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An unsteady Faxen's relation for the force including 
interaction effects 

I. PIENKOWSKA (WARSZAWA) 

THE 'PAPER deals with unsteady hydrodynamic interactions between N spherical particles, 
immersed in an incompressible, unbounded fluid. It is assumed that the flow is governed by the 
unsteady Stokes equations. The integral equation approach, involving the Green function, 
depending explicitly on the time variable is use·d. The unsteady hydrodynamic drag, exerted on 
the j-th spherical particle in the presence of N-1 other particles, is calculated under some sim
plifying assumptions. 

Praca niniejsza dotyczy niestacjonarnych oddzialywan hydrodynamicznych mict<fzy N sztywnymi 
kulami, umieszczonymi w cieczy nie8cisliwej. Przeplyw cieczy opisuj~ niestacjoname r6wnania 
Stokesa. Celem opisu oddzialywan hydrodynamicznych wykorzystano funkcj~ Greena, zale-
4~ w spos6b jawny od czasu. Obliczono, przyjmuj~c dodatkowe zalozenia upraszczaj~ce. 
niestacjonamy op6r hydrodynamiczny j-tej kuli, w obecnosci N-1 innych kul. 

B pa6oTe paccMaTHpHBaiOTCH HecraQHOHapm.Ie rHAPOAHHaMWieCHHe BaaHMOAeHCTBHH Me>~<,~zy 
N meCTHHMH wapaMH, noMeiQeHHbiMH B HecmHMaeMoii >KHAHOCTH. TeqeHHe >KHAI{OCTH onH
ChiBaiOT HeCTaQHoHapHbie ypaBHeHHH CToHca • .I(JIH onHcaHHH rHAPOAHHaMWI~CHoro B38H
MOAeHCTBHH 6biJia HCllOJib30BaHa <i>YHHQHH rpHHa, 3aBHC.fiiQa.fl OT BpeMeHH. IlpOH3BeAeH 
pacqeT HeCTaQHOHapHoro rHApo,rumaMW.JecHoro conpornBneHHH j wapa, npH HaJD{qffif N-1 
ApyrHX wapoB : 

1. Introduction 

ONE of the many problems concerning the motion of particles in viscous flows at low 
Reynolds numbers, is to examine hydrodynamic interactions between immersed particles. 
In the case of steady-state flows ~onsidered in the framework of the steady Stokes equations, 
the subject has received a great deal of attention over the years. It was mainly because of 
its importance in the theory of suspensions. However, under many conditions the uti
steady effects become important. Let us mention here the hydrodynamic interaction of 
particles, being close to each other [1], the settling of particles under the gravity force 
[2], the influence of the Brownian motion of particles [3]. The first step in studying the 
unsteady effects is to consider them in the framework of the unsteady Stokes equations. 

In this paper we confine our attention to the unsteady Stokes , drag exerted on the 
spherical rigid particle, knowing the velocity of the fluid in the absence of the particle, 
and the velocity of the immersed particle. This kind of relations is called Faxen's relations. 
A simple example of Faxen's relation is the Boussinesq' formula derived on the basis 
of unsteady Stokes equations of motion. It gives the force F(t) exerted on a single sphere 
of radius a, moving at the ·velocity V(t) in an incompressible fluid, being at rest at infi
nity: 

6 Arch. Mech. Stos. nr 3/82 

http://rcin.org.pl



298 1. t'IENKOWSKA 

(l.I) F(t) = [ -6nap- ~ na3e !!_ -6y;a2 y eft J
1 

dr _!!__]V, 
3 dt 

0 
y't-7: dr 

where p, e denote, respectively, the viscosity, and the density of the fluid. 
In this formula the first term gives the Stokes drag, the second term - the effect of 

the inertia of the liquid, the last one takes into account ~he history of the sphere motion. 
This formula has been recently extended in a number of papers which followed the paper 

. I 
by MAZUR and BEDEAUX [4]. Mazur and ·Bedeaux constdered the drag force exerted on 
the sphere, immersed in an arbitrary, unsteady Stokes flow of the fluid. Further, this ap

. proach was modified to the case of compressible fluids [5], of slip boundary conditions 
on the sphere surface [6], of the impact of the initial distribution of fluid velocity [7], etc. 

