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On the motion of gas bubbles in a perfect fluid 

L. VAN WIJNGAARDEN (ENSCHEDE) 

VARious forms have been proposed for the dynamic equation governing the relative motion 
of a body in a nonuniformly flowing liquid. The correct form is suggested by the recent work 
of LANDWEBER and MILOH [4]. However, the analysis wherein contains an error. An alternative 
derivation of their result, avoiding this error, is given here. An application, restricting to the 
representation by dipoles only, is made to the nonsteady flow of bubbles throuklt a widening 
pipe. 

Zaproponowano r6me postacie r6wnan dynamicznych ~dz4cych ruchem wzgl~dnym ciala 
w nier6wnomiernym przeplywie cieczy. Scisla postac . tych rowan zostala zasugerowana w nie­
dawno opublikowanej pracy przez LANDWEBERA i MILOHA w 1980 roku. Przedstawiona tarn 
analiza zawiera jednak pewien blCld. W niniejszej pracy pokazano inn'l wersj~ wyprowadzenia 
tych r6wnan z unikni~iem wymienionego bl~du. Wyniki zastosowano (ograniczajClC si~ do 
reprezentacji dipolowej) do nieustalonego przeplywu ~herzyk6w w rozszerzaj'lcej si~ rurze. 

Tipe,lVIO>I<eHbi pa3Hble BHW.I AlfHaM:H'leCI<HX ypaBHemm, OIIHCbiBaiOIJ.UIX OTHOCHTe.JibHOe 
ABH>I<eHHe Tena B HepaBHOMepHoM TeqeHHH >I<H~KOCTH. Toqm,Iif BJm 3THX ypaBHeHH:H rrpe~­
no>~<eH, B He~aBHo orry6nHKOBaHHoH: pa6oTe, JlaH~Be6epoM H MHnXoM B 19SO ro~y. Tipe~­
CTaBlfeHHbiH TaM aHanH3 CO~ep>I<HT OAHaKO HeKOTOpyro OIIIH61cy. B HaCTo,ameH: pa6oTe I10-
Ka3alla ~pyraH BepcWI BbiBO~a 3THX ypaBHeHHH C H36e>l<aHHeM ynOMmcyTOH OIIIH6KH. Pe­
ay JlbTaTbi rrpHMeHeHbi ( orpaHH'IHBaHCb wmonhHbiM rrpe~craaneHHeM) K HeyCTaHoBHBille­
Myc.H TeqeHHlO rry3bipbKOB B paCIIIHp.moi.I.(eHC.H Tpy6e. 

1. The motion of a sphere in a nonuniform flow 

IN A GAS/LIQUID flow there is in general a significant relative motion between the gasphase, 
bubbles for example, and the fluid phase, water for example. For the prediction of bubbly 
flows, which occur in a wide variety of situations in · engineering, a relation is required 
which describes the dynamics of this relative motion, see for example VAN WIJNGAARDEN [9]. 
This presents, as textbooks on fluid dynamics show, no problems as long as the liquid 
motion is spatially uniform. However, when the liquid motion is nonuniform the situation 
is much more complicated and controversial relations have been proposed. Here we 
restrict our attention to the unidirectional motion of a rigid massless sphere in an inviscid, 
incompressible liquid. It has been assumed that, in analogy with motion in a uniform 
flow, the relative dynamics are completely determit{ed by local properties of the flow field. 

When the liquid density is denoted by e, the local liquid velocity in the x direction by 
u(x, t), the virtual mass by m (for a sphere m = 1 /2er), we find in HINZE [2] the relation 

(1.1) D du 
Dt m(v -u) = (!7: dt. 

Here vis the velocity of the centre of the sph~re and r its volume, while D/Dt and d/dt 
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are material derivatives associated with the motion of the sphere and of the liquid 
respectively, 

(1.2) 
n a a 
Dt =at +v ax ' 

(1.3) 

The difference between these operators vanishes of course when u and v are uniform in .x, 
in which case Eq. (1.1) is a well-known result of classical hydrodynamics (see eg. LAMB [3] 
eh. 6). HINZE [2] quotes a work by TCHEN (1947) in applying Eq. (1.1) to the motion of 
a sphere in a turbulent flow. PROSPERETTI and VAN WIJN'GAARDEN [6] in dealing with critical 
or choking flow of a bubbly liquid take it that also the fluid acceleration must be related 
to the moving sphere and use instead of ( 1.1) 

(1.4) 
D Du 

Dt m(v-u) =er Dt . 

