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The development of bivariational principles for the calculation 
of upper and lower bounds 

D. C. PACK (GLASGOW) 

THE PAPER shows how complementary bivariational principles for the calculation of upper and 
lower bounds to inner products involving the solution of equations of the type Tf = fo may 
be developed from simple basic ideas. These are illustrated in, detail for the case when T is 
a linear self-adjoint operator in a real Hilbert space, and the method of extension of the ideas 
to non-self-adjoint and, finally, to nonlinear operators is shown, with examples of formulae 
at present available for practical use. 

Pokazano w jaki spos6b z prostych poj~ podstawowych wyprowadzic mozna uzupelniaj~ce 
zasady biwariacyjne dla obliczania kres6w g6rnych i dolnych iloczyn6w skalarnych rozwiazan 
r6wnan typu Tf = / 0 • Procedur~ t~ ilustruje szczeg6lowo przypadek, gdy. T jest samosprz~
zonym operatorem w rzeczywistej przestrzeni Hilberta; pokazano r6wniez spos6b rozszerzenia 
tej metody na przypadki operator6w niesamosprz~zonych a tak:Ze nieliniowych, wraz z przykla
dami wzor6w nadaj~cych si~ do praktycznego zastosowania. 

llm<a3aH cnoco6 BbiBo~a - H3 npocrhrx ocHOBHbiX noiUITHH - ~onoJIHeHWI K 6HBapHa
l.UIOllllbiM llPHHI.lHIISM W1H pSCtleTS' BepXHHX H HIDKHHX npe~eJIOB CKSJUipHbiX npOH3Be~eHitH 
pememtii ypaBHeiiHH: THIIa Tf = fo 3TS npoue~a H.JimoCTpHpyeTcH no~po6Ho ~IDI CJI}"IaH, 
ecJIH T - CaMoconpiD«eHHbtii onepaTop B ~e:HCTBHTem.HoM npocrpSHcrBe rH.JibnepTa; no
Ka3SH TSIOKe cnoco6 pacnpocrpSHeHID;I 3Toro MeTO~a Ha CJIY'ti&H HeconpiD«eHHbiX onepaTo
poB H HeJIHHeifHbrx, BMeCTe C <l>opMyJiaMH npHrOAHbiMH ~H npaKTH'tleCKOrO HCITOJib30BaHHH. 

1. Introduction 

VARIATIONAL principles have been studied for a long time. There are many books and 
many, many more papers on the subject. Much of the mathematical work has been con
cerned with finding approximate values of the solution of an equation, perhaps a differ
ential or an integral equation, by minimising or maximising some "action functional". 
The functional provides a means to an end and is not necessarily of interest for its own 
sake. In many prob1ems of importance in engineering and physics, on the other hand, 
what is sought is the value of a functional involving the solution, and often i1_1 the form 
of an inner product, while the solution itself is only of secondary interest. Typically, if f 
is the unknown solution of some equation and g0 a given function, what is sought is an 
evaluation of the inner product (f, g0 ) defined over some vector space. Over the years 
several variational principles have been derived to give upper and/or lower bounds for 
(f,fo), where 

Tf~fo 

and (for example) T: :K ~ :K is a self-adjoint linear operator in a real Hilbert space with 
fo E :K. These principles involve the approximation off in some suitable way and have 
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been JI1UCh used. For the more general product (f, g0 ) BARNSLEY and ROBINSON (1974) 
and CoLE and PACK (1974, 1975) independently suggested the use of two approximating 
functions, one for f and one for a function associated with g0 , in order to obtain what 
Bamsley and Robinson named complementary bivariational principles (bi- to indicate 
the dual approximations, complementary in the sense that they would yield both upper 
and lower bounds). CoLE and PACK (1975) showed how to produce families of bounds, 
upper and lower, and were able to make some comparisons between the methods adopted 
and the accuracy of the results. 

The author had the honour and privilege of lecturing on these studies in Warsaw Uni
versity in 1977 at the invitation ofProfessor FISZDON, and will lay out in this paper the 
basic ideas and the considerable advances that have since been presented, permitting the 
approximate calculation of inner products for wide classes of problems, including nonlin
ear ones, under certain conditions. 

