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Drag on a sphere oscillating in a dusty gas 

A. INDRASENA and A. M. EL-CONSUL (TRIPOLI) 

IN TilE PRESENT paper rectilinear oscillation of a sphere in an infinite expanse of viscous, in
compressible fluid having uniform distribution of solid spherical particles is studied. The prob
lem is solved by the method of separation of variables and particular attention is focused 
on the drag acting on the sphere due to fluid stresses. An exact formula for the drag is obtained 
in terms of two parameters and graphs have been drawn to study the variation of these pa
rameters. 

Przeanalizowano zagadnienie kuli drgajllcej w nieskonczonej obj~to8ci lepkiego plynu nie8cisli
wego zawierajllcego r6wnomiemie rozloi:one ClllSteczki kuliste. Problem rozwi~o za po
mQCil rozdzielenia zmiennych, zwracajllc szczeg6ln!l uwa~ na sily oporu dzialajllce na kul~. 
a wynikajllce z nap~i.en przenoszonych przez plyn. Scisly wz6r na sil~ oporu zawiera dwa pa
rametry, a przedstawione wykresy pokazujll wplyw zmienno8ci tych parametr6w na wielkosc 
sily. 

llpoaHaJIH3HpoBaHa aaroltm KoJie6mo~erocH mapa B 6ecKoHetmoM o6oeMe B.R3Koil HeoKH
MaeMoil ~OCTH, co~epmaomeit paoHoMepHo pacnpe~enemn.Ie *pHlleCKHe tmC'I'Hllbi. 
llpo6neMa peweHa npH noMo~ p~enemm nepeMemn.IX, o6parna.a oco6eHHoe BHHMaHHe 
Ha CHJibi COIIpOTHBJieHH.R, ~eitCTByro~e Ha map H BbiTClaliO~e H3 HanpiDKCHHit nepeHo
CHMbiX• qepea ~OCT&. Totma.a <l>opMyna AJI.R CHJILI conpoTHBnemm co~ep>KHT ~a napa
MCTpa, a npe~CTaBJieHHble .znmrt>a.MMbi noK83biBIUOT BJIWDIHe nepeMeHHOCTH 3THX napa
MCTpoB Ha BeJIH'IHHY CHJibl. 

Nomenclature 

1. Introduction 

u velocity of fluid particles, 
v velocity of dust particles, 
p pressure, 
~ density, 
v kinematic viscosity, 

F1 body force vector, 
g acceleration due to gravity, 

U0 amplitude of oscillation of the sphere, 
G frequency of oscillation, 
I density ratio of particles to fluid (per unit volume), 
T particle relaxation time. 

THE STUDY of fluids having uniform distribution of solid spherical particles plays an im
portant role in many technical areas such as fluidization, environmental pollution, com
bustion, blood flow through capillaries, pneumatic conveyance of small grain-like parti-
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des, flow in rocket tubes, etc. The basic theory of multi-phase flows is given in a recent 
book by Soo [1]. The development of the subject can be seen in a number of papers [2-12]. 
LIU [3] has solved the Stokes problem. Later, HEALY and YANG [10] have found the 
exact solution of the Rayleigh problem by the Laplace transform technique. MICHAEL 

[11] has investigated some spherical flows by the perturbation method. Recently, INDRA-

SENA and ZARTY [12] have studied the rotary oscillation of a sphere in a dusty gas. 
The present paper deals theoretically with an oscillating system which can be used 

when the fluid is large with uniform distribution of dust particles. In this system a sphere 
which is suspended in an infinite expanse of dusty, incompressible, viscous fluid, executes 
rectilinear oscillations about its mean position. The problem is solved by the method of 
separation of variables. and analytical expressions for the components of fluid velocity 
are obtained. An exact formula for the drag experienced by the sphere due to fluid stresses 
is established in terms of the amptitude, frequency of oscillation and two parameters, 
known as drag parameters. Graphs have been drawn to study the variation of these pa
rameters with frequency of oscillation. It is observed that the presence of dust particles 
increases the magnitude of the drag. The drag experienced by a sphere in clean viscous 
liquid has been obtained as a particular case of the present investigation. 

