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Effects of inertia and high-frequency harmonic vibrations 
on the lift and friction forces in viscoelastic slider-bearing flows 

S. ZAHORSKI (WARSZA.WA) 

IN THIS PAPER, being a direct continuation of the previous considerations [1] for low-frequency 
harmonic vibrations, we take into account the inertia terms in the corresponding equations of 
motion. Applying a perturbation method, particular solutions 'are discussed for small-ampli
tude but high-frequency vibrations superposed on the fundamental flow . . A comparison of 
the results with those obtained for low-frequency vibrations is also presented. 

W obecnej pracy, ~chtcej bezposredni'l kontynuacj<\ poprzednich rozwai:an [1] dla drgan 
o niskich c~sto5ciach, uwzgl~dniono czlony inercyjne w odpowiednich r6wnaniach ruchu. Sto
suj<\C metod~ perturbacyjn<\, przedyskutowano szczeg61owe rozwi~nia dla drgan o malych 
amplitudach lecz wysokich c~sto5ciach, nalozonych na przeplyw podstawowy. Przedstawiono 
tak:ie por6wnanie wynik6w z wynikami uzysl.canymi poprzednio dla drgan o niskich ~
to5ciach. 

B HacroHmeH: pa6oTe, HBmiromeH:cH npoAOJI>i<eHHeM pa6oTbi [1] - o HH3I<o'4aCTOTHbiX I<one-

6aHHHX, y'4HThiBaiOTCH HHepiU~am.Hbie '4JieHbi B coorneTCTByiOIIUIX ypaaHeHHHx ABH>I<eHHH. 

IlpHMeHeH nepTYP6aiU~OHHbiH MeTOA H pacCMaTpHBaiOTCH '4aCTHbie peweHHH AJIH I<one6amm ' 

C MaJibiMH aMnJIHTyAaMH, HO BbiCOl<OH '4aCTOTbi, HaJIO>I<eHHbiX Ha OCHOBHOe Te'4eHHe. Ilpe

ACTaBJieHO cpaBHeHHe pe3yJibTaTOB C paHee llOJiy'4eHHbiMH AJU1 HH3l<0'4aCTOTHbiX l<OJie6aHHH. 

J.. Introduction 

IN ouR PREVIOUS paper [I] we considered the case of small-amplitude harmonic vibrations 
superposed on slow steady-state flows in a plane slider bearing (wedge flows). To discuss 
the behaviour of lift and friction forces acting on the upper or lo~er pa.rt of the bearing, 
we used the model of incompressible second-order fluid as well as the model of general
ized Newtonian fluid with shear-dependent (decreasing) viscosity. We assumed, .more
over, that intertia effects in the equations of motion considered could be disregarded for 
very low frequencies of superposed vibrations. Thus, all the results discussed in paper [I] 
were valid for suffiently slow, inertialess motions. 

In the present paper, being a direct continuation of the previous considerations, we 
use the same models of fluids and take into account the linearized inertia terms in the 
equations of motion (cf. [2]). Particular solutions are discussed for small-amplitude but 
high-frequency harmonic vibrations, or more exactly, for large values of "the frequenta
tive Reynolds number" (cf. Sect. 2.I). On applying a perturbation metho~, similar to 
that proposed by JONES and W ALTERS [3], the case .of moving and vibrating slider is pre
sented in greater detail. 

The results concerning the behaviour of the dynamic lift forces caused by normal 
stresses and shear-dependent (decreasing) viscosities are very similar to those obtained 
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360 S. ZAHORSKI 

iJ?. [1]. -On the contrary, the behaviour of dynamic friction forces is quite different from 
that in the previous case; an evident reduction is observed instead of enhancement. A di
rect comparison of the results :obtained in both cases gives sonie information on the 
validity of the methods applied. 

2. ·Basic solutions for small-amplitude harmonic vibrations superposed on steady flows 

In the situation shown in Fig. I, the upper part of the bearing, hereafter called the 
slider, moves horizontally with velocity U(I + eexpiwt), while the lower one, hereafter 
called the base, remains stationary. U denot~s a constant velocity of steady fundamental 
motion, w - a constant angular frequency of superposed harmonic vibrations, and 

(2.1) 

where <X is a ·small amplitude of disturbances. It is assumed, moreover, that h0 /l ~ I 
and h0 /h 1 is close to unity for the lubrication approximation to be valid. 

y 

X 

FIG. 1. 

