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Optimization of structures subjected to aeroelastic instability 
phenomena 

A. P. SEYRANIAN (MOSCOW) 

IN THIS PAPER problems concerning sensitivity analysis and optimization of aeroelasti'f stability 
of structures are considered. In Sect. 1 the problem of maximizing the critical speed of aeroclas
tic stability of the plate in supersonic gas flow is stated. Sensitivity analysis of continuous flutter
ing system is developed. The gradients of flutter and divergence speed are first derived and 
with their use necessary optimality conditions are established. The method of solution is describ
ed and numerical results are presented. In Sect. 2 discrete aeroetastic systems are investigated. 
The implicit expressions of the derivatives of flutter and divergence speed with respect to arbi
trary discrete parameters of the system are achieved. A short review of studies made in this 
field is given. 

W pracy rozpatrzono problemy dotye74ce analizy podatnoki i optymalizacji stateczno8ci aero
sp~zystej konstrukcji. W rozdziale 1 sformulowano zagadnienie maksymalizacji p~oSci kry
tycznej dla aerosp~tystej stateczno8ci plyty w oplywie naddfwi~kowym. Rozwiniceto anatizct 
podatnoSci dla uklad6w ci'4glych poddanych flattcrowi. Wyprowadzono najpierw wzory na 
gradientyflatteruip~o8C dywergencji i wykorzystano do okreSlenia warunk6w optymalizacji. 
Opisano metodct rozwi~a i przedstawiono wyniki numcryczne. W rozdziale drugim om6-
wiono dyskretne uklady aerosp~tyste. Otrzymano niejawne zwi<\zki dla pochodnych flatteru 
i p~koSci dywergencji wzglctdem dowolnych parametr6w dyskretnych rozwa.Zanego ukladu. 
Za.mieszczono r6wniei: kr6tki przcgllld prac dotyCZ'4cyCh tej problematyki. 

B ~BHIIOH pa6oTe WIJ1 paCIIpe~eJieHHbiX H ~CKpeTHbiX CHCTeM paCMaTPHBaiOTCR BOnpoCbi, 
CBR3aHHbie C llHa.JIH30M qyBCTBHTe.JIItHOCTH H OIITHMH38I.Uieft: xap&KTepHCTHK 83poynpyroit 
ycroii'IHBOCTH. B nepaoM paa~ene CTaBHTCJI ~aqa .M&KCHMH3ai.UIH Kp~eCKoA cKopoCTB 
IIOTepH 83poynpyroft: ycroft:'IHBOCTH IIJIBCTHHKH B CBepX3BfKOBOM IIOTOKe raaa. llpoH3BO~ 
BH3JIH3 qyBCTBHTem.HOCTH pacnpe~eJieHHbiX CHCTeM, IIO~ep>KeHHbiX <!»JIBTTepy. BnepBbie 
norryqeHbi B&Ipamemm rp~eHTOa WIJ1 Kp~eCKHX CKopocreA <!»Jianepa H ~epre~ 
H C HX HCIIOJib30BBHHeM BbiBe~eHbi HeOOXO~e YCJIOBHJI 3KCTPeMyMa. ,llBHO OIIHCBHHe 
Mero~a pememm a~a~ oiiTHMH3amm, npe~CTaBJieHbi ~CJieHHbie peayJILTBTbl. Bo aropoM 
paa~ene HCCJie.zzyK>TCJI ~CKpenn.Ie aapoynpyrne CHCTeMbi. llonyqeHbi RBHble Bbipamemm 
~ IIpoH3BO~IX OT Kp~eCKHX CKOpoCTeft: <!»JIBTTepa H romepre~ 110 OTHOWeHHIO 
K llpOH3BOJILHbiM ~CKpeTHbiM IIBpBMeTpBM, Xap&KTepH3yiO~HM CHCTeMY. ,llBH Kpanam 
o6aop pa6oT, IIOCBJIILleHHbiX OIITHMH3ai.UIH xapaKTepHCTHK 33poynpyroft: yCTOft:'IHBOCTH. 

