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Optimization of structures subjected to aeroelastic instability
phenomena

A.P. SEYRANIAN (MOSCOW)

IN THIS PAPER problems concerning sensitivity analysis and optimization of aeroelastic stability
of structures are considered. In Sect. 1 the problem of maximizing the critical speed of aeroelas-
tic stability of the plate in supersonic gas flow is stated. Sensitivity analysis of continuous flutter-
ing system is developed. The gradients of flutter and divergence speed are first derived and
with their use necessary optimality conditions are established. The method of solution is describ-
ed and numerical results are presented. In Sect. 2 discrete aeroelastic systems are investigated.
The implicit expressions of the derivatives of flutter and divergence speed with respect to arbi-
g:rydhcmlc parameters of the system are achieved. A short review of studies made in this
Id is given.

W pracy rozpatrzono problemy dotyczace analizy podatnosci i optymalizacji statecznoéei aero-
sprezystej konstrukcji. W rozdziale 1 sformutowano zagadnienie maksymalizacji predkosci kry-
tycznej dla aerospreZystej statecznoci plyty w oplywie naddZwigkowym. Rozwinigto analizg
podatnoéci dla ukladéw ciaglych poddanych flatterowi. Wyprowadzono najpierw wzory na
gradienty flatteru i predkoé¢ dywergencji i wykorzystano do okre$lenia warunkéw optymalizacji.
Opisano metod¢ rozwigzania i przedstawiono wyniki numeryczne, W rozdziale drugim omo6-
wiono dyskretne uklady aerospreZyste. Otrzymano niejawne zwigzki dla pochodnych flatteru
i predkodci dywergencji wzgledem dowolnych parametréw dyskretnych rozwazanego ukiadu.
Zamieszczono rowniez krétki przeglad prac dotyczacych tej problematyki.

B nmanmoif paGore myA pacTipefie/leHHbIX H [JMCKDPETHLIX CHCTEM PACMATPHBAIOTCA BONPOCHI,
CBA3SAHHBIC C QHAJM30M YYBCTBHTE/ILHOCTH H ONTHMH3ALMEH XAPDAKTEPHCTHK a3pOyNpyroi
ycroituMBocTH. B mepBoM paspgesie CTaBHTCA 3afadya MAKCHMH3AIMHM KPHTHYECKOH CKODOCTH
TIOTEPH 83POYIPYToi YCTOHYMBOCTH IUTACTHHKH B CBEPX3BYKOBOM IOTOKe rasa. IIpomssomures
4HANMH3 YYBCTBHTE/ILHOCTH Ppacupefe/eHHbIX CHCTeM, MOABep)KeHHbIX ¢uarrepy. Bnepsbie
IoJIy4eHbI BBIPAXKEHHSA I'PAHEHTOB JIIA KPHTHUECKMX CKOpOCTelt duiarrepa M JMBEpreHIMH
M C MX MCHO/Jb30BAHWEM BhIBedeHbI HeoOXOMuMble YCIOBHA aKcTpemyma. J[laHo onmcanme
METO[a pellleHHs 3aflau¥ ONTHMH3ALMH, IPEACTABJICHLI UHCIIEHHBIE Pe3y/sTaThl. Bo BrOopoM
pasfiesie HCCNENYIOTCA MHUCKPETHBIC a3pOyNpyrHe cucrembl. ITosydeHB! ABHBLIE BBHIPAYKEHHA
ANIA MpOM3BOAHEIX OT KPHTHYECKHX CKopocTeil cdharrepa M /ITABEPreHIHH MO OTHOMMICHHIO
K IpOM3BOBHBIM [JHCKPETHBIM ITAPAMETPaM, XapaKTepuayiolium cucremy. JlaH Kparwwmi
0030p paboT, MOCBALECHHBLIX ONTHMH3ALMH XapAKTEPHCTHK A3pPOYNPYroif ycroiuMBOCTH.