2.1. Newtonlan fluids 

Solutions of the problem Gonsidered for steady flows of an incompressible Newtonian 
fluid were presented elsewhere [1]. In the case of unsteady flows, the equations of ~otion 
with Hnearized inertia terms, under the assumption of lubrication approximation (cf. [ 4]), 
viz. 

(2.2) ~=0 ay 

are to be solved with the following boundary conditions: 

(2.3) 
u(x, 0) = 0, u(x, h) = U(l + eexpiwt), 

p(O, y) = p(l, y) = 0. 
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It is worth noting that the inertia terms in Eqs. (2.2) written in nondimensional forms 
are proportional to the quantity 

(2.4) Rev= (!eUh 0 

'YJ 

ea.who 
= - --, 

'YJ 

which may be called "the vibrational Reynolds number" (cf. [5]). This number ·is usually 
small if the amplitude a. is sufficiently small ctnd the frequency w not too high. 

We seek a solution of the problem in the form 

(2.5) u = u 0 + eu1 expiwt, p = p0 + ep1 expiwt, 

where the subscripts 0 refer to steady-state parts of Newtonian solutions. Substituting 
Eqs. (2.5) into Eqs. (2.2), we obtain a system of differential equations, the solution of 
which is the following: 

(2.6) 

where 

(2.7) 

and 

(2.8) 

where 

U 1 -dpo . 
Uo = - y+--(y-h)y, 

h 2'Yj dx 
dp0 = 6'YjU (1 _ _!!__) 
dx h2 h ' 

h=h0 +ax, 

i dpl 
u1 = Achky+Bshky+ - -d _, 

(!W X 

2 (!W 
'V= ,~' 

(2.9) A = i dpt B = ___!!__ + _!_ dp~:_ chky -1 . 
- ew dx ' shky ew dx shky 

A constant volume-discharge along the slit, viz. 

(2.10) 
h 

Qt = J UtdY = const, 
0 

leads to the differential equation 

dQ1 = 0 
dx ' 

d 2p1 dp 1 • chkh -1 
(2.11) dx 2 (kh -2cthk~) + dx ak = takewU sh2 kh , 

where a= (h1 -h0 )/l. A solution of the homogeneous equation (2.11) can be presented 
in the form 

(2.12) t' = Cexp(- J kh~;~~~kh ). 
Further integration, however, leads to very complex expressions which are not necessary 
for our present considerations. 

In what follows we shall be interested in simplified solutions valid for sufficiently high 
frequencies, i.e. for the cases in which kh ~ 1 or Ph ~ 1. Then, shkh, chkh, and cthkh 

10 Arch . Mecb. Stos. nr 3/82 

http://rcin.org.pl



362 S. ZAHORSKI 

can be replaced by !e?tpkh and 1, respectively. The above conditions are equivalent to 
the assumption that 

(2.13) 
ewh~ Rew = --. - ~ 1 , 

'YJ 

or, more exactly, that 

(2.14) ( 
I )112 ( )112 

2 Rero = ~~ h0 ~ 1 , 

where Rew may be called "the frequentative Reynolds number". This number is entirely 
independent of the amplitude ex. It can be checked that 

(2.15) Rero ~ 1, Rev ~ 1 if cx/h0 ~ 1. 

Therefore we may consider the case of small-amplitud~ and high-frequency superposed 
vibrations if the amplitude of disturbances is much smaller than the distance between both 
parts of the bearing. 

Under the above assumptions Eqs. (2.11) and (2.12) lead to 

(2.16) 

and 

(2.17) t' = Cexp(- J d~:)) = Cln(kh)- 1
• 

On taking into account the boundary contlitions (2.3) we arrive at the approximate sol
ution 

(2.18) 

(2.19) 

Pt = 0, 

Ut= Ue-lc<h-y) = Ue-tt<h-y)[COSY(h-y)-isinv(h-y)]. 

The corresponding lift force acting on the slider can be obtained by integration of the 
pressure p, viz. 

