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Plastic materials with continuous transition between loading
and unloading states

T. TOKUOKA (KYOTO)

PLasTIC materials with continuous transition between loading and unloading states are pro-
posed. Two different rate type constitutive equations in loading and unloading states are unified
into a single equation by introducing a continuous function. The work-hardening is taken
into consideration by the method of the internal state variables, and their evolutional equa-
tions in both states are also unified into a single set of equations. For a small value of the
transition parameter the gradual transition occurs between two states, while for a large value
a rapid transition occurs and it is substantially identical with the sudden transition caused by
the adoption of two sets of equations.

Zaproponowano teori¢ materialow o cigglym przejéciu od stanu obciazania do stanu odcigzania.
Dwa rozne typy rownan konstytutywnych dla stanéw odcigzania i obcigzania sprowadzono do
jednego réwnania drogg wprowadzenia ciaglej funkcji przejécia. Wzmocnienie uwzgledniono
za pomoca metody wewnetrznych zmiennych stanu, a ich réwnania ewolucyjne w obu stanach
zostaly réwniez sprowadzone do pojedynczego ukladu réwnad. Przy malych wartoéciach para-
metru przejécia nastgpuje stopniowe przejécie od jednego stanu do drugiego, podczas gdy przy
duzych wartoéciach parametru przejécie to ma charakter gwaltowny i jest w zasadzie identyczne
z gwaltownym przejéciem wynikajgcym z przyjecia dwoch uktadéw rownan.

IpeqioiKeHa TeOpHA MATEDHAJIOB C HENPEPLIBHBIM MEPEXO[OM OT COCTOSHHSA HArPYXKeHHA
[I0 COCTOAHMsA pasrpy»enns. J[Ba pasHbIX THIIA ONpPEE/IAIONIMX YPABHEHHMIL AJA COCTOAHMI
pasTpyKeHHs H HArPY)KEHHA CBe[ieHbl K OJHOMY YP28BHEHHIO NyTeM BBENCHHA HENpEpPBLIBHOMN
dhyEKME nepexofs. YNpPOYHEHHWE YUTEHO NPH TOMOINM METOAa BHYTPEHHHX IePeMEHHbBIX
COCTOSIHHA, @ HX 3BOIIOIHOHHEIE YPABHEHHA B 060MX COCTOMHHAX TOYKE CBEAEHB] K €XHHMYHOMN
cacreme ypaBHeHui. IIpH MajibIX 3HAYEHHAX NApaMeTpa NEPEXO/id HACTYNAST IOCTENEHHBIN
fepexoyi OT OHONO COCTOSHHSA K JPYTOMY, B TO Bpems KOrja NpH GoJBIIMX SHAYEHMSAX mapa-
MEeTpa 3TOT NEpPEXOJi MMEeT BHESANHLIA XapaKTep W B MPHHIMNEG HACHTHYEH C BHE3AITHBLIM
NepexoioM, CICAYIOLMM H3 NPHHATHA JBYX CHCTCM YPRBHEHHI.

1. Introduction

FOR THE CLASSICAL theory of plasticity, a plastic material is defined by a set of equations
and inequalities, that is, two constitutive equations in loading and unloading states, a yield
condition, and a work-hardening rule. These relations reveal the corresponding individual
phenomena and there are, in general, no intrinsic interrelations between these relations.
For the classical theory of plasticity, refer, for example, to HILL [1] and PAUL [2].

At present there is a trend to reduce the number of these relations in such a way that
two or more phenomena can be expressed by a relation. For example, VALANIS [3] pro-
posed the constitutive equations of integral form by means of intrinsic time measures;
OWwEN [4], WHITE [5] and HOLSAPPLE [6] proposed the functional theories of plasticity,
all of which express plasticity of special kinds of simple materials defined by NoLL [7].
LUBLINER [8] and the author [9] attempted to derive a yield condition by the method of
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the Clausius-Duhem inequality. The author also laid down a statement of hypo-elasticity
as basis and from it he derived yield conditions and flow rules [10, 11].
The hypo-elastic material framed by TRUESDELL [12] has a type of constitutive equation

(1.1) T =#(M D],
where T is the Cauchy stress,
(12) T=T-WI+TW

is the co-rotational time rate of stress, and the stretching tensor D and the spin tensor
W are, respectively, the symmetric and the skew-symmetric parts of the velocity gra-
dient of a material point. Equation (1.1) means a linear and homogeneous relation be-
tween the stress rate T and the deformation rate D and then the hypo-elastic material
is independent of the time scale. The stress rate (1.2) and the stretching assure that
Eq. (1.1) satisfies the principle of objectivity, which denotes the independent property
of the material with the observer.

When the deformation rate is given, the stress rate is uniquely determined by Eq. (1.1).
When the stress rate is given, the deformation rate can be uniquely determined if Eq.
(1.1) has one-to-one correspondence and it cannot be done if Eq. (1.1) is singular. The
author defined that the singularity relation of Eq. (1.1) denotes the yield condition [10, 11].
Thus the yield condition is not a given relation a priori but a reduced one given by the
constitutive equation.

