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Constitutive scheme of discrete memory form
for granular materials (*)

P. PEGON asrrA), P. GUELIN, D. FAVIER, B. WACK (GRENOBLE),
and W. K. NOWACKI (WARSZAWA)

THE PURE HYSTERESIS model, which is at the origin of a class of well-founded thermomechanical sche-

mes of discrete memory form is briefly recalled and then expanded to include the isotropic-deviatoric

coupling effects. Thus the model takes into account the essential features of the elastic-plastic and

g'ressure—dependent behaviour of cohesive or cohesionless continua subjected to arbitrary cyclic loa-
ings.

Przedstawiono pokrétce model idealnej histerezy, ktéry jest podstawa calej klasy dobrze postawio-
nych termomechanicznych schematow o postaci pamigci dyskretnej. Przedstawiono nastgpnie jego
rozszerzenie, uwzgledniajac efekty sprzgzenia izotropowo-dewiatorowego. Model ten uwzglednia za-

chowanie sig sprezysto-plastyczne oraz zalezne od ciSnienia materialéw sypkich poddanych dowolnym
obcigzeniom cyklicznym.

Bkparue npeacrasnena Moaenb WealibHOMO CUCTEPE3UCA, KOTOPaA ABJAETCA OCHOBOM
LeJIOro KJIacCa XOPOLIO MOCTAaBJIEHHLIX TEPMOMEXAHUUECKUX CXEM C BUAOM AYyCKDETHOMN
namMsaTU. 3aTEM NpPeJCTABIEHO €€ pacliMpPeHHe, YUUTHIBaA d3PPEKTHl M30TPONHO-AEBUA-
TOPHOTLO CONPAXKEHUA., DTa MOJENb YUUTHIBAET YNPYro-nJacTHUECKOE NMOBENEHUE U 3a-
BUCHILIME OT JaBJIEHMA NOBEJEHUE ChHIIYUMX MATEPUAJIOB, NOABEPTHY THIX NPOU3BOJbHBIM
UMKIUUECKUM Harpy3kaM.

Notations

(0,eq) orthonormal fixed reference frame (o = 1,2,3),
t  absolute time,
2] . ; G ;
o1 or partial derivation with respect to ¢,
M material point,
z'(i = 1,2,3)  curvi-linear material coordinates dragged with the body,
p(M,t)  current position of M(p = z%(z', t)es),
. . ‘ 9z%
gi(M,t) current reference frame associated with the z* (g, = %ea),
xr
9ij(M,t)  current covariant components of the metric tensor g,
\/g(M,t) current density of volume per unit of material volume with g = det|g,,|,
: _ 19g;;
D(M,t) current strain rate tensor (D.J =35 )
19
Ip trace of D =D'i=_ﬁ
Vg ot
tr inversion time associated with the origin of a branch of cycle,
m9(M,t)  current Cauchy strain dragged along from tg to ¢t,
. . 1
A}{e(M,t) current (Almansi) strain | = 5(9 - R‘g) y
o(M,t) current Cauchy stress (relative of weight 1),
R‘U(M,t) current Cauchy stress dragged along from tp to t,

(*)Paper presented at VIIth French-Polish Symposium “Recent trends in mechanics of elasto-plastic mate-
rials”, Radziejowice, 2-7 VII, 1990.
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Ago(M,t)  current variation of stress from tp to t(Afo = 0 — fo),
S, £S,ALS  current absolute tensors associated with o, o, A do(0 = S\/7),
S deviatoric part of the current Cauchy stress S,

Is, 5, Mg current invariants S', %?‘,@}, %?‘jgi xSk,

[95)

I,
p  Ccurrent pressure (p = 3.),

36110,

Qs,¢s current values of Zﬁs and of the phase such as cos3p, = .

Q3

QRr,®r current values of Q and ¢ for the tensor /S,
Qa,vpa  current values of Q and ¢ for the tensor A LS,
M1  AcD in the one-dimensional case, o
M,N  current mixed invariants A £S*;D7; and ALS*; C25% a1
e(M,t)  current specific mass (g,/7 = cste),
Pints Pint, Pine~ current power of internal forces (Pine = FPini /7 = 2Pin/9)s
£,E,e current internal energy,
Qii,Q:i,9ii  current internal intrinsic heat supply,
IT, Prev, prev  current reversible power,
&,8,p current intrinsic dissipation (¢ = —Pin, — I7),
Ap,up  Lamé parameters (absolute scalars),
Sy, Qo von Mises parameters (limit shear stress Sy and radius Qg = V25, of the von Mises
cylinder),
7,k rank j of an arc in the branch of rank k,
6,1  Kronecker symbol, unit tensor (g *, =g, "= 1),
def  definition,
w(M,t) Massing functional (w = 1 or 2).