1 1 

(2.20) f f 6'YJU [ A-1] PN = pdx = p0 dx = ..____ lnA-2 --
a2 A+ 1 ' 

0 0 

where 

(2.21) .A = !!!!_ (A ~ 1). 
ht 

In a similar way the mean friction · forces acting on the slider and base can be deter
mined by integration of the shear stresses. To his end, however, an averaging process 
over one cycle of vibrations should be aaplied, viz. 

-

(2.22) 

(0 

<<I>> = ;:. J [<I>] (Reu, Re :, ... )at, 
0 
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. where [ (/)]1 denotes a function of real parts of the kinematic quantities being variables 
in (/) (cf. [1]). 

Thus we arrive at the follpwing mean values of friction forces: 

.2n 
w I 

(FNs) = ;;. J J [T~2],=•dxdt = - :U [4lnA-6 ~~!] 
0 0 

(2.23) 

for the moving and vibrating slider (S), and 

.2n 

(2.24) 

w I 

(FNB) = ;;. J J [T~21=odxdt = 1JaU [ -21nA+6 ~~! ] 
0 0 ' 

for the stationary base (B). Since for Newtonian fluids 

(2.25) [TR2
] = f}Re( il~o )+ Ef}Re( ~; expiwt), 

the friction forces are identical with those obtained for steady flows (cf. [1]). 

2.2. Second-order v•scoelastic fluids 

The model of an incompressible second-order fluid can be used either in the case of 
slow flows or in· the case of very short memory effects (slightly non-Newtonian fluids). 
If the Deborah number defined as 

. alu 
De = - -- for cx1 < 0, 

'Yjho ' 
(2.26) 

is sufficiently small, we can use the following constitutive equation: 

(2.27) 

where cx 1 and cx2 are material constants, p denotes a hydrostatic pressure. The Rivlin
-Ericksen kinematic tensors are defined by the recurrence formulae 

(2.28) 

If the velocity field v and the pressure p can be presented in the form 

(2.29) 

where the subscripts N denote Newtonian quantities and primes refer to second-order terms, 
the equations of motion with linearized inertia terms lead to 

(2.30) 

10* 

a 
·vpN-'YJV 2vN = -eatvN, 

Vp'-'Y}V2 v' = -e ·:t v'+cxtdiv(A2(vN)-AHvN))+(~t+cx2)divAHvN)· 
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For plane isochoric fiows with ·boundary conditions determined in velocities, the 
Tanner theorem is valid if only linearized inertia effects are involved (cf. [6, 2]). This means 
that v' = 0 satisfies Eq. (2.30)2 , if 

(2.31) 1 ct1 dpN ( 3 ) 2 
p = TJ dt + 2 ct1 + IX2 " , 

Thus, under the assumption of lubrication approximation, we have 

T 2 2 _ IX1 d p N 1 . ( OU N ) 
2 

(2.32) - -PN+-----IX1- , 
'YJ dt 2 ay 

while the shear stresses are exactly the same as those for Newtonian fluids. 

2.3. Fluids with shear-dependent viscosity 

The model of generalized Newtonian fiuid with shear-dependent viscosity (decreas
ing, if 'YJ 2 > 0) (cf. [1]), viz. 

(2.33) T= -pl + (11- ~ "12trAi)A,, trA1 = 0 

leads to 

(2.34) Vp1 -'YJV2v' = -e 0
0": -'Yj2div("2At(vN)), 2 1 A2( " = 2 tr 1 vN). 

Although in the present case the Tanner theorem is not generally valid, we shall try to 
integrate Eq. (2.34) in an approximate way, taking into account certain mean values and 
the lubrication approximation. Thus for v' = 0, we have 

(2.35) op' = -3 ( OUN )
2 

0
2

UN 
ax 'YJ 2 ay oy2 ' 

and · 

op' 
- =0 ay , 

(2.36) p~ = -3'YJ2 r [_!_( OUN I + OUN I )]2 _!_(~I +~I ) dx+C 
~ 2 oy Y=O [}y Y=h 2 [}y~ Y=O OY2 

Y=h G 

for the mean value of the shear gradient (G) across the slit, and 

(2.37) P~ = - ~ "12 J [ ( aa"; Lo a;;2N l ,~o + (a;;:[. a;;: I,Jdx+C, 
for the mean value of pressure itself (P).(l) 

2.4. Perturbation method for superposed vibrations 

In what follows we are interested in the changes of lift and friction forces caused by 
superposed harmonic vibrations. To this end, we apply a perturbation method similar 
to that proposed by JoNES and W ALTERS [3] (cf. also [5]). 

