(K, p), p) = T(K, p). 

On th~ other hand from the definition of T(K, p) we have 

Vt E R+Vp E B0VK E% T(T,(K, p), p) = T(K, p). 

POSTULATE 3 of asymptotic contuinuity. 

VP E B0 T( ·, p):% ~% is continuous. 

4 Arch. Mech. Stos. nr 3/82 
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3. Quasi-asymptotic stability 

DEFINITION. For a given equilibrium state (K, p) we define its domain of attraction 
D(K,p) by 

D(K, p): = {K E .Jf": T(K, p) = K}. 

REMARKS. D(K,p) is a) non-empty because K E D(K,p) and b) the inverse image of 
the point K under the function T( ·, p Y 

D(K,p) = T(·,p)- 1({K}). 

Thus K 1 =I= K 2 => D(K1 ,p)nD(K2 ,p) = 0 and if P3 holds, then all the domains D(K,p) 
are closed. 

DEFINITION. If there exists a neighbourhood Ux,p 3 K, such that Ux,p c D(K, p), an 
equilibrium state (K, p) is called quasi-asymptotically stable. 

An equilibrium state (K, p) is called Liapunov stable, if for each neighbourhood V of K 
there exists a neighbourhood U3 K such that V t ER+ T,(U,p) c V. 

An equilibrium state is asymptotically stable if it is both quasi-asymptotically and Lia­
punov stable. _ 

Now we can formulate 
THEOREM I. If P2 and P3 hold, then for any p E B0 the existence of a quasi-asympto­

tically stable equilibrium state (K, p) excludes the existence of another equilibrium point Kt 
different from K, which corresponds to the configuration p and belongs together with K to the 
same connected component of the parameter space f. 

Proof. Let (K, p) be a quasi-asymptotically stable equilibrium state. Then in 
view of P3 D(K, p) is closed. 1.-et us now show that it is also open. By the assumption 
there exists an open set UK,p c D(K, p) with K E Ux,p. Since the domains of attraction 
are disjoint, in the set Ux,p there are no equilibrium points different from K, which cor­
respond to the configuration p. Thus 

T( ·, p)-t(UK,p) = {K E.Jf": T(K, p) E Ux,,} = {K E Jf: T(K, p) = K} = D(K, p). 

Because qf the assumed continuity ofT( ·,p) the first set being the inverse image of the 
open set Ux., is open. Hence we proved that D(K,p) is a non empty open-closed subset 
of :K, which implies that D(K,p) is a whole connected component of the space .7€. 

COROLLARY I. If Kt and K 2 are two different equilibrium points corresponding to 
the sanie configuration__p, and the pair (Kt, p) forms a quasi-asymptotically stable state, 
then there is not any continuous process in the space :K, K( · ):[0, t]-+ :K, withK(O) =Kt 
and K(t) = K2 • 

COROLLARY 2. If all the equilibrium points of the assumed model correspooding to 
all the configurations p E B0 are quasi-asymptotically stable and :/( is connected, then 
there exists ·a one-to-one correspondence between the configurations and the relaxed 
itates, which means that the model is semi-elastic. · 

REMARK. Usually .Jf" is a Banach space and consequently connected. Moreover, if we 
!Ssume that 

a) ]] E c, t1 ~ t implies that IIlro.tl] E c,l and 
b) TH T-c(K,IIlro,-cJ) is continuous for each II E U C1 and K E :1( 

· teR+ 
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and at last restrict% to contain an element, from which by an admissible process in the 
configuration space each other element can be reached, then% will be arcwise connected. 