1. Introductory remarks

THE MAIN EXPERIMENTAL results concerning the behaviour of sand-like materials may be
summarized as follows:

i) the yielding is dependent upon the confining stress,

il) careful measurements show that a burst of heat flux is associated with yielding [1],

ili) under deviatoric stress states, the volume most often expands after an initial small
compaction,

iv) under deviatoric cyclic loading, each inversion of the loading gives rises to a com-
paction even if the associated confining stress decreases,

v) under hydrostatic compression, the behaviour exibits hysteresis and is “nonlinear”,

vi) the yielding is not of von Mises type but rather of “generalized Columb”-type, and
may be anisotropic.

The main purpose of this paper is to define a constitutive scheme taking into conside-
ration the first four results (points i to iv). The study is therefore basically devoted to the
problem of the isotropic-deviatoric coupling effects: the hysteresis exibited under purely
hydrostatic loading is neglected as well as the Coulomb yield effect and the anisotropic
effect (1).

A simple hint regarding the form of the proposed scheme may be introduced as follows.
The scheme is defined firstly through an isotropic part:

(1.1) I, = 3\ + 2u)Ip + oM,
(1) It is worth to notice that the hydrostatic hysteresis may be taken into account on the basis of the proposed

method and that the Coulomb effects has been already studied in the case of non-rotational kinematics [2].
Moreover, the extension of the theory to the anisotropic case is from now on outlined.
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including a scalar functional A7, similar to M, and secondly with the aid of a deviatoric
part:

(1.2) Si = 2uDi; + FPALS; in (0,ex)()

which is of pure hysteresis type and has been defined previously (see for example Sub-
sect. 1.3 of [5] or [2, 3]).

In these differential-difference equations A and p are scalar functions of the pressure
p; « is a scalar functional deviatoric stress invariant; "fﬁp is an extension of the functional
invariants M to the case of pressure-dependent processes; 3 is a scalar functional of
(¢a — vr); @ is the scalar functional:

(1.3) adérﬂégpijﬁj,"F’)’gbA-l'F}')

linear with respect to the rates p, pa.

In relation (1.3), A,‘Sp is an expansion of the variation A}%S; it gives the definition of

the functional invariant:
M, = ALZ, Dy
which plays a central role in the definition of the whole pattern.

Such a very short hint may be sufficient if the origin and the general features of the
three-dimensional scheme of pure hysteresis is already well known on the basis of extensive
analysis ([2, 3, 4]) or through various short papers ([5] to [10]). However, when dealing
with the question of the isotropic-deviatoric coupling effects, it is worth to ensure that
the paper is widely self-contained regarding the tensorial formalism. Consequently, the
simplest three-dimensional deviatoric tensorial scheme is recalled (Sect. 2). The main part
of the paper is devoted to the extension of the scheme (Sect. 3). In order to obtain the
first set of illustrations, integrations are performed using kinematical conditions similar to
those of the usual modern experiments (Sect. 4). A second set of illustrations is introduced
regarding the properties of the proposed scheme under small, medium and large cyclic
loading (Sect. 5).

2. The simplest tensorial deviatoric scheme of pure hysteresis

2.1. Introduction based on a one-dimensional symbolic model

As already underlined ([2] to [8, 13] and [14]), the main feature of the behaviour
of pure hysteresis are its stationary properties during periodic cyclic loading. The term
stationary is of straightforward meaning in the one-dimensional case briefly recalled below,
and it is not essential to give here a more general definition. Therefore, the only readily
suggested patterns are those provided by the symbolic models consisting of an infinite
number of springs and friction sliders, for example ordered in an infinite parallel succession
of spring and slider couples associated in series (Fig. 1) (3).

Let g(e) be the function of the deformation e defined on Fig. 2. It is well known that
g"(e)de is the rigidity coefficient for the pairs having their limit values between e and

(2) The simple choice of (0), e, ) as frame of definition is obviously provisional as stressed below (cf. Sect. 6).