In this paper we consider the unsteady motion of N rigid spheres in an incompressible 
fluid under the assuption that the floJ. obeys the linearized Navier-Stokes equations. The 
presence of spheres is described, following [4, I 0], by so-called induced forces distributed 
on the surfaces of spheres. In the first part of the paper we discuss a set of integral equations 
relating the induced forces and the velocities of spheres. In the derivation of these equations 
no simplification is involved. The Faxen's type relation for the force exerted on the j-th 
sphere, i!l the presence o~ N-I other spheres, is deduced in the second part of this paper. 
This is done for the case when the spheres are moving translationally with the velocity 
v.:(t), k ;, 1, ... , N, in the fluid being at rest at infinity. In this step some simplifying assump
tions are accepted. 

2. Governing equations 

The time-dependent positions of the N spheres are specified in the fixed coordinate 
systein r(,x, y, z). An arbitrary point on the surface of the j-th sphere is indicated by 
R1, j = I, ... , N, whereas the centre of the sphere is given by RJ. In addition, for each 
sphere of radius ab a local coordinate system is introduced, r1(D1) = R1(DJ, t)- RJ(t). 
In these local coordinate systems D1 give the angle coordinates of the vector r1 , with some 
other vector chosen as the polar axis. 

The velocity of the j-th sphere is given by 

(2.I) R1(D1 , t) = RJ(t)+w1(t)xr1 , lr11 =ab 

and consists of the translational velocity RJ(t) and the angular velocity w1(t) . 
The presence of the spheres in the flow is accounted by time-dependent, point forces 

fj(D1 , t ), distributed on the surfaces of the spheres. These surfaces are given by ~ ( r- R 1 
(D1, t) ). Thus the collection of all spheres acts as the source term in the equation of motion: 

(2.2) 

N 

}; f dD1 ~,[r -R1(.Q1 , t)]f1(.Qb t). 
}=1 

The hydrodynamic .interactions between the suspended spheres are considered in the 
framework of the linearized Navier-Stokes equations. For an incompressible fluid, 
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being under the action of an external, time-dependent force rext(r' t), they have the 
form 

(2.3) ( e :I -!'V2 )v(r, I)+ Vp(r, t) 

N 

= rex'(r, t)+ _2; f d.Q1 ~[r-Ri.Qb t)]fi.Q1 , t), V· v(r, t) = 0, 
j= I 

where v(r, t ), p(r, t) denote the velocity and the pressure fields. 
The initial condition reads 

(2.4) v(r,O)=O. 

The stress tensor in the fluid is denoted by P(r, t): 

(2.5) Pkl(r, t) = ~kzp(r, t)-,u(vk, 1(r, t)+v1,k(r, t)). 

Following [4, 10], the equations of motion (2.3) and (2.4) are supposed to be applied 
in the whole space. Thus it is necessary to specify the divergence of the stress tensor also 
inside the volumes occupied by the suspended spheres. It can be checked that Eqs. (2.3) 
and (2.4) are satisfied if this divergence is given by the following relations: 

a . 
V· P(r1 , t) = -e Tt [RJ(t)+w1(t)xr1], lr11 < a1 , 

(2.6) 

In the volumes of the spheres, the stress tensor is expressed in terms of the time-derivative 
of the velocities of the spheres. However, there appear additional terms -the induced 
forces fi(!J1 , t)- on the surfaces of the spheres. In virtue of the above relations, the 
force Fi(t) exerted on the j-th sphere by the fluid assumes the form 

(2.7) Fit) = - J V· P(r1 , t)dr1 = ~ na 3e ;t RJ(t)- J fi.Q1 , t)dr1 • 

To obtain the relation of the force. fJ(.Q1 , t) to the velocities of the spheres, we write 
the velocity field as the function of the forces exerted on the fluid, using the integral equa
tion approach. Hence the velocity field can be expressed in terms of the convolution 
integrals: 

t N 

(2.8) v(r, t) = v0 (r, t)+ J dt' J dr'G(r-r'; t-t') }; J d.Q1 ~[r' -RiD}, t')]f1(!Jj, t'), 
0 £3 j=l 

I 

(2.9) v0 (r, t) = J dt' J dr'G(r-r'; t-t')fex'(r', t'). 
0 £3 

The integration with respect to r' is done over the whole space £ 3 • Here v0 (r, t) de
notes the unperturbed fluid velocity, i.e~ the velocity of the fluid in the ab~ence of the 
spheres. The dynamical Oseen tensor G(r, t) is defined by 

(2.10) G(r t) = J dw J ~ exp[ik · r+iwt] [t- kk ] 
' 2n (2n)3 iwe+plkl 2 

_ lkl 2 
' 

where th~ space-time Fourier representation is used. 