Introduction

AT PRESENT the problems of optimization of structures dealing with phenomena of aeroelas-
tic instability are of great interest to researchers. The first publications in this field appear-
ed about ten years ago. There are now about fifty. Some, though incomplete, informa-
tion about the papers in this field may be found in [1-16] with corresponding lists of ref-
erences. As compared with static structural optimization problems, the problems of dy-
namic stability optimization cause greater difficulties in analytic and numerical studies.
This fact is emphasized by many authors. At present, aeroelastic stability optimization
problems are developed in two ways. The first considers optimization problems of distri-
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buted systems governed by differential equations. See, for example, the works of ASHLEY
and McINTOsH [1], BIRIUK [4], PIERSON [5, 9], WEISSHAAR [6, 11], ARMAND [8], PLAUT [7],
VEPA (thesis), SANTINI and others [12], BANICHUK and MIRONOFF [15], SEYRANIAN [16]
and others. In the papers [4, 5,9, 11] the direct methods of mathematical programming
for the search of optimal solutions were used.

The second way of developing aeroelastic stability optimization problems considers
discrete systems, see, for example, works of BUN’koV [2], TURNER [3], HAFTKA and
others [10], McInTosH and ASHLEY [13], CARDANI and MANTEGAZZA [14] and others,

In this paper an attempt is made to develop a common variational approach to study
both distributed and discrete systems subjected to aeroelastic instability phenomena. In
Sect. 1 this approach is illustrated by the problem of determining the thickness function
of solid plate of constant volume having maximal critical speed of aeroelastic stability.
The expressions of sensitivity functions — functional gradients of critical flutter and di-
vergence speed with respect to thickness variation — are obtained. The necessary opti-
mality conditions are established and with their use the optimal solution is obtained nu-
merically. In Sect. 2 sensitivity analysis and optimization problems are studied on linear
models of discrete systems of general type subjected to aeroelastic instability phenomena.

1. Panel flutter optimal problem
1.1. Statement
Let us consider vibrations of a thin elastic plate of variable thickness in supersonic

gas flow. It is assumed that the plate is symmetric with respect to its neutral plane and
that the plate span is much greater than its dimension in the direction of the flow (Fig. 1).

For the description of aerodynamic forces we use the linearized piston theory formula
of A. A. Ilyushin. The equation of vibration has the form [17]

é? a*w 0%w
. _ 2pox [ ow 6w) _ 2EH3(x)
t=— \a V%) 2W=309
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Here D(x), 2H(x), w(x, t) are, respectively, bending stiffness, thickness and deflection
functions of the plate. The parameters o, E, », U, %, p,, ¢, denote density of the plate ma-
terial, Young’s modulus, the Poisson’s ratio, speed of undisturbed flow, polytropic ex-
ponent, pressure and sound speed of a gas at infinity.

Consider solutions of plate deflection expressed by the formula

(1.2) w(x, t) = u(x)e®,

where u(x) is a complex function of the real variable x and s is a complex number. With
the use of Eq. (1.2) the vibrational equation (1.1) in nondimensional variables takes the
form

(1.3) (hu")" + o*hu+ Aou+pu’ = 0.
Here the nondimensional quantities are used:
X=xfa, u(xX)=u(x)a, hEX) = H(X)/a,

3 3pa?(1—?) _ pox l/ 3(1—2?)
[ ]/ E ? A i f.'o EQ ¥

B = 3(1—v*)pox
- ECo

U.

The primes denote differentiation with respect to x, the sign tilda over the symbols in Eq.
(1.3) and below is dropped.

When h(x), A and B are given, Eq. (1.3) with the boundary conditions determines the
non-selfadjoint eigenvalue problem in which ¢ is an eigenvalue. The equilibrium form
u = 0 of the plate in gas flow is stable when all eigenvalues o belong to the left half of
the complex plane, i.e. Reo < 0. When the quantities h(x) and / are fixed, the mentioned
equilibrium form may become unstable for some values of nondimensional speed f. Crit-
ical divergence speed B, is determined by the condition ¢ = 0 and critical flutter speed
fs is characterized by the relations Reo = 0, Imo = w # 0 [17].

The nondimensional volume of the plate is

1
(1.4) V= [ h(x)dx.
0

Now we state the optimization problem: it is necessary to find the thickness function
ho(x) satisfying the constant volume condition V(hy) = ¥, and maximizing the minima
of critical speeds S, f;.