Introduction 

AT PRESENT the problems of optimization of structures dealing with phenomena of aeroelas
tic instability are of great interest to researchers. The first publications in this field appear
ed about ten years ago. There are now about fifty. Some, though incomplete, informa
tion about the papers in this field may be found in [1-16] with corresponding lists of ref
erences. As compared with static structural optimization problems, the problems of dy
namic stability optimization cause greater difficulties in analytic and numerical studies. 
This fact is emphasized by many authors. At present, aeroelastic stability optimization 
problems are developed in two ways. The first considers optimization problems of distri-
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134 A. P. SEYRANIAN 

buted systems governed by differential equations. See, for example, the works of AsHLEY 
and MciNTOSH [1], BIRIUK [4], PIERSON [5, 9], WEISSHAAR [6, 11], ARMAND [8], PLAUT [7], 
VEPA (thesis), SANTINI and others [12], BANICHUK and MIRONOFF [15], SEYRANIAN [16] 
and others. In the papers [4, 5, 9, 11] the direct methods of mathematical programming 
for the search of optimal solutions were used. 

The second way of developing aeroelastic stability optimization problems considers 
discrete systems, see, for example, works of BUN'KOV [2], TuRNER [3], HAFrKA and 
others [10], MCINTOSH and ASHLEY [13], CARDANI and MANTEGAZZA [14] and others. 

In this paper an attempt is made to develop a common variational approach to study 
both distributed and discrete systems subjected to aeroelastic instability phenomena. In 
Sect. 1 this approach is illustrated by the problem of determining the thickness function 
of solid plate of constant volume having maximal critical speed of aeroelastic stability. 
The expressions of sensitivity functions- functional gradients of critical flutter and di
vergence speed with respect to thickness variation- are obtained. The necessary opti
mality conditions are established and with their use the optimal solution is obtained nu
merically. In Sect. 2 sensitivity analysis and optimization problems are studied on linear 
models of discrete systems of general type subjected to aeroelastic instability phenomena. 

1. Panel flutter optimal problem 

1.1. Statement 

Let us consider vibrations of a thin elastic plate of variable thickness in supersonic 
gas flow. It is assumed that the plate is symmetric with respect to its neutral plane and 
that the plate span is much greater than its dimension in the direction of the flow (Fig. 1 ). 

X 

FIG. 1. 

For the description of aerodynamic forces we use the linearized piston theory formula 
of A. A. Ilyushin. The equation of vibration has the form [17] 

02 ( iJ2w ) iJ2w 
ox2 D(x) ox2 + 2H(x)e 012 + g = 0, 

(I. I) 

g = 2Po" ( iJw + U ~_!_) 
Co iJt OX ' 
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Here D(x), 2H(x), w(x, t) -are, respectively, bending stiffness, thickness and deflection 
functions of the plate. 1)le param~ters e, E, v, U, "' p 0 , c0 denote density of the plate ma
terial, Young's modulus, the Poisson's ratio, speed of undisturbed flow, polytropic ex
ponent, pressure and sound speed of a gas at infinity. 

Consider solutions of plate deflection expressed by the formula 

(1.2) w(x, t) ~ u(x)est, 

where u(x) is a complex function of the real variable x and s is a complex number. With 
the use of Eq. (1.2) the vibrational equation (1.1) in nondimensional variables takes the 
form 

(1.3) 

Here the non dimensional quantities are used: 

i = xfa, u(x) = u(x)fa, h(x) = H(x)fa, 

= V 3ea2(1 -v2) A = Po" V 3(1-v2) 
(f s E ' E , 

Co (] 

fJ = 3(1-v
2
)Po" U. 

Ec0 

The primes denote differentiation with respect to x, the sign tilda over the symbols in Eq. 
(1.3) and below is dropped. 