However, a single equation of the type (1.1) cannot express both states of /oading and
unloading, so the author [13, 14] introduced a set of two constitutive equations, the
equation

(1.3) T = 2#(T) [D]+,#(T) [D],
holds in loading state and the other
(14) T = o#(T) D)

does in unloading state, where g and p2¢ were chosen appropriately. Also, the author
introduced two internal state variables, one is scalar and the other is tensor in order to
express the work-hardening. The scalar and tensor internal state variables refer to the
isotropic and the translational work-hardenings, respectively.

In this paper two constitutive equations (1.3) and (1.4) will be unified into a single
equations by the method of transition function proposed by the author [15]. The ob-
tained equation holds in both states and gives the continuous transition between them.
The evolutional equations which govern the internal state variables will also be unified
into a single set of equations.

2. Unification to a single constitutive equation
The stress power
(2.1) w* = tr(T*D)

denotes the work rate per unit volume for the deviatoric stress T*. When w* > 0, the
exterior of a body executes work upon the body, and when w* < 0, the body does work
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upon its exterior. It is then very natural to assume that the loading and the unloading
states are defined by the conditions w* > 0 and w* < 0, respectively.

A set of equations (1.3) and (1.4) can be formally put into a single equation by the
unit step function

1, x=20,
22) U ={0 x <0.
That is, we have
(2.3) T =g#(T) [D]+p#(T) [D]U(W*).

However, we cannot regard this device as a unification to a single equation because the
process is very formal and Eq. (2.3) is identically equal to the set of Egs. (1.3) and
(1.4).

Let us try to replace the unit step function U(x) by a monotonically increasing con-
tinuous function ¥(x) which has the following limit properties:
(2.4) lim V(x) =0, lim V(x)=1.

X —0 X—++ 0

We then have the single constitutive equation

(2.5) T = g#(T) [D]+,#(T) [D] V( :)
where
@.6) Wo = ~K|D|

is a characteristic stress power depending on the material. K (> 0) denotes a material
constant with the dimension of stress, |[D| = {tr(D?)}!/? is the magnitude of stretching,
and x (> 0) is a material constant called the transition parameter which defines the breadth
of the transition region. Function V(x) is called the transition function.

It is clearly seen that Eq. (2.5) is independent of the time scale but it has no linear
relation between the stress rate and the deformation rate. Then, it does not belong to the
hypo-elasticity in the strict sense, but in a large magnitude of stress, Eq. (2.5) reduces to
Egs. (1.3) and (1.4) according to w* > 0 and w* < 0, respectively, and we can apply
the author’s definition of the yield condition to them. Equation (2.5) holds in loading and
unloading states, and it may fit with the yield phenomenon. However, it cannot show
any work-hardening property.

There is a great number of monotonically increasing continuous functions which
have the properties (2.4) but here we adopt tentatively the following function:

1

When the transition region is defined by the region which satisfies 0.1 < ¥(x) < 0.9,
it is given by |x| < 2.2, and when it is done by 0.01 < V(x) < 0.99, it is given by |x| <
< 4.6.
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3. Plastic material with combined work-hardening

The theory of internal state variable is one of the most powerful theories to express
the internal change of state in a material [16]. PERzYNA [17] and LuBLINER [18] applied
it to their plasticity theories. The author also adopted it to his rate type theory of plas-
ticity and he could express well the combined work-hardening [13, 14].

The constitutive equation and the evolutional equations in rate type form are given by

(3.1) T = £(T) [D]+2#(T, o) [D],
& = (T, o) D],
e B =¥(T, (D]
in loading state, and
(3.3) T = 2#(T) D),
&=0,
(3.4) ﬁ -0

in unloading state, where @ and @ are the scalar and the tensor internal state variables,
@ is the co-rotational time rate of @ with the similar expression of Eq. (1.2), and

(3.5) T=T-p

is the translated stress. The internal state variables « and P contribute to the isotropic and
the translational work-hardenings, tespectively.

We can apply the device which was introduced in the precedent section to Egs.
(3.1)-(3.4). Then we have a single constitutive equation

o - ok
(3.6) T = £#(T) D]+, #(T, @) [D]V(-:—o)
and a set of evolutional equations

& = (T, o) [DlV(%),

(3.7) 2
b= 2@, o mw(2),

where

(3.8) w* = tr(T*D)

is the work rate per unit volume for the deviatoric translated stress T*. Here the loading
and the unloading states are defined by w* > 0 and w* < 0, respectively.