(1) Integration constants CG and Cp may be omitted in further considerations because of the boundary 
conditions (2.3) (cf. Appendix). 
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The expressions (2.5) can be used as the first terms in the series expansions with ·c 
treated as a small parameter. Because of the boundary conditions (2.3), all the terms of 
order c2 and higher in series for u and pare equal to zero. Substituting Eqs. (2.5) either 
into Eq. (2.32) in the case of second-order fluids, or into Eqs. (2.36), (2.37) in the case of 
fluids with shear-dependent viscosity, we can calculate the c"-order terms (n = 0, 1, 2) 
of the corresponding lift forces. For n = 0, we obtain steady-state solutions, while for 
n = I, 2, the mean values of dynamic forces can be determined by the averaging process 
shown in Eq. (2.22)). It is also worth noting that for n = 1, all the mean values of forces 
are equal to zero. Thus, for every lift force P, we have 

(2.38) 

where < P 0 > = P 0 refers to a steel:dy-state solution, and < P 2 > denotes a dynamic 
change of order c2 due to superposed harmonic vibrations. 

In a similar way the· changes of friction forces can be calculated. 

3. Lift forces under superposed vibrations 

For second-order fluids the perturbation method, outlined in Sect. 2.4 leads to the 
following value of lift force acting on the slider in steady flows (n = 0): 

I I 2 

Pos = f- Tg 2 ly=hdx = PN- -2
1 

al r ( a:o) dx 
o o uy Y=" 

(3.1) 

_ p 2a1 U
2 

[ 3 .A
3
-1 ] 

- N+~ (.A+1)2 -2(J.-I) ' 

where PN and ). are defined in Eqs. (2.20) and (2.21), respectively. 
The mean val~e of the dynamic lift force caused by superposed vibrations (n = 2) 

amounts to 

2."1 
w I 

(3.2) (P2s) = ~ J J [- Tf 2
] 1=11dxdt 

0 0 

w 

=~J 
0 

1 2 Jl ( au 1 . ) ( au 1 ) - T c tt1 Re -a- exp zwt _ Re -a- exp iwt dx dt 
0 y Y-11 Y . Y=h 

1 2 J1

1 au 1 j
2 

. -4 e a1 -a- _, dx, 
0 y ,_,. 

where we used the relationship 

(3.3) 
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with IAI denoting the modulus of the complex function A. Substituting from Eq. (2.19) 

and assuming that, without essential loss of generality, Im ~~~ = 0, we finally arrive at 

(3.4) 

For fluids with shear-dependent viscosity, we obtain the following values of lift forces 
in steady flows (n = 0) : 

(3.5) JI Jlf [ 1 ( au0 I ou0 I )]
2 

a2u0 
P0 v1G = PoGdx = PN-31J2 T -a- _ + -a- _ ~dxdx 

0 O Y Y-0 Y Y-h Y 

calculated at the mean shear gradient (G), and 

(3.6) 

calculated at the mean pressure (P), respectively. 
The mean values of the dynamic lift forces caused by superposed -vibrations (n = 2) 

amount to 
2n 
w 1 

(3.7) (P2YfG) = ~ J f [P~a]dxdt 
0 0 

= _.!_€21]2 J!f {I_!_ (~I + ~~ )12Re(~) +Re[_!_ (~I 
2 O 2 ay Y=O ay y=h ay 2 2 ay Y=O 

+ ~:· L.)] Re [ ~ ~;;, '·~• + a;;; IJ ]Re [ ~ ( aa:· '·~• + ~· LJ] 
+lm [~ ( ~:· L. + ~:· IJ] Im[~ (a;;; l,~o + ~;; L.}] 

x ReU ( aa:· L. + aa~ /,J]}axdx 
for the mean value of the shear gradient {G), _. and 
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+Re ( ouo )] + [Im (~) Im( 
02

u2
1 

)] Re(~)] ay Y=h ay ay ay 7 =o 

+ [1m( ~~} Im a;;; )Re(~; )L.}axdx 
for the mean value of pressure (P), respectively. In deriving Eqs. (3. 7) and (3.8), we used 
the fact that 