When h(x), A and fJ are given, Eq. (1.3) with the boundary conditions determines the 
non-selfadjoint eigenvalue problem in which Cf is an eigenvalue. The equilibrium form 
u = 0 of the plate in gas flow is stable when all eigenvalues Cf belong to the left half of 
the complex plane, i.e. ReCf < 0. When the quantities h(x) and A are fixed, the mentioned 
equilibrium form may become unstable for some values of nondimensional speed {J. Crit
ical divergence speed fJtJ is determined by the condition a = 0 and critical flutter speed 
{31 is characterized by the relations ReCf = 0, Ima = w =F 0 [17]. 

The nondimensional volume of the plate is 

I 

(1.4) V= J h(x)dx. 
0 

Now we state the optimization problem: it is necessary to find the thickness function 
ho(x) satisfying the constant volume condition V(h0 ) = V0 and maximizing the minima 
of critical speeds {Jtl, {31 . 

The quantities A and V0 are the problem parameters. The mathematical formulation 
of the stated problem is described by the relations 

(1.5) I 

Q = {h(x): V(h) = j hdx = V0 , h(x) ~ o}. 
0 

2* 
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1.2. Variations of critical speeds 

Now we calculate the variations of flutter and divergence critical speeds with respect 
to thickness variation c)h(x). Consider the vibrational equation at flutter assuming in 
Eq. (1.3) u = iro, fJ = {11 

(1.6) Lu = {h3u")" -ro2hu+iroAu+P,~u' = 0, 

where i is imaginary unity i = y'=T and ro is flutter frequency. To calculate the incre
ment of critical flutter speed, we include the equation in variations taking to the functions 
h, u the variations c)h, c)u = c)u1 + i~u2 , the frequency and the critical :flutter speed -
variations ~ro, c){J1 . 

Then we multiply the equation in variations by the arbitrary complex function v(x) 
and integrate from 0 to 1. Using integration by parts we get 

1 1 1 

(1.7) J (3h 2u"v" -ro2uv)c)hdx+ ~ro( -2ro J huvdx+ iA J uvdx) 
0 0 0 

1 1 

+ J [(h3v")" -ro2hv+iArof1-P.tv']c)udx+ ~fl.t J u'tJdx+ [vc)(h3u")' 
0 0 

-v' c)(h3u'')+ {h3t1") c)u'- ((h3v'')' -fl.t" )c)u]A = 0. 

For concrete definition we consider, for instance, a clamped plate which corresponds 
to the boundary conditions 

{1.8) u(O) = u'(O) = 0, u{l) = u'(l) = 0. 

In this case we imply on the function v the next conditions: 

(1.9} 

(1.10) 

L*v = (h3v'')" -ro2hv+iArov-fJ1v' = 0, 

tJ(O) = v'(O) = 0, tJ(1) = v'(1) = 0. 

Equation (1.9) with the boundary conditions represents the adjoint eigenvalue prob
lem for v(x) with respect to the problem (1.7), (1.8). It is known that the eigenvalues 
and their multiplicity in adjoint problems are the same [18]. Note that the relations (1.9) 
and (1.10) describe flutter in&tability of the same plate with inverse direction of the flow. 

Let us introduce the notations 

A = 3h2u"v" -ro2uv, 
1 1 1 

B = J (v !~ u)dx = -2w J huvdX+iA J uvdx, 
0 0 0 

(1.11) 

1 1 

C = [ ( v !t u) dx = [ u'vdx. 

Note that Band Care complex constants and the function A is a complex function. 
With the use of Eqs. (1.8)-(1.11) the expression (1.7) becomes (1.12) 

(1.12) 
1 

f Ac)hdx+Bc)ro+Cc){J.t = 0. 
0 
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Now we multiply Eq. (1.12) by the complex- conjugate to B quantity Band take 
the imaginary part. Because Im(BB) = 0 and tJp1 , tJco are real quantities, we obtain the 
expression for variation: 

1 

(1.13) tJp1 = J gtJhdx, g = 
0 

lm{AB) 

lm{CB) 

So the function g is the gradient of the functional of critical flutter speed with respect 
to the control function h(x). 

Similarly, from Eq. (1.12) the variation of the flutter frequency may be achieved: 

(1.14) 

1 

llco = J ttJhdx, 
0 

Im(AC) 
t =- . 