In [8] the authors considered the material structure with internal variables. They 
assumed % to be a connected subset of R" and the solution of the evolution equation to 
exist for all t E R+ and to depend continuously uniformly with respect to time oti the initial 
value and on the process. Thus our postulates PI and P3 together are weaker tha.n the 
assumption of constitutive continuity made by KosiNSKI and V ALANIS. At last our postulate 
P2 is equivalent to the so-called postulate of asymptot icstability introduced in [8]. Hence 
the main result of [8], i.e. the uniqueness of the quasi-asymptotically stable equilibrium 
state under the assumptions mentioned above, is a special case of our Theorem I. ' 

It should be pointed out that the proof in [8] is based on the assumpdon that there 
are two distinct quasi-asymptotically stable equilibrium states corresponding to one con­
figuration, which yields a contradiction. Thus the result that a quasi-asymptotically stable 
equilibrium state (K, p) excludes the existence of even non-quasi-asymptotically stable 
equilibrium points corresponding to p, is essentially new. 

4. Invariant sets 

In what follows we assume that the postulates PI, P2 and P3 hold, that% is connec­
ted, and consider the equilibrium point set Ep without the assumption of quasi-asymptotic 
stability. By Theorem I an equilibrium state is not qua~i-asymptotically stable if and only 
if there exists another equilibrium state for the' same configuration. 

THEOREM 2. If the postulates PI, P2, P3 hold and the parameter space % is connected, 
then for each given p the set of equilibrium points Ep c %corresponding top is ~onnected. 

Proof. For equilibrium points K we have T(K,p) = K, and on the other hand 
PI implies that for each p E B0 and K E% T(K,p) is an equilibrium point. Thus we can 
represent Ep in the form 

Ep := {K E%: 3K E% T(K,p) = K} = T(.YC,p) 

from which we conclude that Ep being the image of a connected set under a continuous 
function is connected.(1) 

CoROLLARY 3. If% is a connected metric space and the family Tt( ·, ·)satisfies the 
postulates PI, P2 and P3, then for a given configuration p the set Ep is either a sin­
gleton or uncountable. 

THEOREM 3. If PI and P2 hold, then Ep is closed. 
·proof. Since% is a Hausdorff space and each .Tr( ·,p) is continuous, each set 

F, := {K E%: T,(K,p) = id(K) = K} 

is closed as the set on which two continuous func_!ions Tt( ·, p) and id ( · ) are equal. But 
by the definition there is 

Ep = n Fr = {K EJf": Vt ER+ Tr(K,p) = K} .. 
teR+ 

Hence Ep as an intersection of closed sets is closed. 

(1) For definitions and theorems from topology see [4]. 
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REMARK. In the special case, when :/t satisfies the first countability axiom, we can prove 
this result in terms of sequences, namely 

Tr(e, p) = T;(lim en, p) = lim T;(en, p) = limen = e 
n-+oo n-+oo n-+oo 

for any t ER+ when {en}~ c Ep and e = limen. 
DEFINITION. For a given p E B 0 a subset I c :/t is called an invariant set if 

REMARKS. a) 0 and :/t are invariant for each p. 
b) Since for each t ER+, p EB0 and KE:/t T(T,(K,p),p) = T(K,p) each domain 

of attraction is an invariant set. 
c) For a fixed p the sum and the intersection of each family of invariant sets are invar­

iant. 
d) If PI holds, then the closure of an invariant set is invariant. 
P r o o f. d) Because Tr( ·, p) is continuous, for each subset I c :/t we have 

I;( cl/, p) c cl Tr(I, p). 

For an invariant I we have Tt(l, p) c I, and consequently 

cl Tr(I, p) c cl/. 

These inclusions yield Tt(cl/, p) c cl/, which ends the proof. 
LEMMA 2. If the postulates P 1 and P2 are fulfilled, then the boundary of each domain 

of attraction is an invariant set. 
i> roof. In view of remark b) D(l(., p) is invariant (or each equilibrium state (K, p). 

Thus by d) ciD(K, p) is invariant. So it remains to show that a point from the boundary 
'fr D(K, p) cannot enter the interior intD(K, p). Indeed, since 

T(Tr(K,p),p) = T(K,p) 
we have 

Tr(-,p)- 1 (D(K,p)) = D(K,p). 