2. Basic equations 

The equations of motion of unsteady flow of a viscous, incompressible fluid with uni
form distribution of dust particles are given below [2]: 

(2.1) 

(2.2) 

{2.3) 

(2.4) 

V·u = o, 

ou (- V) 1 V 1 - v2- f (- -) ---+ u · u = -- p+-F1 +-v u+- v-u, at e e -r 

[ ov (- V)-] _ _ 
T Tt + V' V = U -V, 

V·v = o. 
It is assumed that 1) the interaction between the phases take place according to the 

Stokes drag law; 2) there is negligible particle interaction; 3) sedimentation is neglected; 
4) there is no radial migration of the particles; 5) the volume occupied by the particulate 
phase is constant and 6) Brownian motion is neglected. 

3. Formulation of the boundary-value problem 

We consider a sphere of radius a oscillating rectilinearly along the vertical diameter 

·fJ = 0 with velocity U0 cos(]t. If Uo is small, i.e. if the spatial amplitude of oscillation is 
Q(] 

small compared with the radius, then the inertial terms in Eqs. (2.2) and (2.3) can be ne
glected. Elimination of v between the resulting linearised equations yields 

{3.1) ( a)au ( a)(I I-) ( a)_ l+f+ Tat Tt = - 1 +Tat eVp+eF1 +-v l+Tat V2u. 
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Choosing a spherical polar coordinate system (r, 0, 4> ), taking e, e1h e• as the base 
vectors of the system and assuming the motion to be symmetric about the vertical dia
meter, the vector u can be written as 

(3.2) u = ur(r, 0, t)er+u8(r, 0, t)e8 • 

Using Eq. (3.2) Eq. (3.1) can be resolved into the following equations: 

(~.3) 

( 1 +/+r~) our = _ _!_( 1 +r~) iJp' +P( 1 +r~)(v2u _ 2ur _ 2cot0uo- 2iJu8 ) 
iJt iJt e iJt or iJt r r2 r2 r2 iJO ' 

(3.4) 

(t+f+ T ;I)~; =- ~ (i+T ;I)(!-~: )+•(i+T ;l)(v>uo- r2~~20 + ;, ;• ). 
In view of Eq. (2.1), the components ur, u8 can be expressed in terms of a function 

1p(r, (), t) as 

(3.5) 

which simplify Eqs. (3.3) and (3.4) respectively to 

(3.6) 

( a ) a ( 1 a'P) 1 ( a ) ( 1 op') ( a) [ 1 a 2 ] 1+/+r- ~ - . --- = -- 1+r- -- +P l+T- -. --(V1 VJ), 
iJt iJt rsmO or e iJt r iJO iJt .rsmO or 

where 

and 

p' = p-grcos 0 + const. 

Eliminating p' from Eq. (3.6) and (3.7), one finds that 

(3.8) (t+j+T ;I) ;I (Vi'P) = •(l+T !Jvt'l')· 
Since the velocity of ftuid at the surface of the sphere must be U0 cos(]t parallel to the 

direction of the oscillation of the sphere, the boundary conditions are 

Ur(a, 0, t) = U0 e1a' · cosO, 

uo(a, 0, t) = -U0 e1a'sin0. 
(3.9) 
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4. Solution of the problem 

The form of the boundary conditions suggests that the function 'P can be assumed 
as 

(4.1) VJ(r, 0, t) = F(r) · etat · sin20. 

In Eqs. (3.2), (3.9), (4.1) and in all subsequent equations only the real parts are to 
be taken whenever physical quantities are represented by complex quantities. 

Equation (3.8) on using Eq. (4.1) simplifies to 

(4.2) DfF(r)-n2D1 F(r) = 0, 

where 

and 

2 ia (1 + f+ Tia) n =-~~-..,.--.:.. 

v (1 + Tia) · 

The boundary conditions (4.1) in terms of function F become 

(4.3) 
Uoa2 

F(a) = --
2
-, F'(a) = -U0 a. 