(3) It is worth to notice that this symbolic model and the associated pure hysteresis notion is not groundless
at the physically relevant scale (cf. Appendix).
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(e + de), and

T Ose <e,<...<¢,

FiG. 1. One-dimensional symbolic model.

8 (if é=1)

FiG. 2. Behaviour of the symbolic model.

oQ £

c=o1+0, o1= fsg"(e)de, oy = feg”(e)de
€ 0

along the first loading path. In these relations o is associated with pairs whose limit value
is not reached and o, to pairs whose limit value is reached. Then one has along the first

loading branch

(2.1)

o = Goe — f (e — e)g"(e) de = Gye — g(e) = S(e),
0

Gy

<=

[e o]
= f g"(e)de = g’'(c0), g¢'=-0"2>0.
0

It is interesting to add some elementary calculation [9] regarding the power associated
with the pairs whose limit value is not reached (this gives the rate of internal energy)
and the power associated with the other pairs (this gives the rate of heat flow due to the
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friction sliders). Consequently, one starts from

P =01D+ 02D, E£=0D, -Qi=0cD
and, after integration and substitution of g, one obtains
(2.2) E(e) =¢ed(e), —Qii(e) = a(e)é —ea(o).

The discrete memory notion is introduced when one considers the path O —A— B - C —
F — G (Fig. 2): the A — B — I cycle is forgotten along the F' — G path which is identical
to what it would have been if the loading had been monotone.

Along the path A — B one has [10]:

Age/2
Aje = f Aleg”(e)de + f 2eg"(e) de

Ale/2 0
Afge] _ Aje
“Z[G" 9(2)]‘25(2)‘

Then introducing the similarity functional w, one has for any branch the following expan-
sion of Egs. (2.1):

1
(2.3) A,{o=u5’(AR€), w=1or2.
w
To this straightforward calculation may be added the associated extension of Eqs. (2.2) to

the cyclic case [11],

wE(Af) = (w - 1o + R‘J)EA,{.s + A,{sﬁAR’U,
—wO t Y= At At At Y At

wQii(Afe) Ao, 85 = Ajie 5, Afo
Obviously, the previous definitions of £ and @;; satisfy the energy balance. In Egs. (2.3)
and (2.4), the process of dragging along the branch is implicitly introduced through

a,
Sle=0 (Afe=c—fe),
(2.5) g‘ g

ot
Now at least two remarks of both theoretical and practical importance must be outlined.
The first one states that if the S function is selected following the elastic-perfectly plastic
pattern with the aid of the hyperbolic tangent, Egs. (2.3) and (2.5) yield
d Jdo (ARO')Z] de

| S
(26) EARG' = 5{ (WSU)Z

e =0 (Ado=0- fo).

=Gu[

if S(u) is defined by Sulh(GSi’u) Then
0

do _ =G ¢ — AR -
a—t—G()D"‘((wT_,“)z)q)ARU, QD—ARUD—'A/Il
or
(2.7) 09 o GoD + BBALe, @=AteD=Ml.

ot
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The second remark is that the functional @, distinguished in the differential-difference
equation (2.6), is the intrinsic dissipation (¢ > 0) resulting firstly from the analysis of the
quasi-reversibility at the right of the vicinity of the inversion point A (Fig. 2):

I=joD, t=1a4

and, secondly, from the conceptual departure from the classical thermostatics obtained by
keeping the same form along the finite branch [11]:

= /oD, t€)tatp].

The two main practical consequences are first, that the inversion criterion is

(2.8) if Wy =@st <OVEE,t+ 8=t =t;, oft)=o0;
and secondly that the “help function™:
(2.9) W = QZA , dWa=0dt, Wu(tr+)=0

allows to define an algorithm A giving w, fo and the set of still memorized variables
{3W} and {4jo}.