Im(BC) 

Thus, to determine the gradients g and t it is required to solve main and adjoint 
problems of flutter instability (1.6), (1.8); (1.9}, (1.10) and calculate the complex functions 
u(x), b(x) and real quantities p1 , eo. Then, according to Eq. (1.11) the complex constants B, 
C and complex function A can be determined and thus the gradients g and t can be found 
from Eqs. (1.13) and (1.14). Note that the eigenfunctions u and v are determined up 
to an arbitrary complex constant because eigenvalue problems of flutter instability are 
homogeneous problems. Nevertheless, it is easy to see that the gradients g and tare not 
changed when the functions u and v are multiplied by arbitrary complex constants. 

The plate may violate its stability by the static form (divergence). Let us determine 
the variation of critical divergence speed. Taking in Eqs. (1.6), (1.7) and (1.9) eo = 0, 
tJco = 0 and repeating the calculations given above, we get 

(1.15) 

1 

tJp, = J etJhdx, 
0 

3h2u"v" 
e =- 1 

f u'vdx 
0 

The function e represents the gradient of the critical divergence speed. The eigen
functions u and v in this case are real quantities. 

Knowing the sensitivity functions- the gradients of the critical flutter and divergence 
speed - we can improve the dynamic stability characteristics of the system by a rational 
way. 

REMARK. When the boundary conditions (1.8) for the function u are changed, then 
only the boundary conditions for the adjoint function v are to be replaced. All the re
maining relations required for the calculation of the gradients g, e and t are the same. 

1.3. OpdmaUty coaclldoas 

Now we derive the necessary optimality conditions in the stated problem (1.5). Since 
the gradient of the plate volume functional is equal to 1, we obtain the necessary con
ditions of optimality of the function h0 (x) [20, 21]: 

(1.16) Ae(x)+(1-A)g(x)+p = 0, 
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if {Jf(ho) < {Jd(ho), 

(1.1 7) if fllho) < flf(ho), 

0 ~ A ~ 1 if {Jd(ho) = fliho)· 

The Lagrange's multipliers A and p, are determined by the isoperimetric condition 
V(h) = V0 and the conditions (1.17). The cases A = 0 and A = 1 corresponds respec
tively to the problems. of maximization of flutter and divergence speed. The last case 0 ~ 
~ A ~ 1 corresponds to the equality condition of critical speeds at optimal solution. 

Note that the optimal problem of panel flutter similar to Eq. (1.5) was considered by 
TURNER in (3]. The problem of maximization of bending-torsion flutter critical speed was 
considered by Vepa in his thesis. Note that the necessary optimality conditions obtained 
in these works do not agree with the strict relations presented above. The reason of 
this discord lies in the fact that at the derivation of optimality conditions flutter frequency 
was not varied. Besides, real and complex quantities were not distinguished in the thesis 
of Vepa. 

1.4. Symmetry in boundary conditions 

In this section we shall establish some properties of the gradients g, t and e and the 
optimal solution h0 (x) in the case of symmetrical boundary conditions applied to the mode 
of vibration u(x). 

Consider · simply supported or clamped boundary conditions. Let us do the transfor
mation of the argument E = 1-x. It is easy to see that in this case Eq. (1.6) for the func
tion u(x) is replaced by Eq. (1.9) and Eq. (1.9) for the function v(x) is replaced by 
Eq. (1.6). The boundary conditions for the functions u(x) and v(x) are the same because 
of the symmetry of the boundary conditions. Note further that the quantities A and B 
in Eq. (1.11) are symmetrical with respect to u and v and do not change when the trans
formation E = 1-x is made. As to C it is transformed as follows: 

1 1 

C =J du vdx = J dfl udE. 
dx dE 

0 0 

Jlere the integration by parts was used. Using the expressions (L13)-(1.15), we conclude 
that the gradients g(E), t(E), e(E) differ from the respective relations (1.13)-(1.15) only 
by the notations u-+ v, v-+ u. So the gradients g, t and e in the case of symmetry of 
the boundary conditions applied to the function u are invariant with respect to transfor
mation E = · 1-x. 