The general solution ofEq. (4.2) subject to the condition that u, and u9 vanish as r-+ oo, 
is given by 

(4.4) F(r) = : +B(! +n)e-"'. 
Using the boundary conditions (4.3), the constants A and B can be evaluated as 

1 3 3 U0 a 
A= - 2 U0 a - 2 Jll(l+na), 

(4.5) 

Integration of Eqs. (3.6) and (3.7) yields 

(4.6) 
Ap,n2 ce-tf-r 

p' = ---cosO· eiat+ --+const, r2 r2 

where C is an arbitrary constant. 
From Eqs. (3.2), (4.1), (4.4) and (4.5) it follows that 

(4.7) 
. a 3(1 +na) ( )3[ { u,(r,O,t)=Uo-,: 1+ n2a2 1 

(4.8) ( () t) = U0 (~)· 
3

[ 1 . 3(1 +na) f1 Uo r' ' 2 r + . n2a2 \ 
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We can calculate the force which must be applied to the moving sphere to maintain 
its oscillations. This is equal in magnitude to the drag D(t) due to fluid stresses and is 
given by 

(4.9) 

where 

(4.10) 

" 
D(t) = J (T,cos8-Trtsin8),=•2na2sin8-d8, 

0 

( T ) = - Uop (3+3na+n 2a2)cos8 · e1a' , r=• 2a ' 

(Tr6)r=o = 
3 ~:"' (1 +na) · sinO · e1a'. 

Equafon (4.9), on using (4.10) leads to 

D(t) = ~/.l U0 a(9+9na+a 2n2)e'at, 

which on separation of the real part gives 

(4.11) D(t) = M'aU0 (Ksinat-K'cosat), 

where 

(4.12) K =! lnlsint/> +_!_· ~sin2t/> 
2 aex 2 ex ' 

(4.13) K' _ 9 9lnlcost/> lnl 2 

2,~.. 
- 2a2ex + 2aex + l(Xcos "'. 

Where M' = 4
n;

3
e is the mass of fluid displaced by the sphere and 1nl, 4> and ex are 

defined by 

(4.14) 

0' 
ex=-. , 

For convenience, the quantities K and K' introduced in the expression (4.11) may be de
signated as drag parameters. 

5. Discussion 

The two terms appearing in the expression (4.11) for D(t) can be interpreted as follows. 
In the absence of fluid lhe force necessary to move the sphere of mass M is -MU0 asinat. 
Expression (4.11) shows that, in addition, a further force -MU0 aKsinat in phase with 
the acceleration is required, because in the process of moving the sphere, fluid is neces-

s• 
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sarily moved as well. The second term in the expression (4.11) is the force that always 
opposes the movement of the sphere, and is thus a damping force out of phase with the 
acceleration. This force causes the decay of the oscillations of the sphere if left free . . It 
is seen from Eq. (4.14) that for large values of 1:a, the influence of the dust particles 
on the fluid motion is reduced and D, K, K' ultimately approach their corresponding 
values for clean viscous fluid. Figures 1 and 2 represent the variation of K and K' for 

K 

25 

Clean viscous rluid T•O, F•O) 

20 

15 

FIG. 1. 

different frequencies of oscillation. These graphs show the decrease in the values of the 
drag parameters with the increase of frequency. There is an increase in the values of these 
parameters when compared to clean viscous fluid over the entire range of frequency con
sidered. From Eqs. (4.11}-(4.14) it follows that for any given frequency the drag expe
rienced by the sphere due to dusty fluid is more than the drag due to clean viscous 
fluid. This increase in drag is due to the presence of dust particles. If the masses of 
the dust particles are small, their influence on the fluid motion is reduced and ultimate
ly as m -+ 0 the fluid becomes ordinary viscous and the drag parameters simplify to 

1 
K = 2:(9,8+ 1), 

K' = ~ (,8+2), 
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where 

P=V ~,· 
~----------------------~---------------, 

K 

zo 

15 

10 

10 2D 40 

FIG. 2. 

The expression for drag, (4.11) with the above values of K, K' is the same as the re
sult given by LAMB [13]. The solution of the problem of steady motion of a sphere in 
ordinary viscous fluid can be deduced as a particular case of the present investigation. 
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