6* 
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The no-slip boundary conditions are assumed on the surfaces of the spheres: 

(2.11) R1(Q1 , t) = v(RJ(D1, t), t) = J dr<5[r-R1(Qb t)]y(r, t). 
E3 

They give the coupling between the flow of the fluid and the velocities of the spheres. 
Using these boundary conditions as well as Eqs. (2.8) and (2.9) for the fluid velocity, one 
obtains N coupled integral equations for the unknown f1(D1, t): 

t 

+ f dt' f dQjG[R1(Q1 , t)- R1(Dj, t'); t -(lfJ(Qj, t') 
0 

lV t 

+ }; f dt' f dQ~G[R1(Qb t)-Rk(Q~, t'); t-t']fk(.Q~, t'). 
k:F-j 0 

In Eq. (2.12) the induced forces f1(Q" t) depend on the relative instantaneous velocities 
of the spheres with respect to the fluid, Vj(Q1 , t): 

(2.13) 

The first integral on the r.h.s. contains the tensor G(R1(Q" t)- R1(Qj, t'); t- t'), which 
acts on the force induced on the j-th sphere in the absence of other spheres in the fluid. 
The last term involving the summation over the spheres k =F j is due to the hydrodynamic 
interactions between the suspended spheres. These interactions depend on the trajectories 
of the spheres, as seen from the arguments R1(Q1, t)-Rk(Q~, t') of the tensors considered. 
This dependence can be expressed in terms of the initial distances between the spheres 
(R1k = RJ(t)lr=o- RUt)lr=o), and the velocities of the spheres in the time interval con
sidered. It should be noted that the integrals over the time variable depend on the time 
interval considered, and that the integration over space is confined to the integration over 
the surfaces of the spheres. 

3. Hydrodynamic interaction tensors 

To recast the basic set of equations (2.12), we expal)d V1(Q1 , t) and f1(Q" t) in terms 
of the normalized spherical harmonics Y{" [8]. The. expansion is chosen in view of the 
fact that the space integration in Eq. (2.12) is to be done over the surfaces of the spheres 

(3.1) ViD1 , t) = y 4n}; V~, 1m(t) Y,m(01 , 4>1), lr11 = a1 , 
/,m 

(3.2) 

where 0 ~ I< oo, lml ~ I, 
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Further, the dynamical Oseen tensor is presented in terms of the space-Fourier represen
tation: 

(3.3) G(R, I)= ~ J (~:)' exp {ik· R-viki
2t+- ~=~2 ]. v = p/e, 

where the time variable appears explicitly. 
The last auxiliary step consists in the expansion 

(3.4) exp(±ik · R) = 4n 1; (±i)1j 1(Rk)Yi(O, lj>)Y,-m(x, ~), 
/,m 

where, as previously, the spherical polar coordinates R' = (R, 0, l/J ), and k = (k, X,~) 
are used; j1(Rk) denotes the spherical Bessel function of the first kind. 

This procedure allows to perform the integrations over . the surfaces of the spheres, 
and leads to the following set of equations for the expansion coefficients f1,1m(t), entering 
Eq. (3.2): 

t 

(3.5) V (t) = fdt' ~ T1~m~(R0 (t) -R9(t')· t-t')f (t') ),1 1 m1 .L,.; l 1 m1 j J ' ),l~m~ 
0 l2,m2 

j= 1, ... ,N. 

The tensors Tl2 : 2 acting on the expansion coefficients of the induced forces are called 
1 1 

hydrodynamic interaction tensors. They were introduced by Y OSHIZAKI and Y AMAKA w A 

[9], for the steady-state flows. The idea of Yoshizaki and Yamakawa of using the hydro
dynamic interaction ·tensors is extended here -to take into account the unsteady effects. 
The tensor Tf::!::(RJ(t)- RUt'); t- t') gives the (/1 , m1) component of the disturbed flow, 
at time t, generated on the surface of the j-th sphere by the (/2 , m2 ) component of the 
force fk (k -1= j), distributed on the k-th sphere, in the time interval considered. Thus, 
the memory effects intervening the interactions between the spheres can, by means of 
Eq. (3.5), be analyzed. The form and properties of the tensors 11::::: are discussed in 
the Appendix. 