The quantities A4 and ¥, are the problem parameters. The mathematical formulation
of the stated problem is described by the relations

Iﬁ%"min [Bs(h), Ba(R)] = min[By(ho), Ba(ho)l,

(1.5) 1
0 = |h(x): V(h) = [ hdx = Vo, h(x) > 0}.
0
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136 A. P. SEYRANIAN

1.2. Varlations of critical speeds

Now we calculate the variations of flutter and divergence critical speeds with respect
to thickness variation &h(x). Consider the vibrational equation at flutter assuming in
Eq. (1.3) 0 = iw, f = f;

(1.6) Lu = (h*u")" —o*hu+iodu+pu’ =0,

where i is imaginary unity i = /=1 and w is flutter frequency. To calculate the incre-
ment of critical flutter speed, we include the equation in variations taking to the functions
h, u the variations éh, du = du, +idu,, the frequency and the critical flutter speed —
variations dw, df;.

Then we multiply the equation in variations by the arbitrary complex function v(x)
and integrate from 0 to 1. Using integration by parts we get

1 1 1
(1.7 [ Ghu"0" —w?uv)dhdx + do( —20 [ huvdx +iA [ uvdx)
0 0 0
1 1
+ [ [(h®0")" —w?ho+idwo—B,v'] dudx + 08, f u'vdx + [0d(h*u")
0
— 0 8(h%u")+ (h%0") b’ — ((h’v")'—ﬁ,v)éu]o -0

For concrete definition we consider, for instance, a clamped plate which corresponds
to the boundary conditions

(1.8) u0 =u'0)=0, ul)=u'(l)=0
In this case we imply on the function v the next conditions:
(1.9) L*v = (h*0")" —o*hv+idov—go0" =0,
(1.10) 2(0) =2'0)=0, o(1)=2'(1)=0

Equation (1.9) with the boundary conditions represents the adjoint eigenvalue prob-
lem for o(x) with respect to the problem (1.7), (1.8). It is known that the eigenvalues
and their multiplicity in adjoint problems are the same [18]. Note that the relations (1.9)
and (1.10) describe flutter instability of the same plate with inverse direction of the flow.

Let us introduce the notations

A = 3h%"v" —w?uv,

1 1
ol ), J‘ .
(.11 B _f(v%—u) = 2w° huvdx+i/l!uvdx,

C= f( B, )dx— I:.uud:v:.

Note that B and C are complex constants and the function 4 is a complex function.
With the use of Eqgs. (1.8)-(1.11) the expression (1.7) becomes (1.12)

1
(1.12) [ 4dhdx+Béw+Cdp, = 0.
0
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Now we multiply Eq. (1.12) by the complex — conjugate to B quantity B and take
the imaginary part. Because Im(BB) = 0 and 4f,, dw are real quantities, we obtain the
expression for variation:

Im(A4B)
Im(CB)

1
(1.13) 8, = | gohdx, g= -
o

So the function g is the gradient of the functional of critical flutter speed with respect
to the control function A(x).
Similarly, from Eq. (1.12) the variation of the flutter frequency may be achieved:
1

. dw = | téhdx, =-M-.
(1.14) ® ;!‘ x, t Im(B0)

Thus, to determine the gradients g and ¢ it is required to solve main and adjoint
problems of flutter instability (1.6), (1.8); (1.9), (1.10) and calculate the complex functions
u(x), b(x) and real quantities f;, w. Then, according to Eq. (1.11) the complex constants B,
C and complex function A4 can be determined and thus the gradients g and ¢ can be found
from Egs. (1.13) and (1.14). Note that the eigenfunctions ¥ and v are determined up
to an arbitrary complex constant because eigenvalue problems of flutter instability are
homogeneous problems. Nevertheless, it is easy to see that the gradients g and 7 are not
changed when the functions v and ¢ are multiplied by arbitrary complex constants.

The plate may violate its stability by the static form (divergence). Let us determine
the variation of critical divergence speed. Taking in Egs. (1.6), (1.7) and (1.9) @ = 0,
dw = 0 and repeating the calculations given above, we get

1

T
(1.15) 6ﬁ.=fe&hdx, ¢= — 3," i

0 [u'vdx
0

The function e represents the gradient of the critical divergence speed. The eigen-
functions # and v in this case are real quantities.

Knowing the sensitivity functions — the gradients of the critical flutter and divergence
speed — we can improve the dynamic stability characteristics of the system by a rational
way.

REMARK. When the boundary conditions (1.8) for the function u are changed, then
only the boundary conditions for the adjoint function v are to be replaced. All the re-
maining relations required for the calculation of the gradients g, e and ¢ are the same.