Let us analyse the· necessary optimality conditions. Because of proved invariance of 
the gradients with respect to transformation E = 1-x the next assertions are valid: 

I. If h0 (x), u(x), v(x) is the solution of the system of the necessary conditions (1.6), 
(1.9), (1.16) and (1.17) with the symmetrical boundary conditions, then the functions 

h0 (E) = h0(1-x), av(E) = av(l-x), bu(E) = bu(l-x) 

are also the solution of this system, u and v being either vibrational modes of flutter or 
modes of divergence; a and bare arbitrary complex:constants. 
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2. If there exists a unique solution which realizes the maximal value of critical speed 
of dynamic stability at symmetrical boundary conditions, then 

h0(~) = ho(l-x) = h0 (x), 

u(~) = u(I-x) = av(x), 

v(~) = v(l -x) = bu(x), 

where c is an arbitrary complex constant. 

or 
h0 (x) = h0 (1-x), 

v(x) = cu(I-x), 

The symmetrical optimal solutions obtained numerically for simply supported and 
clamped plates are presented in the works of PIERSON [5, 9], WEISSHAAR [6, 11], SANTINI 

and others [12]. 

1.5. Optimal cantilever plate 

Consider now a cantilever plate clamped at x = 1 and free at x = 0. In this case aero
elastic stability of the optimal plate is violated by the divergence. To prove this fact, it 
is necessary to solve the problem of the plate having maximal critical speed of divergence 
pd and calculate for it critical flutter speed {31 . 

If p1 > pd, then the obtained solution realizes the maximal value of critical speed at 
which aeroelastic stability is violated. 

Thus we consider the optimal problem of divergence instability. The solution of this 
problem is denoted by hd(x). The necessary optimality conditions (1.16), (1.17) with (1.15) 
include the case under study. But under the considered boundary conditions some simpli
fications are possible; this is connected with the decrease of the order of Eqs. (1.6) and 
(1.9) and the simplification of the boundary conditions. We take in Eq. (1.6) eo = 0, 
replace {31 by {3d and use the notation u'(x) = q:>(x). As a result, the boundary value prob
lem describing divergence of the plate in the considered case of boundary conditions takes 
the form 

(1.18) 
(h3q:>')" + {Jtlq:> = 0, 

(h 3q:>'):¥=O = (h 3 q:>')~ ... 0 = 0, q:>(1) = 0. 

The function u is determined by q:> by the integral 
1 

u(x) = - J q:>(x)dx. 
X 

The adjoint to Eq. (1.18) eigenvalue problem is described by the relations [18]: 

(h31p'')' -P~~'P = o, 
tp(1) = 1p'(1) = 0, (h3tp"):¥=0 = 0. 

(1.19) 

Now we multiply E9. (1.18) by the adjoint function tp(x) and integrate it twice by 
parts taking into account the boundary conditions for q:> and 1p. We obtain 

1 1 

{1.20) {3d= - J h3q:>'tp"dx[J q:>tpdx]-
1
. 

0 0 

This functional is stationary with respect to q:> and 'P on the functions defined by Eqs. 
(1.18) and (1.19) . . The validity of this assertion may be verified by the immediate va-
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rying of the functional (1.20) with respect to rp and 'P· Using this property, we get the 
expression for variation: 

(1.21) 
3h2rp'tp" 

e = - ---=-. -=--..:..___ 

f. rptpdx 
0 

The necessary condition of p,, which is maximum at the constant volume V(h) = V0 , 

leads to the relation 

(1.22) 

The equations and boundary conditions (1.18), (1.19) and (1.22) with the isoperimetric 
condition V(h) = V0 permit to determine the functions h4(x), rp(x), 'P(x) and the multi
plier 1-' that realizes the extremal solution of the optimal problem of plate divergence 
in gas flow. Note that the solution h4 may be expressed in the form 