4. The force Fj(t) exerted on the j-th sphere 

To illustrate how the hydrodynamic interaction tensors work, let us consider the 
translation of N spheres in a fl:uid being at rest at infinity. Let the instantaneous relative 
velocities of the spheres with respect to the fluid be given by 

fVJCt), l = 0 . } 
(4.1) VJ,,m(t) = l O , l ~ 1 , 1 = 1, ... , N . 

Due to the symmetry of the spheres 

(4.2) f fj(rj, t)drl = fJ,Oo(t). 

Hence, to calculate the force exerted on the j-th sphere, only the expansion coefficient 
having indexes equal to zero, f1, 00(t), is needed. This coefficient will be obtained under the 
additional assumptions: 
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302 I. PIENKOWSKA 

(i) The hydrodynamic interactions are regarded within the linear approximation with 
respect to the sphere velocities. Hence the tensors T:::::: are required in the lowest order 
approximation with respect to Vi(t) r Under such conditions, the integral equations en
tering Eq. (3.5) l:?ecome the cottvolution integrals with respect to time. The 1Laplace trans
form of Eq. (3.5) gives 

(4.3) V~,r 1 m 1 (p)= _2;TJ~r7~~(p)fJ,r 1 m1 (p)+ _2; };Tf::::~(RJk,p)fk,r 2 m:~(P), 
l:~,m2 k-:;:.j /2om2 

where p denotes the variable conjugate to t, 

RJk = IRJ(t = 0)-R~(t = 0)1, T}~~1m 1 (P) = T~~::::(RJk = 0, p). 

The solution for fi, 00(p) found using the iteration procedure reads 

N 

(4.4) fJ,oo(P) = TJ.~o(p)VJ,oo(P)- TJ.~o(P) };T88(RJk' p)TZ~oo(p)Vk,oo(P) 
k-:;:.j 

N N 

+ TJ.0oo (p)};}; }; T~1o'" 1 (RJk' p)T~!l7!. 1 (p)Tf1'!,2 (Rk, p)T~~o(P) V,, oo(P) + 
k-:;:.j 1-:;:.k lhm~om2 

T·T=l. 
The first term gives the forces due to the interaction of a single, j-th sphere with the fluid, 
where~s the second term describes the direct hydrodynamic interaction between the j-th 
and· k-th sphere. These two terms contain only the interaction tensors. with indexes equal 
to zero. The last_ term and all higher order terms take into account the indirect interactions 
among the spheres, and the appropriate interaction tensors. have the indexes different 
fro·m zero as well. However, due to the properties ·of the tensors considered (see Appen
dix), dropping the terms with li =1= 0 implies that the force is calculated up to terms of 

order o( ~ r. Here A denotes the maximum value of ah and R - the minimum value 

od the distances Rik. As the time of the start of the motion t = 0 is chosen arbitrarily, 
the condition A < IRi(t)--"Rk(t)i is assumed to be fulfilled in the whole time interval 
considered. This fact leads to the second assumption: · 

• . 3 

(ii) fi. 00(1) correct to terms of 0 ( ~ ) will be considered. Within this approximation, 

only the tensors Ti(p) = TJ.~(p), and T(Rib p) = T88(R1k, p) are to be calculated. It 
follows from the estim~tion (see Appendix) 

(4.5) AFr 1 r:~ , r(R, t-t') ~ (~)lt+I2 +
1

.Jf(v R , t-t'), t >- t'. 
, . ~ v(t -t') 

(iii) Expanding the interaction tensors with respect top allows to compare the drag 
force obtained here with the Boussinesq' formula (1.1). 

Under these conditions, the interaction tensor Ti(P) which gives the translational 
friction coefficient of the sphere of radius ai reads 

( 4.6) . 'iip) = 6niJa1 (I+ ;; VP + ~ a! p )t. for ;; y'Ji < I. 
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As it should be, (compare Eq. (2.7)), Eq. (4.6) differs from Eq. (1.1) only by the term due 
to the inertia of the liquid displaced by the rigid sphere. 

From the above formula the physical ·meaning of "small" pis clear; the condition is: 

p < vfaJ. 
The tensor T(Rik, p), describing the direct interaction between two spheres, reads 

(4.7) T(R1., p) = Sn;RJ l+eJ.eJ•+ a~;.ai_ ( 1- ~ e11e11)]-6,.:RJ;; VP) 
3 [ 1 2 aJ + al ] (RA ) . 