1.3. Optimality conditions

Now we derive the necessary optimality conditions in the stated problem (1.5). Since
the gradient of the plate volume functional is equal to 1, we obtain the necessary con-
ditions of optimality of the function ho(x) [20, 21]:

(1.16) Ae(x)+(1-Dg(x)+pu =0,
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A=0 if  By(ho) < Palho),
(1.17) A=1 if  Ba(ho) < By(ho),
0< A<l if  Ba(he) = Bs(ho).

The Lagrange’s multipliers 4 and x are determined by the isoperimetric condition
V(h) = V, and the conditions (1.17). The cases A =0 and 1 = 1 corresponds respec-
tively to the problems of maximization of flutter and divergence speed. The last case 0 <
< 4 € 1 corresponds to the equality condition of critical speeds at optimal solution.

Note that the optimal problem of panel flutter similar to Eq. (1.5) was considered by
TURNER in [3]. The problem of maximization of bending-torsion flutter critical speed was
considered by Vepa in his thesis. Note that the necessary optimality conditions obtained
in these works do not agree with the strict relations presented above. The reason of
this discord lies in the fact that at the derivation of optimality conditions flutter frequency
was not varied. Besides, real and complex quantities were not distinguished in the thesis
of Vepa.

1.4. Symmetry in boundary conditions

In this section we shall establish some properties of the gradients g, f and e and the
optimal solution Ay(x) in the case of symmetrical boundary conditions applied to the mode
of vibration u(x).

Consider simply supported or clamped boundary conditions. Let us do the transfor-
mation of the argument £ = 1—x. It is easy to see that in this case Eq. (1.6) for the func-
tion u(x) is replaced by Eq. (1.9) and Eq. (1.9) for the function o(x) is replaced by
Eq. (1.6). The boundary conditions for the functions u(x) and v(x) are the same because
of the symmetry of the boundary conditions. Note further that the quantities 4 and B
in Eq. (1.11) are symmetrical with respect to # and v and do not change when the trans-
formation £ = 1—x is made. As to C it is transformed as follows:

du
f DUl e Egds

Here the integration by parts was used. Using the expressions (1.13)-(1.15), we conclude
that the gradients g(&), 1#(&), e(&) differ from the respective relations (1.13)-(1.15) only
by the notations u — v, v — u. So the gradients g, ¢ and e in the case of symmetry of
the boundary conditions applied to the function u are invariant with respect to transfor-
mation & = 1—x.

Let us analyse the necessary optimality conditions. Because of proved invariance of
the gradients with respect to transformation & = 1—x the next assertions are valid:

1. If ho(x), u(x), v(x) is the solution of the system of the necessary conditions (1.6),
(1.9), (1.16) and (1.17) with the symmetrical boundary conditions, then the functions

ho(€) = ho(1=x),  av(é) = av(l—x), bu(é) = bu(l—x)

are also the solution of this system, u and v being either vibrational modes of flutter or
modes of divergence; a and b are arbitrary complex constants.
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2. If there exists a unique solution which realizes the maximal value of critical speed
of dynamic stability at symmetrical boundary conditions, then
ho(£) = ho(1 —x) = ho(x),
u(§) = u(1-x) = av(x),
(&) = v(1 —x) = bu(x),
where ¢ is an arbitrary complex constant.
The symmetrical optimal solutions obtained numerically for simply supported and
clamped plates are presented in the works of PIERSON [5, 9], WEISSHAAR [6, 11], SANTINI
and others [12].

ho(x) ™ hO(l _x)!
o(x) = cu(l —x),

1.5. Optimal cantilever plate

Consider now a cantilever plate clamped at x = 1 and free at x = 0. In this case aero-
elastic stability of the optimal plate is violated by the divergence. To prove this fact, it
is necessary to solve the problem of the plate having maximal critical speed of divergence
B4 and calculate for it critical flutter speed ;.

If By > B4, then the obtained solution realizes the maximal value of critical speed at
which aeroelastic stability is violated.