Finally yoiNOV, VoiNOV and PETROV [7] derive 

(1.5) 
D d du 

- mv- - mu= (!T -
Dt dt dt ' 

which we may, for later reference. write with the help of Eqs. (1.2) and (1.3) and for 
a rigid sphere as 

(1.6) 

The deduction of these relations from hydrodynamic principles is in all cases somewhat 
loose and necessarily approximative. The most convincing is Eq. (1.5) and it is found 
in Voinov,- Voinov and Petrov roughly as follows: 

Lets be the ratio of the sphere's radius a, say to a characteristic length L representa­
tive for the distance from other bodies. In a bubbly flow e could be the ratio between a and 
the average distance between the bubbles. VOINOV, VoiNov and PETROV [7] show that 
for small e there is a Lagrangian for the motion of the sphere moving through a liquid 
when the motion of other bodies produce a velocity u, given by 

(1.7) 

where p is the pressure in the liquid. 
The Euler equation associat,ed .with the Lagrangian L is now 

D au ap 
Dt m(v-u)-m(v-u) ax +erax = 0, 

which is indeed equivalent with Eq. (1.5) and (1.6) because the equation of motion in the 
liquid is 
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A rigorous derivation of the force exerted on a body in an arbitrary potential flow has 
been attempted recently by LANDWEBER and MILOH [4] for the rather general case in which 
the flow potential of the moving body can be described ,with singularities. For the present 
case, where only one spatial coordinate is involved, their result gives instead of the term 

3 ou 
-2er(v-u)ax 

on the left hand side of Eq. (1.6); the (exact) expression 

(1.8) -2,' 4neM.(:~); 
s 

where Mq is the strength of the singularity of order q and oqfo;xq is the derivative of order q 
of the velocity of the liquid in Xs, the site of the considered singularity. Unfortunately 
an error is contained in the derivation of the term in LANDWEBER and MILOH [4] corre­
sponding with Eq. (1.8). This error is (Landweber-private communication) due to an 
unpermissable interchange of integration and · differentiation in dealing with certain sur­
face integrals. 

Nevertheless the final result in LANDWEBER and MILOH [4] is by the present ~uthor 
believed to be correct becaus6 it can be derived in another way which is outlined here. 
The force on a sphere in a flow field u is with velocity v of the sphere and velocity U of 
the liquid at the centre of the sphere (BATCHEWR [1]) 

(1.9) F = - J pdA =er-:- ·~ er! (v-U)+~ e J (u · u-2v ·u)dA. 
sphere sphere 

The difficulties in the present problem .are with the evaluation of the integral in Eq. (1.9) 
which is zero in case u is the flow caused by the body in a uniform stream and in the ab­
sence of circulation. The first and second terms on the right-hand side of Eq. (1.9) stem 
from the unsteady term in the pressure, as calculated with Bemoulli's Theorem. With 
the help of the relation (A being the surface of the sphere) 

J (u · v)dA--: J u(v· dA) = 0 
A A 

valid due to V x u = 0 we can write the integral in Eq. (1.9), which we denote with F' as 

(1.10) F' J 1 J - = 2 (u · u)dA- u(v· dA). 
e A A 

Relation (1.10) follows also directly from a moment'um balance applied to a volume 
enclosing the body. 

Since on the body v · dA = u · dA, we may write Eq. (1.10) as 

(1.11) F' le = j. ~ (u · u)dA- J u(u · dA). 
A A 

In a upiform flow there will be only one singularity in the volume, a dipole in the centre 
(remember that we exclude circulation). In an arbitrary nonuniform flow there will be 
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J 
other singularities, quadrupoles etc., as well. As shown by LANDWEBER and MILOH [4] 
we can convert the integral in Eq. (1.11) in an integral over the surface A, enclosing the 
singularities: 

(1.12) F'/e = 2{J ~ (u·u)dA- J u(u·dA)}. 
As As 

A 

FIG. 1. x. is the site of singularity within the sphere with surface A. As is a spherical surface surrounding Xs. 

Now we write, as in LAND WEBER and MIWH [4] u as the sum of a regular · that is free of 
vorticity and divergence, field uR and a singular part u,, and introduce this into Eq. (1.12). 
From this point on, our analysis differs from LANDWEBER and MILOH [4]. The part ofF' 
containing uR only is zero because the equation of motion gives both 

OUR (p 1 2) - +V - + - uR = 0 at e 2 
and 

~:+V(~ +oRoR) = 0, 

where uRuR is the dyadic representing momentum flux. For the completely singular part 
F' = 0 too because a singularity induces no force in itself. Therefore F' le comes from the 
remaining "mixed" terms which we write as 

where uRu, and u.,uR are dyadics. 
As in the theory of generalized functions we can regard uR as a "good function" (in 

the sense of LIGHTHILL [5]) regularizing the integrals. Applying the divergence theorem on 
the integrals above we obtain, bearing in mind that V · uR = 0 

(1.13) 

where the integration extends over the volume -r, of a small sphere surrounding the sin­
gularity. If the latter is a source with strength Q, say, the integral gives 

(1.14) 
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For a dipole we add the contributions of a sink in Xs- ~xtf2 and a source in Xs + ~x1 /2 
obtaining 

(1.15) F~ = F~(sink)+F~(source) = eQuR(Xs-~Xt/2) 
-eQuR(xs+ ~xt/2) = -eQ(~xt · V)uR(xs) = -4ne(m · V)uR(xs)· 

Here .the dipole strength ~x1 Q/4n is indicated with m. In the same way we obtain for 
a quadrupole 

When, as in our case, all singularities are directed along the x axis, we obtain 

(1.16) 

which agrees, cf. Eq. (1.8), with the result obtained by LANDWEBER and MILOH [4]. 
If we now substitute Eq. (1.16) into Eq. (1.9), it follows upon comparison with Eqs. 