Consequently the pure hysteresis scheme is given by the combination of five conditions
(2.10):

1) Discrete memory existence (similar to Egs. (2.5))

6 | e a b —
I a o EZRO‘ o 0.
2) Constitutive differential-difference equations regarding mechanical and thermomecha-
nical properties and similar to (2.6) and (2.4),
do _ . 0Af
E_f(dﬁel_az‘—,‘—\ﬂavw ]

(2.10),

(2.10); [ i

1 1 Pim t
=|? & “& [@} ¢=ap2os
c ot

w w

where C is the basic calorific rate of pure hysteresis.
3) Inversion criterion (2.8), which is identical with the second law of thermodynamics.
4) Algorithm expressing the minimum increase of the intrinsic dissipation rate 0®/dt:

$(A+) = min{ already memorized at A}
and practically defined by using W. This algorithm has the following form:

§W <0 > Ay
(W(t)—W,) <0 > Am
(2.10)3 A= 9 9
W >0= ’ W(t)— W, <0= A,
(W) -W,)> 0=
5 0= Ac()
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with
inversion (W =2, k=k+1, j=1,
-Ai:>
n=n+1, go=oc,(=0c(t)), }W = W,(= W(t)),

Am% 1 (symbolic) along arch j of branch k,
crossing : :
Ac:>w=2:k=k»]=.7+lrn=n_27RU G-T‘HRW Wﬂ’

back
Ag———=2 =1, k=k, j=j+1,n=1 fo=0,=0, }W=W, =00

first loading

)

and
{A}VV}H ={W,..., VV,,} = {OO, W(to), .. -}n
withk =0and n =3 = 1if ¢ €]0,1],
{sio}n = {o1, ..., a0} = {0,0(t0), ..., fo}n .
5) Existence of a non-restrictive neutral initial state defined by

W) =00, W(04+)=0, wO)=1, A)oec=Aye=0(0)=
It is restored by the fundamental cyclic path, independently of the previous paths.

2.2. Toward the tensorial constitutive pattern

Due to Eqgs. (2.5) and (2.6), it is interesting to take as a starting point

(2.11) gt Si=0
and

% = a(,é + LL]D + (IzL\RgJ 5
(2.12)

ap=Xlp, a1 =2, a=pM, pi= (w—S_ﬁ)z'
respectively. The associated second invariant form is then obtained from Eq. (2.11) and
from

by contraction with A£S’ ;. This ylelds

e —p — Mz | —
= [2p + Ba2ll55]M = |2u + = - —As | M
(21 + Ba2ll55IM [2;; o5 )2211 ] M =2y [1 (wS())z]
which is indeed similar to Eq. (2.6). From Egs. (2.9), and using the condition & = M
(following Egs. (2.7)), it is possible to perform the integration along the first loading path
(w = 1). One obtains

v -5z 2
(213) Q@ =@Q3 [l —exp (—ﬂf)] , W=-—LIn [ —Q—;] . Qo= V2S.
S H Qs
Consequently, the possible evaluations in a deviatoric plane are, as required, bounded by
von Mises circle of radius @). However, caution is obviously needed regarding the first
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unloading branch, since the algorithmic coincidence of the help function level may occur
for stress points located beyond the von Mises circle (Fig. 3).

Fic. 3. R? example in a deviatoric plane.— — — — — — Mises yield locus,
————— equivalent level of the help function W,
— — — — possible unloading to return on the W first loading level.

Consequently, the yield value S) must be replaced by a functional Z, taking into
account a notation of orientation (Fig. 3) according to the form

- _ —H
Zy = Spcos(m — ), = pas—¢r, ﬁ4—m.
(2.14) ) M di 8
= 5 3 ! S ; s = = J s
i f w2 w!'(So, pas — ¢R)? W (Sos ¢as = PR) 2

tR
so that the definition of Z, is based on the consideration of asymptotic states M, and M;
(Fig 4b) such that MM, =22y = wZy = wQo(a).

The role of asymptotic states such like M} and M is usually of importance in thermo-
statics. Therefore one notices not only that the introduction of an orientation parameter
« expressed the trivial discrimination between the one and two-dimensional situations,
but also that the role of M and M, suggests coming back on this conceptual hinge with
the help of the notion of reversible and entirely irreversible paths. The fact is that, in the
two-dimensional case, there exist not only infinitesimal quasi-reversible paths to the right
of an inversion point, but also the possibility of finite paths quasi-reversible in the sense
of

¢ =0 with & = M + ( “orientation”-dependent rate : ODR)

where the ODR remains to be defined. )

Therefore it is necessary to come back to the definition (2.12) in order to obtain Iz
under the new form

Tlis = Qu + 2)®, & =M +ODR

making use of Eqgs. (2.14) to define 3, and discriminating radial paths along which & = M
or Tl are maximum from neuiral paths along which & is zero, so that any path may be
split up into a set of infinitesimal paths alternately radial and neutral.