Thus we consider the optimal problem of divergence instability. The solution of this
problem is denoted by A,(x). The necessary optimality conditions (1.16), (1.17) with (1.15)
include the case under study. But under the considered boundary conditions some simpli-
fications are possible; this is connected with the decrease of the order of Egs. (1.6) and
(1.9) and the simplification of the boundary conditions. We take in Eq. (1.6) w = 0,
replace f; by f; and use the notation #’'(x) = @(x). As a result, the boundary value prob-
lem describing divergence of the plate in the considered case of boundary conditions takes
the form

3 " o
(L18) (h*p") Tﬁd?’ =0,
(B9)ze0 = (B*¢)ia0 =0, (1) = 0.

The function u is determined by ¢ by the integral

1
u(x) = —ftp(x)dx.

The adjoint to Eq. (1.18) eigenvalue problem is described by the relations [18]:
(Ry"Y ~Bay = 0,
p(1) =9'(1) =0, (h*9")se0 =0.

Now we multiply Eq. (1.18) by the adjoint function y(x) and integrate it twice by
parts taking into account the boundary conditions for ¢ and . We obtain

(1.19)

1 1
(1.20) Bu= — [ W'y ax| [ gpax| ™.
0 0

This functional is stationary with respect to ¢ and ¢ on the functions defined by Eqs.
(1.18) and (1.19). The validity of this assertion may be verified by the immediate va-
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rying of the functional (1.20) with respect to ¢ and y. Using this property, we get the
expression for variation:

r

1
2
(1.21) 8By = feahdx, ol
o [ ppdx
[\]

The necessary condition of #;, which is maximum at the constant volume V(h) = V,,
leads to the relation

(1.22) h¢'y" = u = const.
The equations and boundary conditions (1.18), (1.19) and (1.22) with the isoperimetric
condition V(h) = V, permit to determine the functions /,(x), @(x), y(x) and the multi-

plier u that realizes the extremal solution of the optimal problem of plate divergence
in gas flow. Note that the solution h, may be expressed in the form

(1.23) ha(x) = Vohy(x)

because the functionals (1.4) and (1.20) are homogeneous with respect to 4 [24]. In Eq.
(1.23) h,(x) designates the solution of the optimal problem of divergence at the isoperi-
metric condition V(h) = ¥V, = 1. In this way, the parameter ¥V, is excluded from the
consideration.

1.5.1. Asymptotics. Let us investigate the asymptotic behaviour of the functions h.(x),
@(x), () near the boundary x = 0. For convenience we use the notation a, = f,¥5?
and rewrite Eqs. (1.18) and (1.19) in the form

(h39)" = —ayg,
(h39") = ayp.
The functions ¢(x), y(x) are supposed to be normalized quantities ¢(0) = 9(0) = 1.
Then we take g(x) = 1+0(1), 9(x) = 1+0(1), where x belongs to the neighbourhood of

the point x = 0. Substituting these relations in the right sides of Eqs. (1.24) and inte-
grating them with the use of boundary conditions, we achieve

h3x)¢'(x) = —1/2a,x%+0(x?),
hi(x)y"(x) = ayx+0(x).

Multiplying these equations by each other and using the optimality conditions (1.22), we
obtain h,(x) = ¢, x3*+0(x**%), ¢; = (—aiVZ/2u)'/*. According to Eq. (1.25) the expan-
sions for h,(x), (), 9(x) near x = 0 can be found in the form

(1.24)

(1.25)

he(x) = ¢y x**+cyx+ ...,
(1.26) o(x) = 1+a, x**+a,x+ ...,
9(x) = 14+b, x3*+b,x+ ....

Substitution of these expressions in Eq. (1.24), (1.22) permits to find the relations be-
tween the expansional coefficients

€ = os a; = 0, 3010? = ""2, SbICi = —16.
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The obtained asymptotics are required for the further numerical solution of Egs. (1.24)
and (1.22) with the respective boundary conditions and isoperimetric condition

V(h) = 1.
1.5.2. Numerical results. A numerical solution of the optimal problem was realized by the
gradient method in the space of control function A(x) with the use of the asymptotics

(1.26). At every step of the gradient procedure in h(x) the next integral equations were
solved:

1 [4
9(x) = ay [ h=3Q)d¢ [ (¢ —~n)pndn,
x 0

1 n
() = a, [ h=3() (—x)dn af p(0)dt.