+ 32np,RJk l-3eikeJk+9 RJk (l+eJkeJk) "7 P ' 
R1kRJk R1k .. ;-

e1keJk = IRJkl 2 , for y'v r p < 1. 

This form resembles that of the dynamical Oseen tensor for the point forces: 

(4.8) 

The differences are due to the impact of the finite radii of the spheres. The first terms in 
the expressions (4.7), and (4.8) coincide with the steady-state Oseen tensors. 

Using the interaction tensors, the drag on the j-th sphere, in the presence of N- 1 other 
spheres, can be presented as 

(4.9) ·FJ(p) = inajepVJ{p)-T1(p)VJ{p)+T1(p) ,2; T(R1k, p)Tk(p)Vk(P) 
3 k# 

N N . 

- ·Tip)}; };T(~k' p)Tk(p)T(Ru, p)T,{P)V,(p)+ 
k;f:.j lt:-k 

The structure of this expression is the same as that for the steady-state interactions [9] ~ 

Qualitatively speaking, this similarity is due to the simplifying assumptions. Unsteady 
effect s are incorporated into the hydrodynamic interaction tensors. The first two terms 
give the hydrodynamic drag in the case N = 1. 

5. Conclusions 

The unsteady hydrodynamic interactions between N spheres suspended in an inc9m
pressible fluid are considered on the basis of the Jinearized Navier-Stokes equations. The 
integral equation approach, involving the Green function (the dynamical Oseen tensor) 
depending explicitly on the time variable, is used. The complexity of the time-dependent 
interactions results from the memory effects, due to the dependence of the hydrodynamic 
interaction tensors on the trajectories of the spheres. However, when the spheres sus
pended in the flow move slowly enough to neglect the dependence of the interaction 
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tensors on the velocities of these spheres, the description of the interactions becomes 
substantially simpler. 

In the particular case of translationally moving N spheres, and with the use of some 
additional assumptions, the hydrodynamic drag exerted on the j-th sphere is calculated. 
This particular result can be treated as an extension of the Boussinesq' formula. The form 
of this drag force resembles· that for the steady-state flows, whereas the unsteady effects 
have the impact on the hydrodynamic interaction tensors. 

Appendix. The properties of hydrodynamic interaction tensors 

A. General formulae for the hydrodynamic interaction tensors 

Substituting the expansions of Vh fi, exp (ikri), listed in Eqs. (3.1), (3.2) and (3.4), 
to the integral equations (2.12), and taking into account the orthogonality of Yi harmonics, 
one obtains the hydrodynamic interaction tensors in the form 

1 . J dk 
(A.l) 11::::(RJ(t)-R~(t'), t-t') = 

2
n 2e i11

-
12 

(
2
n)3 exp{ik[RJ(t)-R~(t')]} 

·exp[ -Pikl 2(t- t')] ( 1- I~ )j,,(a1 k)j1,(a,k) Y,~m·(x, E) Jr,•(x, E), t > t'. 

The time dependence of the tensor Tf:::: can be more conveniently presented as 

(A.2) T~::::(RJ(t)-Rf,{t'), t-t') = -
2

\ i 1 ,- 12 Jdxdx'~(x-RJ(t))~(x' -R~(t')) . ne 

· J (;!.~. exp {ik(x - x') - Pikl2
( t- t')} ( 1- 1!~ ) j 1, (a1 k )j1, (a, k) 

. Y,~mt(x, •;) r,:2(x, ;), t > t'. 
Remembering that (see Eq. (3.4)) 

eik(x-x') = eikD = 4n ~ i'j, (IDI k) Y,-m(x, ;) Y,m(x, y), 
I, m 

where in spherical polar coordinates D = (D, x, y), k = (k, x, ;), the interaction tensors 
become 

(A.3) T~::::(RJ(t)-R2(t'), t-t') = j dx~x'~(x-RJ(t))~(x' -R~(t')) 
· ~ F, 1 r2,r(IDI, t-t')K~::::.rmYi(x, y), t > t '. 

I, m 

In the above formula the integration over k space is written down in the spherical polar 
coordinates (k, x, ;), and the integrals which should be calculated are 

00 

(A.4) , Fr
1 
r

2 
,(IDI, t -t') = _2_ J j, (a1 k)j, (a"k)j1(Dk)e-"" 2<t-t'>k2dk, t > t', ' ne 1 2 . 