(3.9) 
l - - -

ReA Re B Re C .= 4 [Re(ABC) + Re(ABC) + Re(ABC) +Re( AB C)], 

where overbars denote the conjugate complex functions. Substituting from Eqs. (2.6) 

and (2.19), and assuming that Im ~~ = Im ~~1 
.= 0, we obtain finally 

(3.10) 

(3.11) 

< > 9 2 U3 e w [ 1 , A -1 ] 
P2vfG = -4 e 'YJ2 1Ja2 n~~.- A+1 ' 

(P2VfP) = 2(P2VfG)· 

The relative increase or decrease of the mean dynamic lift forces as compared with the 
lift forces acting in steady flows can be characterized by the following ·ratios (cf. [1]): 

(3.12) I _ (P2s)+Pos-Pos (P2s) 
LN - Pos = -p;;;-' 

and 

(3.13) I 
_ (P2V/G) 

LVfG- p ' 
OVfG 

I _ (P2V/P) 
LVfP- p ' 

OVfP 

where the 'subscripts LN, LV/G and LV/P mean "the lift force caused by normal stresses", 
"the lift force caused by variable viscosity, calculated at mean shear gradients" and "the 
lift force caused by variable viscosity, calculated at mean pressures", respectively. 

Thus, Eqs. (3.12) and (3.13) lead to 

e2 RewDes0 (A 2 -1)2 

(3·14) 1
LN = 24A 2 (A+1)[(A+1)lnA-2(A-1)] 

+ 8Des0 A[3(A3 -1) (A -1) -2(A -1) 2 ( A+ 1)2] 

where s0 = h0 fl, and to · 

(3.15) 
-e2 Recu V[(A+1)lnA-(A-1)] 

ILvfG = 8[(A+1)lnA-2(A-1)]-4V).().-1)' 

(3.16) 
-5e2 Rew · V(A+ 1)2 [(A+ 1)lnA-(A-1)] 

ILvfP = 20(A+1)2 ((A+l)lnA-2(A-1)]+ V[144(A5 -l)-324(A4 -1) 
X (A+ 1)+280{A3 -1) (A+ 1)2 -100(A 2 -1)(A+ 1)3] 
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where 

(3.17) 

is the dimensionless number characterizing a decrease of shear-dependent viscosi ty . 
. Diagrams illustrating dependence of hN and hvtG, hvtP (divided by e2 Rew) on De· s0 

and V, respectively, are shown in Figs. 2 and 3. It is seen from Fig. 2 that the relative 
increase of the dynamic lift force caused by normal stress is always positive and tends 
to 0.25 for increasing Deborah numbers. The effect of enhancement, however, is weaker 
for larger A..· On the other hand, Fig. 3 shows that the relative increase of the dyna
mic forces caused by shear-dependent viscosity is negative. The reduction of forces is 

ILN 
~;ZRew 
0.!5~------------------------------------------~ 

0.20 

0.15 

0.10 

a. as 

a 

hv/P 
EZRew 

0 

-0.1 

-0.2 \ 
\ 
\ 

-0.3 \ 
\1.1 
\ 

-0.4 \ 
\ 

........................ 

FIG. 2. 

' '--!3 
' 

~ .. 1.1 

,..,_ ____ _ 
' ' ' ' ' '\ 

-0.50 

-0.15 

-1.00 

'\ 

' -0.5 L..-........... ___._ ____________ ---.-____ _.__ ________ \~------------' -1.25 

FIG. 3. 
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weaker for increasing A. Essential differences are clearly visible between the results calcu
lated approximately at the mean shear gradient (G) and the mean pressure (P). 

We must bear in JTlind that all the diagrams considered are reliable only for A little 
differing from unity (lubrication approximation). 