(1.23) h4(x) = V0 h.(x) 

because the functionals (1.4) and (1.20) are homogeneous with respect to h [24]. In Eq. 
(1.23) h.(x) designates the solution of the optimal problem of divergence at the isoperi
metric condition V(h) = V0 = 1. In this way, the parameter V0 is excluded from the 
consideration. 
1.5.1. Asymptotlcs. Let us investigate the asymptotic behaviour of the functions h.(x), 
rp(x), tp(x) near the boundary x = 0. For convenience we use the notation a* = p, V0

3 

and rewrite Eqs. (1.18) and (1.19) in the form 

(h!rp')" = - a.rp, 

(h!tp'')' = C(~tp. 
(1.24) 

The functions rp(x), tp(x) are supposed to be normalized quantities rp(O) = '1'(0) = 1. 
Then we take rp(x) = 1 +o(1), tp(x) = 1 +o(1), where x belongs to the neighbourhood of 
the point x = 0. Substituting these relations in the right sides of Eqs. (1.24) and inte
grating them with the use of boundary conditions, we achieve 

h!(x)rp'(x) = -1 /2~t.x2 +o(x2), 
(1.25) 

h!(x)tp"{x) = a.x+o(x). 

Multiplying these equations by each other and using the optimality conditions (1.22), we 
obtain h.(x) = c1 x3

'
4 +o(x3

'
4
), c1 = (-a~ vgf2p)114 • According to Eq. (1.25) the expan

sions for h.(x), rp(x), 'P(X) near x = 0 can be found in the form 

h.(x) = c1 x3
'
4 +c2 x+ ... , 

(1.26) rp(x) = 1+a1 x314 +a2 x+ ... , 

1p(x) = 1 +b1 x3
'
4 +b2 x+ ... . 

Substitution of these expressions in Eq. (1.24), (1.22) permits to find the relations be
tween the expansional coefficients 
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The obtained asymptotics are required for the further numerical solution of Eqs. (1.24) 
and (1.22) with the respective boundary conditions and isoperimetric condition 

V(h) = 1. 

l.S.2. Numerlall results. A numerical solution of the optimal problem was realized by the 
gradient method in the space of control function h(x) with the use of the asymptotics 
(1.26). At every step of the gradient procedure in h~) the next integral equations were 
solved: 

1 ' 
<p(x) = ex. f h- 3(C)dC f (C -1J)<p(1J)d1J, 

Jt 0 . 

1 ~ 

1p(x) = ex. f h- 3{1J) (1J -x)drJ f 'P(C)dC. 
X 0 

These equations are equivalent to the eigenvalue problems above. Variations of h(x) 
were made according to the formula 

bh'"'(x) = h<•+ •>(x) -h'"'(x) = r [ ~::~~~ -I], 
where e<">(x) is the functional gradient of the critical divergence speed (1.21); 'Y is the pos
itive number chosen by the researcher (step of gradient): (e<">) is the constant defined 
by the constant volume condition ~V(h) = 0 

1 

(e<">) = J e<">(x)dx. 
0 

It is easy to see that for sufficiently small 'Y this algorithm increases divergence speed at 
every step and satisfies the constant volume condition. The computations were stopped 
when Eq. (1.22) was satisfied within fixed computational error. The details of the compu
tations are described in [22]. 

FIG. 2. 

X 

Fro. 3. 
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.. The functions h.(x), q>{.x), 'l'(x) obtained numerically are shown in Figs. 2 and 3. Using 
the method of extremum investigation described in [23], we can prove that the extremals 
h*, cp, 'I' realize the strong maximum of the functional of divergence speed at given con
straints. 

The value of critical divergence speed for a plate of constant thickness (h(x) = I) 
shown in Fig. 2 by a dashed line is equal to {14 = 6.33 [17]. 

The value {14 computed for the plate with the thickness function h* (x) equals 11.8. So, 
-critical divergence speed for the optimal plate exceeds this speed for the constant thickness 
plate 1.86 times. 
1.5.3. Aeroelastlc stabllity study. Investigate now the dependence of aeroelastic stability of 
the plate with the thickness h4(;x) = V0 h.(x) on the speed parameter rt = {1/Vg. For 
this purpose the finite difference method was applied. At computations the segment [0, I] 
was divided into N = 20; 30 equal parts, derivatives in Eq. (1.6) and the boundary condi
tions were replaced by finite difference relations. Computations were made both for a > 0 
and· for a < 0 (this· case corresponds to the inverse direction of the flow speed). 