The Prandti-Reuss material with combined work-hardening [13, 14] is a special case
of the materials which are defined by Egs. (3.1)-(3.4). It has special forms of g, p,
® and W. Its constitutive equation and evolutional equations in the forms of Egs. (3.6)
and (3.7) are, respectively, given by
3.9) t=12 [ L& ‘*]v(“’*)

. Wo
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(3.10) it . {3
o it TP ——
= o )

where 1 and u are Lamé’s modulus, ¢ is a dimensionless material constant and K(a)
is a material function. We can assume any appropriate expression of K(a) but here, for
simplicity, we adopt

(3.11) K(a) = Ko(1+aa)",

where K, a and n are material constants having positive values.

4. Uniaxial stress extension

In order to estimate the behavior of the material with a continuous transition re-
gion, here we will study the responses of the incompressible Prandtl-Reuss material
defined by Eqgs. (3.9) and (3.10) in the uniaxial stress extension. For numerical calcu-
lation the equations are transformed into non-dimensional forms

2 % %
4.1) S*=D*— —’ia—s*v("’_),

(4.2)

where we put

= i, Y= —%, o* = tr(S*D),

4.3
(4.3) ¥,

M(@) = Mo(1+aa), Mo = 5 s

and we assume

(4.4) Vo

O 3 tade
—;(‘3‘“) Mo]Di.

Then, a material constant K in Eq. (2.6) is equated to (2/3)!/2 Ko/(1+¢)"/2.
In incompressible uniaxial stress extension along the x,-axis, we may assume
S1=S, S;=S3=0, DI=D, D2=D3=——‘D;
(4.5) ;
?J‘—‘?)’, ?z=}’a=“"3—?-
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Then, the spin tensor vanishes identically, and we have

-

4.6) 5 =80, ©vy=-MoDl, §=5-y.

Therefore the constitutive equation (3.9) and the evolutional equations (3.10) are

reduced to
Iy g2 %
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FiG. 1. Stress-strain diagrams for the loading-unloading-reloading uniaxial stress extension, where the
transition parameter takes three values.
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FIG. 2. Stress-strain and internal state variables-strain diagrams for the loading-unloading-reloading
uniaxial stress extension.

where E is the logarithmic strain defined by dE = Ddr,
o* ) 1
Vi—] = =
( Yo 1 +exp(—exS/M,) ’

and ¢ = D[|D| equals 1 for elongation and —1 for compression. The transition regions
mentioned in the last part of Section 2 are given by
M,
_,;":
for 0.1 < V(2*/v,) < 0.9 and 0.01 < V(9*/v,) < 0.99, respectively. Here and hence-
forth, M, = 10~2 and n = 0.5 are assumed.

Figure 1 shows the diagrams of stress-strain curves for a perfectly plastic material,
~ which has no work-hardening. The material starts at § = E = 0 and it is extended (load-

ing) to E = 1072, then compressed (unloading) to S = 0. It is again extended to E =

= 1.5x 1072, The diagrams of stress-strain curves are depicted for the cases x = 5x 1072,
5x 107! and 5. For the case » = 5 the responses are substantially identical with those for
the two-constitutive equation systems which correspond to the case x» = oco. Here and
henceforth a black circle denotes a turning point from extension to compression or vice
versa.

Figure 2 shows the diagrams of stress-strain and internal state variable-strain curves
for plastic materials with a) isotropic, b) translational, and c) combined work-hardening,

(4.9)

(4.10) 15] < 2.2 151 < 4.6%
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where the transition parameter is assumed to be 5. The results are very similar to those
for the two constitutive equation systems which were reported in [19]. The solid bold
curves, the solid fine curves, and the dashed fine curves refer, respectively, to the dia-
grams for the stress, the tensor internal state variable, and the scalar internal state vari-
able, respectively.

Figure 3 shows the diagram of stress-strain curve for repeated loading-unloading
cycles in the limit of strain —5x1072 £ E £ 5x 103,
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FiG. 3. Stress-strain diagram for repeated loading-unloading cycles.
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5. Concluding remarks

1. A single constitutive equation unified by a transition function is in conformity with
both states, that is, the loading and the unloading states. The combined work-hardening
can be expressed by the scalar and the tensor internal state variables and their evolu-
tional equations in both states are also unified by the transition function.

2. When the value of the transition parameter is small, the unified equations reduce
to the equations which hold in the loading state, and when it is large, their stress-strain
relations are substantially equal to those of the set of equations in both states.

3. We can say that there are two main advantages in our unification of plastic con-
stitutive equations. One is the theoretical simplicity and the other is the practical simplic-
ity. The numerical calculations of any elasto-plastic deformation can be considerably
reduced by using our unified equations.

4. The proposed constitutive and evolutional equations can be applied to any large
deformation with large rotation. Refer to [20, 21].

5. The stress-strain curves depend upon the forms of p#(T), p#(T, o), ® (T, @) and
W(T, o). Equation (3.9) corresponds to an isotropic elastoplastic material with the mod-
ified von Mises type yield condition. The constitutive equation which corresponds to
the material with the Tresca type yield condition was also proposed by the author [13, 14].
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