4. Friction forces under superposed vibrations 

For fluids with shear-dependent viscosity we obtain the following values of friction 
forces in steady flows (n = 0): 

(4.1) 

in the case of moving slider (S), and 

(4.2) 

in the case of the stationary base (B). The Newtonian forces (FNs) and (FN 8 ) are 
defined in Eqs. (2.23) and (2.24). -

The mean values of the dynamic friction forces caused by supersposed vibrations 
(n = 2) are 

2:-J 
w I 

(4.3) (F2s) = ~ f f [Ti 2],=,dxdt 
0 0 

2n -

= ;,. I -3•12•2 j Re(0::1 
expiwt} Re(0; 1 

expiwt} Re( 0; 0
) dxdt 

O O uy Y=h Y Y=h Y Y=h 

'I 1
2 

3 2 ou1 ou0 - - e 'Y/2 J - Re(-) dx, 
2 o ay '=" ay Y=h 

for the moving and vibrating slider (S), and· 

2n 
w I 

(4.4) (F2 8 ) = ~ .f f [Ti 2]1=odxdt 
0 0 
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2"1 

(4.4) 
(cont.] 

cu I 

= 
2
: J -31]2 e2 JRe(~u 1 

expiwt} Re(
0
:

1 
expiwt) Re(

0
;

0
) dxdt 

"" OY y=O uy Y=O Y Y=O 
0 0 

1 12 3 2 . ou 1 ou 0 
= - 2 e 1J2JI-0 _ Re(-8 ) _ dx, 

0 . y Y-0 Y Y-0 

for the stationary base (B). 

Assuming, as previously, that Im~~~ - = 0, and substituting from Eq. (2.19), we finally 

arrive at 
-

(4.5) 

Introducing the ratios characterizing the relative increase or decrease of the mean 
dynamic friction forces as compared with the friction forces acting in steady-state flows 
(cf. [ID, viz. 

(4.6) I~ _ (F2s) 
FS- ---, 

Fos 

where the subscripts FS and FB mean "the friction force on the slider" and ~'the friction 
force on the base", respectively. Thus Eq. (4.6)1 gives 

~ -30e2 Rem V(A+ 1)2 [4(A+ 1)lnA-6(A-1)] 
(4.?) lps = 20(A+1)2 [4(A+l)lnA-6(A-l)]+ V[864(A5 -l)-135(A2 -1) 

X (3A2 + 13) (A+ I)+ 1920(A3 -1) (A+ 1)2 -640(A2 -1) (A+ 1)3] 

where V is defined in Eq,: (3.17) 

A diagram illustrating the dependence of i~·s (divided by e2 Rem) on V is shown in 
Fig. 4. It is seen that the relative decrease of the dynamic friction force on the moving and 
vibrating slider is diminished for increasing A. If V is greater than 0.1, the reduction of 
friction forc~s practically does not depend on values of V . 

.?.5 L__. ___________________ __. 

Fro. 4. 
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In our previous paper [1] we analysed the case in which the lower part of the bearing 
(base) is ·moving and vibrating, while the upper one (slider) remains stationary. In a si
milar way we may conclude that in the present problem 

(4.8) 

where overbars and underbars show which part of the bearing (upper or lower) moves 
with constant velocity U. Moreover, upper and lower tildas show to which part of the 
bearing vibrations are applied. 

We can also discuss the mixed cases in which vibrations are superposed on the parts 
of the bearing remaining stationary in the fundamental flow. Using similar notations, we 
have 

(4.9) 

for the moving slider and vibrating base, and 

(4.10) 

for the moving base and vibratipg slider. Thus, rather an enhancement of the friction forces 
is observed in the mixed cases under consideration. 

S. Discussion 

Many results obtained in this paper can be compared with those presented previously 
in · the paper [1]. 

The general effects of superposed small-amplitude harmonic vibrations on the lift 
forces caused by normal stresses and shear-dependent (decreasing) viscosity are very 
similar in the case of low-frequency vibrations (inertialess solutions) and in the ca.se of 
high-frequency vibrations. Apart from quantitative differences, in both cases the lift 
.forces caused by normal stresses (for second-order fluids) are enhanced while the lift 
forces caused by she.ar-dependent (decreasing) viscosity (for generalized Newtonian fluids) 
are seriously reduced. One may expect that for real viscoelastic fluids (polymer solutions 
and additives) the lift forces will take mean values between those presented for two limit 
cases. 

On the contrary, the effects of superposed small-amplitude vibrations on the friction 
forces acting either on the slider or the base are quite different for small-frequency (iner
tialess solutions) and high-frequency vibrations. In the first case, a strong enhancement 
of the friction forces acting on the moving and vibrating slider is obse~ved, while, in the· 
second case, these forces may be reduced considerably. 