But,on the other hand, we notice from Eqs. (2.13) that during the first loading the
neutral paths are the circles centered at the origin: then, the radial-neutral discrimination
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F1G. 4. Location of the locus during the first loading (a) and after 3 reversals of the loading (b, ¢, d).
The shaded zones are not accessible without coincidence of the W levels.

appears compatible with the yield surface notion (Fig. 4a) providing that one makes use
of a simple assumption consisting of the similarity of the neutral paths with respect to the
vield locus.

Consequently, the onset of the first unloading gives rise to a discontinuous process
obtained through the sliding of the neutral locus and giving, to the right of the inversion,
a family of loci without intersections (Fig. 4a, b, c, d).

Therefore, as II has been previously supposed to be constant along the finite branch
of a cycle, the assumption is then made that the family of neutral paths at tp is fixed on
the whole of the unloading path. The crucial invariance is no more that of II or jo but
that of do only: II and Jo are no more “identical” (D = +1) as in the one-dimensional
case. The same situation arises with respect to @ and M: @ is no more identical to M as
in the one-dimensional case (Eq. (2.7)). However, the discrete memory process remains
founded on information sets regarding only the previous reference state: the basic form of
the pure hysteresis algorithm (2.10); can be easily enlarged to the tensorial case following
the sketch of Fig. 4 (point iii, Sect. 2.3 below).

23. The tensorial pattern

i) Owing to the notions introduced above (Subsects. 2.1 and 2.2), the following as-
sumptions are introduced:
1) non-rotational homogeneous kinematics with fixed principal directions;
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2) uncoupled isotropic and deviatoric properties;

3) linearity with respect to D;

4) quasi-reversibility to the right of an inversion point;

5) similarity of the radial paths with respects to the first loading path;
6) similarity of the neutral paths with respect to the yield locus;

7) splitting up of any path into infinitesimal radial-neutral series of

radial paths such as 94 =0 and @ =M,
neutral paths such as 4 #0 and® =0.
Owing to Egs. (2.12), the condition 3 above may be satisfied with
ap=Polp + M + BsN, a1 =p, az=pIp+pBM+ 5N,
But the condition 2 is strongly restrictive on 3, 33 and fs. One considers
ap=Polp, Bo=X, FH=pF=0,
ay = 2y,
a =M+ BN, p2=0.
Therefore, the second and third invariant forms associated with (2.12)
ﬁﬁ =M + azN H—IE =g N+ az3mA—S
become the following basic forms:
Tz = @u + 28T ) M + 266TI N
IIIE = 30015z M + (2p + 36611I55)N
Moreover, it is worth to notice the formula

(2.15)

M N oy Ty
(2.16) ‘11( = ) = A5 _ =1tg3paspas,

Mz Mgy 2 3111—

which holds even when condition 2 is not required (Sect. 3 below).

It is now possible to define the scheme with the help of the studies of radial and
neutral paths submitted to the similarity rules 5 and 6.

ii) Regarding the radial paths, one gives only short hint and the results. The hint is
implied in Eqgs. (2.13): it is not only convenient but also relevant to study the stress-energy
functional instead of the stress-strain functional [2]. With the aid of Egs. (2.14) and (2.15),
one obtains

—2[1() _ _ . |
O e o AN o s

This result gives the required three-dimensional enlargement of Eq. (2.6). Moreover, it is
possible to make the same analysis on a generalized form of Eq. (2.6):

do (Afo)? ) Je
5 Gu( ~ oA ) B c>0.

The result is then
2p9

[wQuw' (w, )] Q%

fu=~
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Regarding the neutral paths, it is worth to provide a rather self-contained introduction.
The starting point is to express the fourth assumption of point i) by:
(2.18) %A;zs’j =2uD';, Tigz=2uM.