(1.4)-(1.6) that Voinov, Voinov and Petrov's result (1.6) is correct if the regular part of 
the fluid velocity varies slowly enough to permit the neglect of singularities of order larger 
than one. 

2. Application to flow in a widening pipe 

In this section we apply the result obtained above to the following two-phase flow 
problem, (see Fig. 2): A long straight tube has a narrow section I followed by a gentle 
transition to a wide section 11. The tube is filled with an incompressible inviscid liquid 
with density e in which small massless spheres (bubbles) with constant volume are homo­
geneously distributed at time t < 0. Gravity is ignored and we consider , what happens 
with the bubbles when the liquid, at rest for times t < 0, is at .t = 0 instantaneously accel­
erated to a ·constant velocity u(x) which in the narrow section of the tube is u1 and which 

a 
0 

b 
I 

dx (ff=3ur 

0 

o I o o 0 

0 

0 

0 0 

II. 
0 0 

~1- {3u~+6ufj T/Z 

1I 

X 

FIG. 2. a) Widening tube in which (bubb1y) flow ·is instantaneous]y generated; b) x-t pJane with cha­
racteristics. 
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is u11 in the wide section. It is readily concluded from Eq. (1.5) that at t = o+ the bubble 
velocity 

(2.1) t!(X, 0) = 3u(x), t = O+, 

when we bear in mind that m = 1/2e-c. Note that also from all other proposed relations 
such as Eq. (1.1) or Eq. (1.4) the result (2.1) follows. In the approximation used here u(x) 
is the liquid velocity in the absence of particles. It was shown in VAN WI.TNGAA,RDEN [8] 
that Eq. (2.1) holds· at t = o+ also when the motion of neighbouring particles is accounted 
for. 

In VAN WI.TNGAARDEN [8] the motion of a mixture as. in Fig .. 2 was investigated including 
the effect of one particle on the motion of the others. However, only the situation at t = o+ 
was considered. Here we consider the subsequent motion though only in the lowest approxi­
mation in terms of the concentration. For t > 0 u is steady and the equation for v is 
obtained from Eq. (1.6), by taking· oufot = 0 and m= 1/'l__g-c, 

(2.2) 
OV ov ou 
Tt+vax=3u 0x. 

In order to determine a velocity distribution v which satisfies Eq. (2.2) and which is for 
t = 0 given by Eq (2.1 ), we trace the characteristics given by 

dx 
(2.3) dt = v(x, t). 

Equations (2.1)-(2.3) say that along these line 

2 dv = _!__ _!__ !£ v 2 (x 0) 
dt 3 V dt ' ' 

or upon integration 

(2.4) along 
dx 

V=dt. 

In this relation C is a constant which for each characteristic follows from the initial condi­
tion (2.1 ). Let .x0 be the value of x . where a characteristic cuts the x-axis. Then we have 
from Eqs. (2.1) and (2.4) 

v 2 (x0 ) = ! v 2 (x 0 ) + C, whence C = ~ v 2 (x 0 ). 

Therefore the solution is 

(2.5) on 
dx 
dt= V. 

In Fig. 2b some characteristics are drawn. At the left characteristics start as straght linesi 
in region I in the x, t plane, in the direction dxfdt = 3u., because there v(x, 0) = v(x0 ) = 

= 3u1 • Upon entering the transition to the wider section these characteristics are bent 
upward because v(x, 0) decreases. In region IT they become straight again in a direction V 
which is, with v(x, 0) = 3u11 and v(x0 ) = 3u1, given by 

dx 
(2.6) -=V= {3ufi+6ul} 1

'
2

• 
dt 
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Clearly 

(2.7) 3u11 < V< 3u1 • 

349 

Characteristics starting at t = 0 in region// remain straight lines in the direction d;xfdt = 
= 3u11 • Therefore bubbles which start to move at .t = 0 in region I are overtaking at some 
later instant bubbles which started out in region 11. 

Physically this means the formation of clusters of bubbles; moreover, the possibility 
of co(\lescence arises. This may generate large bubbles as this is the case for instance in 
fluid beds. 

Mathematically speaking, the solution of Eqs. (2.1)-(2.2) becomes multivalued whe11 
characteristics intersect, like in the theory of shock waves. This means that other physical 
effects such as viscosity have to be introduced to prevent the solution to break down, 
a situation well known in gasdynamics and in the theory of water waves of finite ampli­
tude. 

So here again we have an example of how in quite different parts of fluid dynamics the 
same fundamental features arise. 

Professor W. FrszooN, as we know him, is an expert in recognizing such features and 
has been in his professional life a rigorous promotor of fluid dynamics, as both his papers 
and the well-known biannual conferences organized by him in Poland testify. With pleas­
ure I dedicate this paper to him on the occasion of his 70th birthday and I wish him 
many years to come amidst his family and friends all over the world. 
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