2. Variational principles for self-adjoint linear operators 

The most famous and commonly-used variational principle yielding an approximation 
to an inner product is the one given in Co~NT and HILBERT (1953): Corresponding to 

(2.1) Tf=fo, 

where T: .Yt' --. .Yt' is a self-adjoint linear operator in a real Hilbert space with an inner 
product (., .) and / 0 is a real function E .Yt', the functional 

G(4J) = (4>, 2/o- T4J) 

= Lo(4>), say, with 4> E.Yt', 
(2.2) 

has a stationary value when 4> = f and provides either a lower or an upper bound for the 
functional <f,/0 ) = G(f) according, respectively, as the operator T is positive or negative 
definite. 

Cole and Pack generalised this by seeking families of functionals bounding (f,/0 ) 

from both above and below starting from the expression 

(2.3) G(4J) = (f,fo) -(t/> -J, H'(t/> -/)) 

= (f,fo) -( llf, H'llf), say 

and specifying that H' should be a self-adjoint linear operatoli of definite sign. To fix 
ideas, T is taken to be positive definite and is required to satisfy the conditions 

(2.4) 0 < m(4J, 4>) ~ (t/>, T4J) ~ M(4J, tj>), 

where m, M are real (positive) constants, V4> E J'f. The authors looked for H' in such 
a form that Eq .. (2.3) could be manipulated into an expression that would eliminate 
the unknown function f. Clearly, such a procedure would yield lower or upper bounds 
for (f,fo) depending on the sign of H'. The approximations would become better, the 
closer 4> happened to approximate to f. 
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It was found that the choice 

H' = T-THT 

(which ensures that H' is self-adjoint if H is) enabled Eq. (2.3) to be expressed as 

(2.6) G(<J>) = (</J, 2fo- T<J>)+(fo- T</J, H(fo- T</J)), 

eliminating f as required. 
We see at once that the fu.nctional (2.2) corresponds to H = 0 and provides a lower 

bound to <J,io> for T > 0 since H' > 0 in that case. A closer lower bound is given by 

(2.7) 
1 

G(</J) = Lo(</>)+ M (fo- T<J>,fo- T<f>). 

Examples of upper bounds (for positive T) are: 

(2.8) 
1 

G(</>) = Lo(</>)+- (fo- T<f>,fo- T</J) 
m 

or, better, 

(2.9) 

where r- 1 = (T1)- 1/. 

For multi-dimensional linear Fredholm integral equations of the type 

Iiis, s')fJ = (fo)t (i,j = 1, 2, ... , r) .. 
with the (possibly vector) independent variable s, r is to be interpreted as the diagonal 
matrix 

Tu = Tt bl) 

with ri(s) = Til(s, s')/J(s'); l(s') being a vector function with components equal to unity 
everywhere. The constant m in Eq. (2.8) is here min inf Tt(s) over the domain of s. 

These results have been applied to a number of ·problems involving Fredholm integral 
equations of the second kind: the so-called Clausing problem - the conductance of a 
circular pipe linking a large reservoir with a vacuum, when the flow through the pipe 
is steady and free molecular (CoLE, 1977); the conductance of a rectangular duct under 
the same circumstances (here the operator is a 2 x 2 matrix) (CoLE, 1979); the shearing 
stress in plane Couette flow in rarefied gas dynamics based on the BGK model of the 
Boltzmann, equation (COLE and PACK, 1979). The accuracy achieved in the calculation 
is very high in every case, the upper and lower bounds rarely differing by more than a frac
tion of a percent of their mean. 

3. Bivariational principles for self-adjoint linear operators 

All the formulae derived from the expression (2.3) establish variational principles 
involving one approximating function and yield bounds to <J,/0 ), / 0 being the non-

(l) There are sign changes from the notation used in CoLE and PACK (1975) in Eqs. (2.3), (2.5) 
and (4.2). 
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homogeneous term in the operator equation for the unknown f. Bivariational principles 
are called into play to find approximations t~ more general inner products of type <J, g0). 