But it follows from the continuity of Tr( ·, p) that 

Tr(-, p)- 1(intD(K, p)) c int Tc( ·, p)- 1 (D(K, p) ), 

which in turn shows that 

Tc( ·,p)- 1 (intD(K,p)) c intD(K,p), 

or Tr (Jt"~intD(K, p), p) c Jf'~intD(K, p). 

So both clD(K, p) and :/t""intD(K, p) are invariant and, consequently, by c) the set 

clD(K,p)n(Jf'~intD(K,p)) = frD(K,p) 

is invariant. 
REMARK ,., It should be pointed out that the condition K 0 E fr D(K, p) is not sufficient 

for another equilibrium point K1 to .exist, so that K 0 E fr D(K1 , p). However, in some 
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cases,-for instance if Ep is finite, such an implication can occur. In such circumstances the 
lemma becomes a straightforward consequence of the remarks and of the equality 

frD(K,p) = U (ciD(K,p)nciD(K,p)). 
KeE11 

K'#K 

CoROLLARY 4. The intersection of an attraction domain closure family is invariant. 
COROLLARY 5. If PI, P2 and P3 hold, :it is connected, and at least two equilibrium 

points corresponding top exist, then each of them lies on the boundary of its domain of 
attraction. 

Proof. By the continuity of T( ·, p) the boundary fr D(K, p) is contained in 
D(K, p), and fr D(K, p) is not empty because D(K, p) is a proper subset of :it. Tfibs we 
can take a K 0 E fr D(K, p). Now, by the lemma 2 we have 

Vt ER+ Tr(K0 , p) E frD(K, p), 

and hence the limit lim T,(K0 ,p) = T(K0 ,p) = Kbelongs to frD(K,p). 
t-HXJ 

. REMARK. This fact can be also proved making use of the Theorem 2. 
REMARK. In many practical cases T,(K, p) is the solution of an initial-value problem 

for an ordinary differential equation, starting at K. Under well-known conditions this 
solution depends continuously on K and t, and at t = 0 we have T 0 (K, p) = K for each K. 
Ifwe assume an equilibrium state (K,p) to be Liapunov stable, then we have the following 
properties: 

a) V K E :lt\:jp E B0 T0 (K, p) = K, 
b) the function TP: R+ xDCK,p) ~ D(K,p), 

{
Tr(K,p) for t<oo, 

Tp{ t' K) : = T(K, p) = K for t = oo 

is continuous. 
Taking a closed invariant subset I c D(K, p), we infer that K E I and the function 

H: Ix [0, Ill~ I 

is a homotopy. 
Since a sphere in Rn cannot be contracted to a point and is no retract of the closed ball, 

the following facts are worth-while mentioning: 
a) neither a domain of attraction nor its boundary can be homeomorphic with a sphere 

in Rn. 

b) The equilibrium point set Ep cannot be the boundary of a set which is homeo­
morphic with the closed ball in Rn. 

Examples. a) :it = R, Ep = [a, b] 

D(x, p) = li~}oo, x] ~:: ; :~~,b), 
[x, + oo) for x = b. 

b) By our last remark the following situation cannot occur 

:it= R 2
, EP = {(x, O):x ~ 0}, D((x, O),p) = {(u, v): u 2 +v2 = x 2

}. 
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5. Existence theorems for unstable equilibrium states 

Let us now assume that PI and P2 hold, butT(·, p) is not a continuous function. In 
this case several equilibrium states corresponding to p must exist, and more than one of 
them can be asymptotically stable. The aim of this section is to prove the existence of 
Liapunov unstable equilibrium states for p ; For the sake of simplicity we start from the 
special case in which one of the domains of attraction is not closed, and make use of the 
Lemma 2. Then, in order to give a general proof of the existence of instability points, we 
consider the set SING{p) of all points at which the function T( ·, p) is not continuous. 