Along a general path, it is then possible to consider the deviatoric scheme under a modified
form

(2.19)

on condition that
Bi® = BaM + BsN .
This is possible thanks to Eq. (2.16) which gives firstly

- — 2 M N
¢=M+74t3'u £ .
£3¢as ZII-A_S 31”3

and secondly

2u
Mz

cotg3pa,74

as

2
Ba = B, (1 + ZIIu C0183‘P4\s74) , Pe =05

as the result of the identification.
The factor y4 remains to be defined using the equation

st == tg(cpAs - <PpR)QAs¢As
of the neutral locus. This equation may be written in the form

gz = —Allggpas . A= 2tg(pas — er)
so that, from the definition (2.18), one obtains

| R | e
0=M--AS =M + A-B5p,,
2 2u
and
(2.20) — AIIE _ IIA—Slg(tpA, — ¥oR) .
2p 7

iii) The generalization of the pure hysteresis algorithm is immediately obtained by
introducing the set of phase ¢,r of the ¢ set of points (Fig. 4):

{‘PER}H = {0,¢), - - }n,

which is ordered by following the increasing values of the parameter evolution. The po-
ssibility of coincidence of the help function levels without closing a cycle is taken into
account with a modification of A, according to
_ 9 losi
S(t) =Bp-1  yes ——— A, = AZ,
of a cycle
A
coincidence

Ao = A,
of W level
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) w=2, k=k, a=a+l, n=n-i,
A=, .
RS = Sn ) R‘/V = LVn ) PeR = ¥$n -
The generalization of the intrinsic internal heat flux analysis is founded on the quasi-linea-
rity (2.16) from which one obtains the basic form.

¢ = QD QA.! =M
along the radial paths. Therefore one considers the basic calorific rate [2]:

t
—Ra :

(2.21) ¢ =Qa [ Qodr

tR
to extend Eq. (2.10); along these paths. This form is also used when the path is not radial,
making use of the splitting (QN¢ dt, pa, dt), (QB dt,0) where Q¢ is deduced from the
neutral paths definition

‘ QN: = csteww (W, pas — Por) -

One obtains

E=(u')2[jQ—f)§d’erQ—?dT],
(2.22) o

4 P
2Ra — o w Ra —
o —Qm———w Qas, Qp°= Oa:

Several illustrations are introduced in [2] (an example is also recalled in [14]).

3. The scheme of pure hysteresis with coupling effects

3.1. The two-fold coupling effects

The effects of the deviatoric properties—dev(iso) coupling effect—is taken into ac-
count with the above recalled pure hysteresis scheme implemented with a conical yield
surface of circuit cross-section and using a method of projection similar to that previously
introduced in the variable temperature case in order to describe the shape memory effects
[3, 5] and [7].

The effect of the deviatoric stress invariant (2, on the volume variations (iso—(dev)
coupling effects) is described by following the pattern (1.1).

3.2. From the definition of Q;,,(p) to the definitions of »(p) and \(p)

Experiments show that it is relevent to choose the ratio ;1/Q)y in a pressure-indepen-
dent way ([12] § D, Fig. V.3 to V.6 page 91). Consequently, the simplest reversible rate,
of (3A + 2u)ip type, leads us to consider

3.1) %o pp) = (1 - pﬂ") = (o)

owing to the condition of conical yield surfaces

(32) Qun(2.2) = Qo (1 - 2) = Qunlp).

Po
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To remain simple it is necessary to consider also

(3.3) a9 = M@, p) = Ao (1 - ;’%) =Ap).
Consequently, under purely hydrostatic loading, the scheme is

I',»_\, = (1 — pﬂu) (3/\() + 2}1“)113 = (3(\!() + al)]D .

For an isotropic relative deformation (1 + K') of the initial unit cubic element
Vit)=vg=J>, Inyg=3InJ withJ=1+K

and
e p 14
3[7 (l p{)) [3)\() + Zun)V
so that .
1=V (1 ~ 3) e
bo
for p versus V or p versus In /g diagrams, respectively.

In fact, experiments are suggesting rather some (AV/V)" type of scheme (n ~ 3/2)
and, moreover, hysteresis effects are obvious (see footnote(!)). However, the challenge of
this paper does not imply to define a sophisticated, purely hydrostatic scheme.

The aim of the analysis is indeed to obtain first, a variable dilatation under rectilinear
first loading paths of various given @,/I, ratios and, secondly, to obtain the compaction
effect directly to the right of an inversion point.