The basic idea is to ~ssociate with the un~own func~ion f another unknown function, g, 
satisfying an auxiliary equation, which, for self-adjoint linear operators, is 

(3.1) Tg = Ko· 

BARNSLEY and ROBINSON (1974) used the identity 

where y · is a real parameter, and then used functionals of the type appropriate to ensure 
an upper or lower bound (as desired) for the whole, for each of the three inner products 
occurring on the right-hand side. Their results and those of COLE and PACK (1975) together 
with later extensions by RoBINSON and BARNSLEY (1979) and CoLE (1980) are best con
sidered in the light of functionals in the form 

(3.3) 
1 

G(c/J, VJ) = (rxf, f3go)- 2 {(rxbf, A'a.bf)+(rxbf, B'{Jbg)+(D'rxbf, {Jbg) 

, 1 1 [A' B'] [rxbf]\ +({Jbg, C {Jbg)} = (rxf, {3g0 )- 2 \[rxbf {Jbg], D' C' {Jbg /' 

where bf = 4>-f and bg = 'P- g, 4> and 'P are approximations to f and g respectively, 
a and {3 are numbers or operators that commute with T, and A', B', C', D' are self-adjoint 
linear operators such that the expression in curly brackets shall be either positive or ne
gative definite for all bf, bg. The inner product (rxf, {3g0 ) may be expressed as a sum of 
multiples of the (four) inner products (rxf, rxf0 ), ({Jg, {3g0 ), (rxf±{Jg ,. rxf0 ±f3g0 ), any three 
of which are linearly independent under the properties assigned to rx, {3 and T (which 
make (rxf, {3g0 ) = (a/0 , {Jg)). Write q, w = rxf±{Jg and q0 , Wo = rxf0 ±f3go, respec
tively. We find that 

1 
(rxf,f3go) = 2 [(cxf, rxfo)+({Jg, f3go)-(w, Wo)] 

(3.4) 
1 = 2 [(q, qo) ~(rxf, rxfo) -({Jg, {3g0 )] 

1 = 4 [(q,qo)-(w, Wo)]. 

Let bq, bw = rx( cjJ-f)± {3( 'P- g), respectively. Then, to utilise the results of Sect. 2, we 
must seek re-arrangements of the second-order terms in Eq. (3.3)2 to combine with the 
inner products (in one of Eq. (3.4)) so as to produce pairs of terms like th~ expression 
(2.3). We find that for Eq. (3.4)3 we require A' = C' and B' = D'. On the other hand, 
error terms suitable for Eqs. (3.4)1 and (3.4h require only that B' = D'. If we write 

(3.5) G(c/J, VJ) = (rxf, {3g0 )+(8e, E'8e), 
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where 6e = [ac5/ tJc5g] is the error vector, then the fonns corresponding to Eqs. (3.4) are 
respectively 

1 
(5e, E'5e) = 2 [ +(c5w, B'c5w) -(ac5f, (B' +A')ac5f) -(tJc5g, (B' +C')tJc5g)] 

1 
= 2 [ -(c5q, B'c5q)+(ac5f,(B'-A')rxc5f)+(/Jc5g,(B'-C')pc5g)] 

1 
= 4 [-(c5q, (B'+A')c5q)+(c5w, (B'-A')c5w)]. 

Bivariational bounds are now obtained by applying the method of Sect. 2 to the sum of 
Eqs. (3.4) and (3.6), three times for the (3.6)1 or (3.6)2 versions and twice for the (3.6)3 

version, with appropriate choice of sign for the operators occurring in the second-order 
terms to ensure the required type of bound. In every case the operators with dashes are 
replaced by means of formulae such as 

A'= T-TAT 

and the final results produce bounds for the form 

(3.7) 

with 

(3.8) 

G(4J, 1p) = Jrx(4J, VJ)+(c, Kc), 

and . 

(3.9) 

The matrix operator K can most succinctly be written as 

(3.10) 

when (formally) 1 = A-T-1
, C = C-T- 1 (~A'= -TAT, C' = -TCT: A= C 

in using Eq. (3.6)3). The choices of A, B, Care free apart from the conditions on the- signs 
of the operators occurring in Eqs. (3.6) to produce the desired type of boupd. Knowledge 
of T- 1 is, of course, not required. 