THEOREM 4. When PI and P2 hold and one of the domains of attraction D(K, p) 
is not closed, then there exists an equilibrium state (K1 , p), K 1 E fr D(K, p), which is not 
Liapunov stable. 

P r o of. By assumption, there exists a point K 0 E fr D(K, p)""-D(K, p). Again, 
as in Corollary 5, we conclude that K1 : = T(K0 , p ), different fro·m K by choice, lies on the 
boundary of D(K, p), and ,is also an equilibrium ptlint corresponding to ·p. We can take 
disjoint neighbourhoods U and U1 of correspondingly K and K 1 . Since each neighbourhood 
V of K1 contains a point Kv from D(K,p), there exists a time tv such that Trv(Kv,p) E U, 
and, consequently, Trv(Kv,p) tt U1 . Now, because V was arbitrary, K 1 is Liapunov 
unstable. 

REMARK. The assumptions of Theorem 4 are satisfied if 
a) PI, P2 hold, .Yt' is connected, (K, p) is quasi-asymptotically stable and T( · , p) is 

not continuous. 
P r o o f. By the Lemma 2 D(K, p) and its boundary fr D(K, p) are then disjoint, 

so that D(K, p) is open and cannot be closed because otherwise T( ·, p) would be a constant 
and, consequently, a continuous function. 

b) PI, P2 hold, Ep is finite and T( ·, p) is not a continuous function. 
P·r o of. If Ep is finite, then T( ·, p) is continuous if and only if all · domains of 

attraction are closed, so that there must exist one domain of attraction which is not closed. 
c) PI, P2 hold and the boundaries of two domains of attraction have common points, 

i.e. clD(K1 , p)nclD(K2 , p) =F 0. 
Proof. Because D(K1 , p)nD(K2 , p) = 0 either D(K1 , p) or D(K2 , p) cannot be 

closed. 
COROLLARY 6. If .Yt' is connected, PI and P2 hold and {K, p) is a quasi-asymptotically 

stable equilibrium state, then either K is the only equilibrium point ~orresponding to p 
or there exists at least one Liapunov unstable equilibrium state (K1 , p) with K1 at the 
boundary of D(K, p ). 

Let us now consider the following example: 

.Yt' = R 3 3(x,y,z), Tr((x,y,z),p) = (x,ye-axt,O), 

where a is a positive function of p. 
It is easy to see that 
a) T0 =F id is the projection on the ~-y-plane, 
b) PI and P2 hold, 
c) T((~,y,z),p) is discontinuous in all points of the form (O,y,z) with y =I= 0, 
d) Ep = { (~, y, 0): ~ = Ov y = 0} is connected. 
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For x = 0 we have D((O, y, O),p) = {(0, y, z):z ER} and for y = 0, xi= 0 there is 
b( (x_, 0, 0) , p) = {(.X, y, z): y e R, z e R}. So all the domains of attraction are closed. 
But all the points (0, y, 0) with y ¥= 0 are Liapunov unstable because all the points 
(x, y, 0) with x ¥= 0 are attracted to points which lie outside the y/2-ball with the center 
in (0, y, 0). 

This example suggests that the thesis of Theorem 4 holds even in more general cases. 
To prove this hypothesis, we introduce the following: 

DEFINITION. We say, that K Eye satisfies sing (p) wit/:1. V, if V is an open neighbourhood 
of T (K, p) and for each open neighbourlwod U of K there exists a point i E U such that 
T(K,p)rt V. 

DEFINITION. SING (p) is the set of all K eye which·satisfy sing (p) with some V c ye, 
REMARK. T( · , p) is discontinuous if and only if SING (p) is non-empty. 
LEMMA 3. If Pl and P2 hold, then for each p SING(p) is an invariant set. Moreover, 

if K satisfies sing(p) with V, then for each t eR+ Tt(K, p) satisfies sing(p) with the 
same V. 