FIG. 4. 

I 
I 
I 

I 

I 
I 

; · 
I 

In Fig. 4 the dependence of frequency of vibrations w on parameter rt is presented. 
At computations in Eq. (1.6) a= iw and A= 0 (absence of damping) were taken. The 
dashed line shows the behaviour of frequencies of the plate with h(x) = 1. It should be 
noted that these two curves essentially.differ from each other. 

From the numerical results it follows that aeroelastic stability of the plate with hd(x) 
is violated at a > 0 by the divergence, {11 > {14 • Hence at a > 0 the plate with the thickness 
hd(x) is the solution of the optimal probl~m, (1.5), h0 (x) = h4(x) = V0 h.(x). 
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At inverse direction of the speed of the flow ( rt < 0) the stability of this plate is viola
ted by flutter a.1 = - 780, Fig. 4. Thus the region of stability of the optimal plate with 
zero damping lies in the region - 780 < a. < 11.8. Note that the region of stability of 
the plate with the thickness h(x) = 1 is defined by the inequality - 123 < a. < 6.33 [17]. 
The obtained results show that variation of the plate thiclaiess essentially act son the dis
tribution of frequencies and, respectively, on the region of aeroelastic stability of the plate. 

2. Discrete systems 

Consider now systems with finite degrees of freedom subjected to aeroelastic instabil
ity phenomena such as flutter and divergence. It is assumed that the system is character
ized by the parameters mi, i = 1, 2, ... , N that may be varied by the designer. As the 
"control" parameters m1 various mass and stiffness characteristics may be considered: 
plate thicknesses, geometrical dimensions of various elements, concentrated masses, etc. 
In this section we deduce the expressions for partial derivatives of critical flutter and di
vergence speeds with respect to parameters m1 in the general case of the systems described 
by linear algebraic equations. 

The governing equation for flutter has the form 
(2.1) [K(m)-co2M(m)+A(co, }If)]~ = 0. 

In this equation K is the stiffness matrix, M is the inertial matrix, A is the complex aero
dynamic matrix, ~ is the complex vector of generalized coordinates, V1 is flutter speed, 
eo is flutter frequency. It is assumed that the matrices K, M, A possess the dimension 
n x n, the vector ~ has the dimension n and the vector m the dimension N. The matrix 
A in general may depend on m. 

Find the derivatives of critical flutter speed with respect to parameters mb j = 1, 2, ... , 
... , N. For convenience the matrix L is introduced: 

(2.2) L = K(m)-w 2M(m)+A(w, llf). 

Take variation dm1 of parameter m1• Then the quantities V1 , eo,~ yield the variations 
dV1 , dw, d~. 

The equation in variations similar to Eq. (1.7) may be written as: 

aL aL aL 
(2.3) am, ~dm1 + a}lf ~dllf+ aw ~dw+Ld~ = 0, 

where the derivatives of matrix L, according to Eq. (2.2), are defined by the relations · 

aL _ aK 2 aM aL aA 
------eo--, -- = --, 
am, am, am, a Yt a Yt 

aL aA 
-=--2wM. aw aw 

(2.4) 

Note that the aerodynamic matrix is generally given in the form A = A(k, 9Jl) where 
k is the reduced frequency and M is the Mach number [13, 14] 

k = we . 9R = V.r . 
llf' a 
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Here c is a linear dimension of the system in the direction of the flow, a is sound 
speed at a given height of flight, V1 and ro are flutter speed and frequency. In this case 
the derivatives are defined by the formulas 

aL aA ok aA aiDl oL = oA ok 
2 

M 
av, = ok av, + aiDI a~ ' oro ok aro ro · 

The final result is 

oL 1 oA roe oA oL c oA 
oV.r = a aiDl - Vj ok ' oro = V.r ok 2roM · 

Multiply Eq. (2.3) by the transposed vector qr where the vector q is determined from 
the equation 

(2.5) LTq = [KT -ro2MT +AT]q = 0. 