For a = ~, pure numbers, Cole has found some improved bounds by optimising 

with respect to oc after setting A = C = + -1
-, B' =__!_TT- T = T0 (positive definite 

2m m 
for T > 0). In this case we write 

(3.11) 

(2) Identification with the results given by CoLE (1980, p. 118) follows by putting: 
in (3.3h,B' = W', B'+A'=F', B'+C'=G', 
in (3.3)2, B' = Q', B'-A' = F', B'-C' = G', 
in (3.3)3, 2B' = Q' + W , 2A' = Q'- W'. 
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which we shall call the basic functional. The bounds are then 

(3.12) 

.where m has the meaning assigned in the conditions (2.4) and 11 • 11 denotes the norm 
associated with (.,.). These bounds a~e essentially equivalent to bounds derived by Ro
BINSON {1978) and by ROBINSON anp BARNSLEY (1979) from ideas based on the identity 
(3.2). Tables of bounds on (f, g0 ) with comments on their computation and relative simplic
ity to use are given in COLE (1980). 

4. Some observations on the principles for T = T* 

With the choice B' = T, A' = 0 in Eq. (3.6h, 

(4.1) 

and then Eq. (3.3)1 shows at once that 

(4.2) 

This functional provides the generalisation of the classical variational principle (2.2), 
but whereas the latter has an error of definite sign (yielding a lower bound for T > 0), 
functional Ja.(cP, tp)- as Eq. (4.2) illustrates clearly- gives an approximation with an 
error of indefinite sign. Bivariational functionals of this kind are called saddle-point 
functionals by CoLE and PACK (1975). 

CoLE (1978) has shown the correspondence between the results obtained from an 
appropriate application of the Bubnov-Galerkin (projection) process and results derived 
by the method of Sect. 3, and with SPIGA (1979) he has compared the computability and 
accuracy of results for Fredholm integral equations obtained by approximations based 
on this process, using a suitable system of orthonormal coordinate functions. Applica
tions to Couette, PoiseuiiJe and thermal creep flows are described in detail. · 

ROBINSON and BARNSLEY (1979) have shown how these ideas may be 11sed to obtain 
point-wise approximations to the solution of a Fredholm integral equation (3) of the type 

b 

(4.3) f(x)-A J k(x, y)f(y)dy = / 0 (x) (a~ x ~b), 
a 

where k(x, y) is real and symmetric, f 0 (x) a real function and A small enough to permit 
the inversion of T = I- J.K. For f E :K and suitable restrictions on 1c, we can use 

b 

(4.4) (f, k(x, y)) = J k(x, y)f(y)dy = ~ {f(x) -/o}. 
a 

<3 > For a more general setting to the use of these ideas for point-wise approximation, see RoAcH 
(1977). 
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The bivariational principles applied to the left-hand side will provide upper and lower 
bounds for f(x). Since the auxiliary equation for g is 

b 

g(x, x')-A J k(x, y)g(y, x')dx' = ·k(x, x'), 
a 

we see that the function g to which 'P approximates is, in fact, the resolvent kernel of the 
Fredholm eq.uation. 

5. Non-self-adjoint operators 

The method may be extended to non-self-adjoint operators by converting Tf = fo to 

(5.1) T*Tf = T*/0 , 

where T* is the ad joint of T with respect to the inner product in :K. Since T* T is self
ad joint, the auxiliary equation is 

. (5.2) - T*Th = Ko· 

Provided that g0 E D(T*) and ex, {J commute with both T and T* (and so, also, with IT*) 
the formulae of Sect. 3 niay be used with cf> approximating to f and, say, x approximating 
to h. We see that Eq. (3.7) becomes 

G(cf>, x) = J~ (cf>, x)+(c, Kc) 
with 

c = [cx(T*fo-T*T4J){J(go-T*Tx)] 

[ 
T* 0] [a.(fo- Tcf>) ] [rt.(fo- Tcf>) ] 

= 0 I {J(g0 -T*Tx) = S* {J(g0 -T*tp) 
with 

Tx = 'P 
and, consequently, 

T*tp =go 
and 

(c, Kc) = (S*c, KS*c) = (c, SKS*c) 
with 

c = [cx(fo-Tcf>),{J(go-T*tp)]. 

Here K = [~ t] with A= A-(T*T)-1, etc. and dashed operators are found from, 

for example, 

Since 
B' = T*T-T*TBT*T. 