These equations are equivalent to the eigenvalue problems above. Variations of A(x)
were made according to the formula

Sh™(x) = h+D(x)—h™(x) = y e™(x) ]’

™

where e™(x) is the functional gradient of the critical divergence speed (1.21); y is the pos-
itive number chosen by the researcher (step of gradient): (e™) is the constant defined
by the constant volume condition é¥(h) = 0

1
(e™y = f e™(x)dx.
H

It is easy to see that for sufficiently small y this algorithm increases divergence speed at
every step and satisfies the constant volume condition. The computations were stopped
when Eq. (1.22) was satisfied within fixed computational error. The details of the compu-
tations are described in [22].

hy (x)

10

Fic. 3.
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The functions A, (x), p(x), y(x) obtained numerically are shown in Figs. 2 and 3. Using
the method of extremum investigation described in [23], we can prove that the extremals
hy, @,  realize the strong maximum of the functional of divergence speed at given con-
straints.

The value of critical divergence speed for a plate of constant thickness (h(x) = 1)
shown in Fig. 2 by a dashed line is equal to 4 = 6.33 [17].

The value §; computed for the plate with the thickness function A,(x) equals 11.8. So,

critical divergence speed for the optimal plate exceeds this speed for the constant thickness
plate 1.86 times.
1.5.3. Aeroelastic stability study. Investigate now the dependence of aeroelastic stability of
the plate with the thickness hy(x) = Voh,(x) on the speed parameter « = B/F3. For
this purpose the finite difference method was applied. At computations the segment [0, 1]
was divided into N = 20, 30 equal parts, derivatives in Eq. (1.6) and the boundary condi-
tions were replaced by finite difference relations. Computations were made both for « > 0
and for & < 0 (this case corresponds to the inverse direction of the flow speed).

FiG. 4.

In Fig. 4 the dependence of frequency of vibrations w on parameter « is presented.
At computations in Eq. (1.6) ¢ = iw and A4 = 0 (absence of damping) were taken. The
dashed line shows the behaviour of frequencies of the plate with A(x) = 1. It should be
noted that these two curves essentially differ from each other.

From the numerical results it follows that aeroelastic stability of the plate with A,(x)
is violated at « > 0 by the divergence, f; > B4. Hence at « > 0 the plate with the thickness
ha(x) is the solution of the optimal problem (1.5), ho(x) = hy(x) = Vohy(x).
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At inverse direction of the speed of the flow (« < 0) the stability of this plate is viola-
ted by flutter ap = —780, Fig. 4. Thus the region of stability of the optimal plate with
zero damping lies in the region —780 < « < 11.8. Note that the region of stability of
the plate with the thickness 4(x) = 1 is defined by the inequality —123 < a < 6.33 [17].
The obtained results show that variation of the plate thickness essentially act son the dis-
tribution of frequencies and, respectively, on the region of aeroelastic stability of the plate.

2. Discrete systems

Consider now systems with finite degrees of freedom subjected to aeroelastic instabil-
ity phenomena such as flutter and divergence. It is assumed that the system is character-
ized by the parameters m;,i = 1,2, ..., N that may be varied by the designer. As the
“control” parameters m; various mass and stiffness characteristics may be considered:
plate thicknesses, geometrical dimensions of various elements, concentrated masses, etc.
In this section we deduce the expressions for partial derivatives of critical flutter and di-
vergence speeds with respect to parameters m; in the general case of the systems described
by linear algebraic equations.

The governing equation for flutter has the form

(2.1) [K(m)—0?M(m)+ A(w, V,)JE = 0.
In this equation X is the stiffness matrix, M is the inertial matrix, 4 is the complex aero-
dynamic matrix, & is the complex vector of generalized coordinates, ¥ is flutter speed,
w is flutter frequency. It is assumed that the matrices K, M, A possess the dimension
nxn, the vector § has the dimension n and the vector m the dimension N. The matrix
A in general may depend on m.

Find the derivatives of critical flutter speed with respect to parameters m;,j = 1, 2, ...,
..., N. For convenience the matrix L is introduced:

2.2) L = K(m)-o*M(m)+ A(w, V;).