P r o of. Let us take an arbitrary open neighbourhood Ut 3 Tt(K, p). Because 
Tt( ·, p) is continuous, we can find an open U0 3 K, such that Tt(U0 , p) c Ut. Because K 
satisfies sing{p) with V, there e~ists a point K E U0 such that TCK, p) ~V. Hence we have 

K(t) : = Tr(K, p) e ut 
and 

T(K, p) = T(Tr(K' p), p) = T(K' p) rt V. 

On the other hand there is the relation 

T(Tr(K, p), p) = T(K, p) E V. 

This proves that Tt(K, p) satisfies sing(p) with V. 
LEMMA 4. Provided that PI and P2 hold, and if K satisfies sing(p) with V, then T(K, p) 

satisfies sing{p) with the same V. 

P r o o f. For each open neighbourhood U 3 T(K, p) there exists a time t E R+ 
such that Tt(K, p) E U. By Lemma 3, I't(K, p) satisfies sing{p) with V. So in the set U 
there are points which are attracted to equilibrium points outside V. To complete the 
proof let us recall that T( ·, p) is idempotent, so that V is an open neighbourhood of 
T(T(K,p) ,p) = T(K,p). 

REMARK. In the last example SING(p) is not closed, which illustrates the fa~t that 
it is essential for I't(K, p) to satisfy sing(p) for all t eR+ with the same V. Now we can 
formulate. 

THEOREM 5. If ye is a regular space and PI, P2 hold, but T( ·, p) is not continuous, 
then there exists an equilibrium point K, corresponding top, which is Liapunov· u~stable. 

Pro of. SING(p) is non-empty, so by Lemma 4 there exists in SING(p) 'an equilib­
rium point K, corresponding to p. Let us assume that K satisfies sing(p) with V. Then, 
since ye is regular, an open neighbourhood W 3 K, such that cl W c V; can be r6und. Now, 
for an arbitrary open neighbourhood U of K, there exists a point Ku in U such that 
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T(Ku, p) tt V, and, consequently T(Ku, p) tt cl W. Thus there must exist a time. tu E R+ 
with Ttu(Ku, p) ~cl W, which proves that there is the relation 

VU 3 K3Ku E U3tu ER+ T,u(Ku, p) ~ W. 

This is exactly the negation of the definition of Liapunov stability. 
REMARK. The assertion that T( · , p) is discontinuous in K means that the process 

t 1-+ T,(K, p) in % is unstable in the following sense. Small perturbations of the initial 
value may cause large perturbations for large times. By Lemma 3 we see that we can 
perturbate the process t 1-+ Tr(K, p) at an arbitrary time t ER+ to get the same large per­
turbations for times T > t. So an unstable process cannot become stable for large times 
and, moreover, even the limit of an unstable process is unstable. The existence of such 
unstable processes implies the existence of unstable equilibrium points. According to this 
we can consider the unstable case without introducing a concept of stability of processes. 
This is the most interesting conclusion from this section. 

Concluding remarks 

Thermodynamic conditions are well known not to ensure the stability of the evo­
lution equation solution [1, 2]. However, GVRTIN [6], by constructing a Liapunov function 
for the motion of a material body subjected to some special kind of loading and inter­
face conditions, proved a generalization of the energy criterion for the stability of non­
elastic bodies. !fe made use of a thermodynamic inequality and assumed the asymptotic 
stability in the large for the evolution in the parameter space. When the evo.lution of the 
parameter is a contraction in a complete metric space, this assumption together with 
the postulates PI, P2 and P3 are fulfilled. This suggests that the introduction of parameters 
lying in a Hilbert space, which are controlled by dissipative evolution equations [10], 
cannot change qualitatively the stability behaviour of the body. 

If one intends to create in the sense of our postulates a continuous model of a visco­
plastic material and to endow this model with the asymptotic stability, which is physically 
desirable, then a new concept of an asymptotic stability has to be introduced. Namely, 
the domains of attraction should be neighbourhoods of the equilibrium points with res­
pect to a constitutive topology, introduced in accordance with the real stability behaviour 
of the material. 
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