J a,( 4>, x) = ( cxcf>, fJgo) + <Px, cxT*fo) -<Bx, T* Tcxcf>) 

= (cx4>, fJgo)+(fJTx, cxfo) -(fJTx, Ta.4>) 

= (cx4J, fJgo)+({J1p, cxfo)-({Jtp, Tcxcf>) · 

= Ja.(4>, tp), 

5 Arch. Mech. Stos. nr 3/82 
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we see that we can base bivariational bounds on the formulae 

(5.3) 

and 

(5.4) 

Tf=fo, 

T*1p = Ko, 

G(t/>, 1p) = Ja,(l/J, 1p)+(c, SKS*c). 

D . C. PACK 

The inequalities required of the operator T* T, namely, that (l/J, T* Tlj>) /(4>, 4>) should 
be bounded both below and above, becomes a requirement on (Tl/J, Tt/J)/(l/J,cJ>): 

{5.5) Mllt/>11 ~ 11 Tl/JII ~ mllt/>11, 

Ja.(l/>, 1p) is a saddle-point functional as before. For a = {3 = 1, J(lj>, 1p) = (c/>, g0 ) + 
+(1p,j0)-(1p, Tlj>) is, in fact, the inhomogeneous Rayleigh-Ritz stationary approxima
tion quoted by STAKGOLD (1968). 

Formulae for G(lj>, 1p) giving complementary bounds for (f, g0 ) for non-self-adjoint 
operators are tabulated in CoLE (1980), with comparisons of the computability of the 
bounds based on three as against two groupings of inner products (vide Eqs. (3.6) above). 
There are more economical bounds obtainable from three, which are developed from 
formulae given by BARNSLEY and ROBINSON (1976), where the original extensions were 
displayed. The reader is referred to the above papers for details of the bounds. 

6. Bounds for nonlinear problems 

The further generalisation of the method to make it applicable to certain nonlinear 
operators is due to BARNSLEY and ROBINSON (1977). Let Ff = 0 be an operator equation 
in a real Hilbert space Jft' with the inner product(.,.) and let g0 e .Ye be an arbitrary vector 
in that space, as before. Since F is no longer required to be linear, any nonhomogeneous 
term / 0 is absorbed into F. Here F: D(F) c Jft' -+ Jft' with D(F) a linear subspace dense 
in 31'. The basic condition imposed on F, corresponding to the inequality (5.5), is 

(6.1) 

at least for a suitable subset 6 of D(F), with a constant m > (} and V 4> 1 , 4> 2 , E 6. The 
condition implies that if there is a solution of Ff = .o in 6, then it is unique. 

We associate with 

(6.2)1 Ff= 0 

the auxiliary equation 

(6.2h 

where F/* represents the ad joint of the Gateaux derivative ofF at f Equation (6.2)2 re
duces to F*g = g0 for a linear non-self-adjoint operator, and is itselflinear in gat a fixed[ 
The form J(l/>, 1p) occurring in the bivariational principles now reads 

(6.3) J(lj>, 1p) = (t/>, Ko) -(1p, Fl/J) 
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with cf>, 'I' as approximations for I and g, respectively, chosen from 6. That this expression 
has a stationary value at (1, g0 ) under Eqs. (6.2)1 , 2 is most simply demonstrated by intro
ducing tbe approximations 

(6.4) c/J(t) = !+ t(c/J -/), 

where t is a real parameter in [0, 1]. This is an interpolation along a ray between the so
lution/and the approximating function c/J. The Gateaux derivative ofF at any fin D(F) 
is defined by F/ such that for each c/J,f E D(F), 

(6.5) Fc/J(t) = Ff+F/[cfJ(t)-f]+v((f, c/J(t)) 

with 

(6.6) llv(f, c/J(t))U -+ o(t) as t-+ 0. 

We shall assume that F/ is a linear mapping, but it may be unbounded. It is also assumed 
to possess a closed extension, so that F/* is a closed linear mapping with D(F/*) dense 
in .Te. 