Take variation dm; of parameter m;. Then the quantities ¥, w, E yield the variations
8V;, dw, 8. :
The equation in variations similar to Eq. (1.7) may be written as:

dL oL aL

where the derivatives of matrix L, according to Eq. (2.2), are defined by the relations
oL _ OK oM oL 04

—m2 =
2.4 om, om,  om,’ oV, aV,’

L 04

o oM

Note that the aerodynamic matrix is generally given in the form 4 = A(k, ) where
k is the reduced frequency and M is the Mach number [13, 14]
v

wce
ki W o
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Here ¢ is a linear dimension of the system in the direction of the flow, a is sound
speed at a given height of flight, ¥, and w are flutter speed and frequency. In this case
the derivatives are defined by the formulas

OL _0A ok oA MR OL _ oA 0k
v, ok v, M aV,’ ow Ok Ow
The final result is

dL 1 04 wc 04 oL c 04
W, T VI ow -V, ok M
Multiply Eq. (2.3) by the transposed vector q” where the vector q is determined from

the equation

20M .

(2.5) L'q = [KT—w?MT+ AT)q = 0.
As a result, we get the expression
oL oL dL
T T Y i i -

since according to Eq. (2.5),
q"LOE = OETLTq =
With the use of notations
@) H=a2ef B=a'5.5 C=a 5%
Eq. (2.6) takes the form
(2.8) H;ém;+Béw+CéV, = 0.
Multiplying this equation by the complex conjugate quantities B and C and taking im-
aginary part, we find relations similar to Eqs. (1.13) and (1.14):

2.9) o, Im#HB) oo _ _ImHC
' om, ~ Im(CB) = om Im(BC)
The obtained relations with the use of Eqgs. (2.7) and (2.4) are expressed through the
derivatives of the matrices K, M, A and the vectors E and q.
Note that the vectors € and q are defined up to arbitrary complex multipliers because
of homogeneity of the problems (2.1) and (2.5). Hence the normalization condition can
be applied:

(2.10) ReB = Re (qf-g%z) = 0.

With the use of this condition the derivatives of flutter speed, according to Eq. (2.8),
become

v, ReH, B (" am

]

In the expressions (2.10) and (2.11) the symbol Re can be replaced by Im. The ex-
pression (2.9) is equivalent to Eq. (2.11) with the normalization condition (2.10).

2.11)
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Consider now the case of aeroelastic instability such as divergence. The divergence
equation can be achieved taking in Eq. (2.1) @ = 0 and replacing ¥; by V;:
(2.12) [K(m)+ A(V)Es = 0.

Here ¥, is divergence speed, E; is the vector of generalized coordinates at divergence.
Consider the adjoint system

(2.13) [KT(m)+AT(Vy)lqqs = 0.
Similarly to the calculation of the derivatives of flutter speed, we find
oK
Y it
214 W Y om,
’ om, r 04 £
‘IJ ay‘ d

The obtained formulas (2.9) and (2.14) can be used both for the derivation of necessary
optimality conditions and for numerical solving of various optimization problems of the
systems subjected to aeroelastic instability phenomena.

Note that the formulas for derivatives of flutter characteristics in some special case
were obtained by V. G. BuN’kov [2]. The method of calculating derivatives of critical
flutter speed, frequency and modes of flutter without use of the adjoint eigenvector is
described in [14]. But we doubt that this method can be effective for solving structural
optimization problems because calculation of the gradient of flutter speed with respect
to N structural parameters involves solving of N systems of linear equations of 2n+2
order. It should be also noted that iteration formulas suggested in [10, 13] do not sat-
isfy necessary optimality conditions even in the case of their convergence.

3. Conclusion

In this paper, for continuous and discrete systems the expressions of sensitivity char-
acteristics of flutter and divergence speed with respect to distributed and discrete para-
meters defining aeroelastic behaviour are first derived. It is shown that the calculation
of the gradients of critical speeds involves the solution of the so-called adjoint problem
which is similar to the main problem of flutter or divergence. The variational method of
sensitivity analysis of critical speeds is the most effective when many finite (or infinite)
numbers N of defining structural parameters are considered. This is so since only one-fold
solving of adjoint problems is required for the calculation of gradient vector of critical
speed. Nevertheless, numerical differentiation of flutter or divergence speed as the function
of N independent variables requires for gradient calculation not less than N+ 1 — fold
solving of the flutter (divergence) problem.

As to optimization problems, our opinion is that the most effective methods for sol-
ving structural optimization problems which take into account aeroelastic instability phe-
nomena both for discrete and continuous systems are the methods of mathematical pro-
gramming using implicit expressions of gradients of flutter and divergence speed such as
Egs. (1.13), (1.15); (2.9) and (2.14).
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