As a result, we get the expression 

oL oL oL 
(2.6) qT om, ~6m,+qT OV,r ~6~+qT Q(J) ;6ro = 0 

since according to Eq. (2.5), 

With the use of notations 

( ) H r oL ~: 
2.7 f = q om, .,, 

Eq. (2.6) takes the form 

(2.8) 

c r oL ~: 
= q av, "'' 

Multiplying this equation by the complex conjugate quantities ii and C and taking im
aginary part, we find relations similar to Eqs. (1.13) and (1.14): 

(2.9) 
oV, lm(H,ii) oro lm(H,C) 
om, = - Im( CB) ' om, = - Im(BC) . 

The obtained relations with the use of Eqs. (2.7) and (2.4) are expressed through the 
derivatives of the matrices K, M, A and the vectors ; and q. 

Note that the vectors ; and q are defined up to arbitrary complex multipliers because 
of homogeneity of the problems (2.1) and (2.5). Hence the normalization condition can 
be applied: 

(2.10) 

With the use of this condition the derivatives of flutter speed, according to Eq. (2.8), 
become 

Re(qr~;) oV, ReH, om, 
om, = - Re c = - ( T oL ~:) . 

Re q av, ., 
(2.11) 

In the expressions (2.10) and (2.11) the symbol Re can be replaced by lm. The ex
pression (2.9) is equivalent to Eq. (2.11) with the normalization condition (2.10). 
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Consider now the case of aeroelastic instability such as divergence. The divergence 
equation can be achieved taking in Eq. (2.1) w = 0 and replacing V1 by V11 : 

(2.12) [K(m)+A(V4)]t, = 0. 

Here V4 is divergence speed, ~ is the vector of generalized coorpinates at divergence. 
Consider the adjoint system 

(2.13) 

Similarly to the calculation of the derivatives of flutter speed, we find 

(2.14) 

T oK ~ 
av, q, a,n; 
om, = - T oA 1: 

qc~ av~~ .,~~ 

The obtained formulas (2.9) and (2.14) can be used both for the derivation of necessary 
optimality conditions and for numerical solving of various optimization problems of the 
systems subjected to aeroelastic instability phenomena. 

Note that the formulas for derivatives of flutter characteristics in some special case 
were obtained by V. G. BUN'Kov [2]. The method of calculating derivatives of critical 
flutter speed, frequency and modes of flutter without use of the adjoint eigenvector is 
described in [14]. But we doubt that this method can be effective for solving structural 
optimization problems because calculation of the gradient of flutter speed with respect 
to N structural parameters involves solving of N systems of linear equations of 2n + 2 
order. It should be also noted that iteration formulas suggested in [10, 13] do not sat
isfy necessary optimality conditions even in the case of their convergence. 

3. Conclusion 

In this paper, for continuous and discrete systems the expressions of sensitivity char
acteristics of flutter and divergence speed with respect to distributed and discrete para
meters defining aeroelastic behaviour are first derived. It is shown that the calculation 
of the gradients of critical speeds involves the solution of the so-called adjoint problem 
which is similar to the main problem of flutter or divergence. The variational method of 
sensitivity analysis of critical speeds is the most effective when many finite (or infinite) 
numbers N of defining structural parameters are considered. This is so since only one-fold 
solving of adjoint problems is required for the calculation of gradient vector of critical 
speed. Nevertheless, numerical differentiation of flutter or divergence speed as the function 
of N independent variables requires for gradient calculation not less than N + 1 - fold 
solving of the flutter (divergence) problem. 

As to optimization problems, our opinion is that the most effective methods for sol
ving structural optimization problems which take into account aeroelastic instability phe
nomena both for discrete and continuous systems are the methods of mathematical pro
gramming using implicit expressions of gradients of flutter and divergence speed such as 
Eqs. (1.13), (1.15); (2.9) and (2.14). 
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