· Apart from the deficiency of the model considered and less important numerical differ
ences, a question arises connected with domains of validity of the present solutions for 
friction forces as compared with those discussed elsewhere [1]. To answer partly the above 
question, we can formally equate t~e absolute value of the ratio (4.7) 'Yith the correspond
ing ratio in the paper [1] (Eq. (4.11)). In such a way we obtain "the frequentative Rey-
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nolds number" Rew defined in Eq. (2.13) for which positive and negative changes of the 
friction forces acting on the slider, derived in both cases, are mutually cancelled. Thus 
we have the following critical values: 

(5.I) . 

864(A 5 -I)-I35(A2 -I) (3A 3 + I3) (A+ I) 
+ I920(A3 -I) (A+ I)2 -640(A 2 -I) (A+ I) 3 

(Rew)c = -------:2::--::0--:-( A:--+-I:-=-)~2 [:--:-4(77A-+----=-I:-:c) 1-n -A~ ------=-6(77A------=-I) c-:: ] ___:__ _ _:__ 

where A = h0 /h 1 characterizes inclination of the slider. In Fig. 5, (Reco)c is plotted ver
sus A for A ranging from I to 2. It is worth noting that (Rew)c takes the values from 53 
for A. = I (horizontal slider) to less than IOO for A. little differing from unity. 

(Rew)c 
200 c---------------. 

150 

100 

50 

1.2 1.11 
the 

FIG. 5. 

1.8 2.0 

?.. = ho 
' ht 

Therefore we may conclude that for frequencies for which Reco ~ (Rero)c, the results 
based on the inertialess solutions (cf. [I]) are qualitatively reliable, while for frequencies 
for which Recn ~ (Rem)c, the dynamic solutions for small-amplitude but high-frequency 
vibrations are more useful. 

Appendix 

Because of the boundary conditions (2.3), the integration constants CG and Cp in 
Eqs. (2.36) and (2.37) may be equal to zero if also: p~(O, y) = p~(l, y) = 0, p~(O, y) = 

= p~(l, y) = 0. Substituting Eq. (2.6) into Eq. (2.36), we obtain for steady flows (n = 2) 

(A. I) 1 31J2U2 J 1 dp0 31]2U2 

PoG(x) = ---- --- dx ~ - Po(x), 
. 1J h2 dx 1Jh?n 

where approximate integration is performed for h replaced by hm = !{h0 + h1) or 
hm = H. Since p0 (0) = p0 (1) = 0, we also have P~G ~ 0. Similatty, on the basis of Eq. 
(2.36), we arrive at 

( .c\.2) 1 J [ U 2 
h

2 
( dp )

2

] I dp0 Pop(x).=-31)2 --+--~ --dx~ 
'1 h2 41)2 dx . 1J dx 
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~ ~ 31J2U2 Po(x)- 31J2h~ J ( dpf!_)3 dx 
1Jh~ 41]3 dx 

(A.2) 
[cont.] 

3n2U
2 31J2h~ [( dpo )

2 
d

2
Po 2 · ( 2 d

3
Po J = - 1Jh~ Po(x)- 41]3 dx Po(x) - dx2 Po(x) + ., Po(x) dx3 dx . 

Since, moreover, (d3p0 )J(dx3
) has very small values in the interval [0, l] (for parabolic 

approximation of the pressure profile, it is exactly equal to zero), and p 0 (x) is equal to 
zero for x = 0 and x = I, the integrand on the right-hand side of Eq. (A.2) is also very 

·small for each x E [0, /]. Thus the boundary conditions for steady pressures are satisfied 
approximately. 

Substituting Eqs. (2.6) and (2.19) into Eqs. (2.36) and (2.37), we obtain for dynamic 
flows (n = 2) the following mean values of pressures (cf. also Eqs. (3.7) and (3.8)): 

(A.3) 

and 

(A.4) < ' ) - 31]2 c_2U2v2 J dpo d - 31J2e2U2v2 ( ) 
P2P - - -- X - - Po x · 

21] dx 21] 

Since p0(0) = p0(1) = 0, we also have <p;G > = <p;p > = 0 for :x = 0 and :x = I. 
Thus the boundary conditions for the mean dynamic pressures are satisfied exactly. 
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