0 
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and 

(A.5) Kl:::::.1m = i'·-'•+' J sinxdxd~(1- I~ k;;-m•(x, ~)YI';•(x, ~)Y,-m(x, ~). 
The integral (A.4) in the limit of the steady-state flows was calculated by )'"OSHIZAKI 

and Y AMAKA WA [9]. It should be noted that the time variable does not appear in the 
tensor K~~ ::::, lm. 

Hence the explicit form of -this tensor found in [9] can be applied under unsteady 
conditions as well. 

B. The dependence of the tensor T~:::!~(RJ(t)-RJ(t'), t-t') on thej-th sphere velocity RJ(t) 

In general, the interaction tensors exhibit a nonlinear dependence on the velocities 
of the spheres. To discuss this effect, let us write down the tensor Tf:::!~(RJ(t)- RJ(t'), t- t') 
in the form similar to (A. I): · 

(B.l) Ti~::!:(RJ(t)-RJ(t'), t-t') = 
2
: 2e i 11

-
12 J (2~3 exp{ik[RJ(t) -RJ(t')]} 

· exp[ -vkl(t -t')] { 1- l:-2 ) j,(a1 k)j,,(a1 k)Y,~m·(x, ~)Yl';•(x, ~). 
The displa~ement of the centre of the j-th sphere during the time interval t- t' can be 
approximated by 

t 

(B.2) RJ(t)-RJ(t') = JRJ(r)dr ~ RJ(-r*)(t-t'), t' < -r* < t. 
t' 

For small displacements th~ Tl 2::!2 ·becomes 
1 1 

1 J dk . (B.3) Tf:::::(RJ(t)-RJ(t'), t-t') ~ 
2

n 2e i'1
-

12 
(
2
n) 3 {l+ikRJ(-r*)(t-t')+ .... } 

· exp[ -vk2 (t -t')l( 1- 1!~) j,,(aJk)j,,(a1 k)Y,~m·(x, ~)YI';•(x. ~). 
Hence, in the lowest order approximation with respect to ~J(t), the tensors Tf::::: do not 
depend on the velocities of the spheres. A similar line of reasoning holds for the tensors 
T:::::(RJ(t)-R2(t'), t-t'). The lowest order approximation will be used to calculate 
the drag on the j-th sphere in the presence of N- I other spheres (compare the specifi
cation (i)). 

C. The estimation of the Tl::::: tensors with respect to (~) 

The absolute values of distances between two spheres in the flow enter the 
F, 112 ,i (D, t-t') functions. However, under the specification (i), the F1112 , 1 functions de
pend only on the distances between the spheres at time t = 0. This property enables to 
estimate the tensors Tf::::: with respect to A/R, where A denotes the maximum value of 
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a1 , j = I, ... , N, and R is the minimum value of R1k, j = 1, ... , N, k "#j. It follows from 
the , formula (A.4) that the F1111 ,r can be presented in the form 

(C. I) 
y; _ r(~ + ~(l1+l2+l)) (A)l 1 +lz+t( R )1 1 +11 +1+1 

AF - - -
1,1,,1- 4e r(l1 + ~ )r(l2 + })r(l+ ~) R 2Jt'~<t- t') 

A2 R2 ) 
4v(t-t')' 4v(t-t') ' 

t > t ', 

where r is the Gamma function and .P'2 is the confluent hypergeometric series of three 
variables. Furtlier, the above formula allows to write 

(C.2) t-t')· t > t', 

i.e. the dependence on A/R can be extracted, H being the function of other variables. 

D. The interaction tensors TJ.~o(P ), and T88(Rik, p) 

The interaction tensors TJ.~0(p), and T88(R1b p) calculated under the specification (i) 
read 

(D. I) 

(0.2) 

+exp[- ;; vv](ch ;. YP-ch :. YP)( RJ.+ V; Rw~ ;)]t 
-3e1.e1.[P2 -a2 +2exp[- ;; yp ]{eh;; Jt'P-ch :)P}( ~ RJ.+ V; RJt+·;)]}· 

where 

rt. = a1+ak, f3 = a1 -ak. 

The formula (D. I) for ~rbitraryp differs from that obtained by MAZuR and BEDEAUX [4]. 
This difference is due to the approximation which is used here to calculate the tensor 

i 1(p). However, the expression (4.6), obtained here for .. ~i_ yp < 1, coincides with 
J1 V . 

Mazur'.s ·and Bedeaux's results. 
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