The nature of the approximation to (/, g0 ) provided by J(cfJ, VJ), . considered as an 
operator over a domain c: ;ex K, is indicated by the fact that 

J(cp(t), 1p(t))-(f, go) =(go, c/>(t)-f) -(1p(t), Fc/>(t)) 

= (g0 , c/J(t) -/) -(1p(t), F/[cfJ(t) -/]) -(1p(t), v) 

= (g0 , c/>(t) -/) -(F/*1p(t), c/J(t) -/) -(1p(t), v) 

= (g0 -F/*1JJ(t), c/J(t) -/) -( 1p(t), v). 

With no more required than that 1p(t)-+ gas t-+ 0, J(cf>(t), 1p(t)).-+ <f, g0 ) as t-+ 0. 
If we write 1p(t) = g+ t('jJ- g), then we see at once that 

J(f, 1p(t))-J(f, g)= 0 

iJJ 
=> iJ1p = 0 at (f, g); 

also, since 

(6.7) J(cfJ(t), g)-J(f, g)= (g0 , c/>(t)-f) -(g, Fc/>(t))= (go-F/*g, c/J(t)-f)-(g, v), 

where the first inner product on the right-hand side vanishes and 

ll(g, v)ll ~· llgllllvll-+ o(t) as t-+ o by Eq. (6.6), 

it follows that ~; = 0 at (/,g) in the Gateaux sense of the partial derivative. Thus 

J(cf>, 1p) provides a stationary approximation to (/, g0), albeit of the saddle-point type 
as described in Sect. 4. 

An interesting special case of the use of J is afforded by algebraic equations, where, 
for Fl = 0, I eat, 1 > 0, with the inner product defined by ordinary multiplication and 
11·11 by 1·1, and with g0 =I, J(cf>,'IJ) becomes an approximation to (go,/) =f, the 
required root of the equation. The auxiliary equation here is F/'P = I with F/ the Frechet 
derivative of F in this particular context, providing the value 1p = I IF/( c/J) to be inserted 
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in J. The formula for J is easily seen to yield Newton's approximation to the root of an 
equation. 

In general, when Ff = 0 is posed ,on a Hilbert space, the approximation J(cp, "'')pro
vides a generalisation of Newton's approximation, with the advantage that it does not 
require knowledge of the inverse of the Gateaux derivative F/(c/J). In order to obtain 
genuine upper and lower bounds it is clearly essential to add and subtract terms to the 
basic functional J(cfJ, 1p). To achieve this a further condition requires to be placed on the 
operator, so that there are inequalities corresponding to both of those previously intro
duced in (2.4). 

A suitable con<\ition is 

(6.8) 

Bamsley and Robinson show. that, given 

(6.9) 

1 k 
C(c/J,VJ) = c-IIF+*'P-KoiiiiF4>11+ 2c2 111JJIIIIFc/JII 2

, 

'P e . D(F~*), 

c/J E <5, 

where 6 is a subset of D(F) in which the solution f lies, then 

(6.10) J(cfJ, tp) -C(c/J, 1p) ~ (g0 ,/) ~ J(cfJ, 1p)+ C(c/J, 1p). 

As a ~ecial case we may note that if we write Ff = Af-fo, where A is a linear mapping 
(but F, of course, is not!), then k = 0 and the "correcting" functional reproduces bounds 
already derived for non-self-adjoint operators in earlier papers (BARNSLEY and ROBINSON 
(1976)), namely 

(6.11) 1p E D(A*), 

c/J e D(A). 

Other conditions on F lead to other bounds. For example, if 

we can write 

(6.13) 

As examples, the autho.rs give bounds on a transmission signal, a problem arising in 
communication theory and involving a nonlinear integral equation, and bounds on the 
heat contained in a bar, involving a nonlinear diffusion equation with boundary conditions. 
In each case simple approximations to the solution and to the subject of the auxiliary 
equation lead to close bounds on the quantities sought. 
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7. Conclusion 

The developments outlined above provide formulae for upper and lower bounds to 
inner products involving the solution to an equation posed in Hilbert space. The progres
sion from self-adjoint linear operators to nonlinear operators is shown with an indication 
of the choices available at present. It would seem that there is scope for further refinement 
of the functionals, with clearer understanding of what is required to produce families 
of closer bounds. The applications of these results to problems in physics and engineering 
have only just begun and many uses of them will be found, as inner products of the kind 
studied are closely associated with ideas of flux of important physical quantities. 
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