The first requirement is obtained with a remarkable straightforward approach, as
shown by one of the authors. The role of ¢, and consequently of M, being indeed of
an outstanding importance, it is necessary to extend the definition of M by introducing
a pressure-dependent mixed invariant M,. But it appears that A7, is linked with Qa, so
that a linear form with respect to M, is also linked with Q a,, as required to define a link
between Ip and Q 4,. Therefore one considers a provisional scheme

(3.4) ) L_u = (30() + al)ID + Sagﬁp s

or 0=Inyg+ Kyln (1~£)

po

where a relevant definition of o may be suggested by experimental results.
The second requirement is achieved in an extended form

(35) jA, =ailp + 3712(0(;11) + (Yéﬁp + (Yg’AfRS'jEji)

of the previous provisional scheme, where the introduction of ALS ;D’; is interesting
due to its always non negative value. However, the definition is not as straightforward as
that of the provisional scheme and is introduced at the very end of the analysis (Sect. 3.6).

3.3. Definition of the functionals 45, ALS , M, and &

Regarding M, the first step of the approach is to extend the neutral path notion to
the conical case under consideration (Fig. 5) and to use once more the splitting principle
with three (and no longer two) types of infinitesimal paths: radial (¢ and p constant),
neutral with p constant, neutral with ¢ constant (Fig. 5).
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FIG. 5. Three-dimensional splitting up of a path and definition of Q A, (of conical type).

The second step consists in extending the discrete memory condition to the pressure-
dependent case and in defining the associated compatible notions regarding the algorithm.
Owing to the conical assumption, one considers (Fig. 5)

def POo—P 45
3.6 S pl + S,
) ( ) i Po— PR R’
and the associated role of a modified W functional
(3.7) w, & _ W

The third point of the analysis leads to the M, definition. It is obtained by maintaining
E =i
(’)t
to define neutral paths and using this form to express II = by two different methods in
order to link @4, and M, along a neutral path of constant phase.

On the one hand, if
g p
= 1]—=— ;
Qs = Qo ( pu)

(3-8) i = Z;LD

one obtains

N —an

= m-n
and for @, one has also (Fig. 5)

G ——
QAdep = HAp = "'p(pT_P_p)l ZAp = Alt?SijIt?S::i'
On the other hand, the definition (3.6) of ;S gives
ALS, =B-48 =5 D _Eig
5y o Po— PR

so that
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Using Eq. (3.8) one has

0 —— —i p —i
—(AES ) =2uD; + LS
g Aie%)i = 2Dt RS
and, contracting with (A4S, )i, one obtains
f_Id, = 2ulM, + N
P R ——

with the required definitions

M,=(A15,YD;, F,=45;(8}S,:.
Consequently,
— 2, + K,
0=A3’-J_\+L"‘—QAP_ \pﬁv
2p pp—p
and there remains only to introduce the fundamental form

& =M, +y4pa, + I'sp
and the previous scheme
S =2uD + 4P AS
to obtain
_Q4,+K,
2u(po — p)
by identification along the neutral paths under consideration.

3.4. Definition of the scalar functional o3 giving the basic term agﬁp

The factor o} remains to be defined. Let Ip ji, denote the limit of the value of Ip
associated with the plastic yield limit of the first loading where 1,, tends toward zero.
One obtains

I = —3G‘§limﬁr lim _ —3a§1immp lim
D lim — 30“ ¥ o = — N p
(3)\“ + 2”1)) (1 — -—)
Po
and
M piim = Qiim|| Diml| = (1 - p%) Qol| Diiml|
so that

Ipim _  3Qu ol

1 Diml| ~ 30 + 29 '™
Then the definition results in the use of a previously proposed form, exp(—v@), of the
ratio Ip jim/|| Diiml||: Such a form has been recognized as qualitatively compatible with the
experimental results ([12]). Consequently, introducing the two parameters vy and Ej, one

Considers
3 + 21 Q i
/ " 0 Ho El) ( 1 m)

3Qu _‘m_é;



18 4 P. PEGON, P. GUELIN, D. FAVIER, B. WACK AND W. K. NOWACKI

and o} is simply defined as
(3.9) a3 = —a3imQ@ra,
where the “reduced deviatoric” invariant Qr, is

= Qap = Qap
QRA UJQ[) (1 p) ‘“‘Qiim(P) -

Po
Thus, the description of the first loading (w = 1) is given by the provisional scheme

33X + 2
0

Ias = (a1 + 3a)Ip + Eyexp (—709(—2“‘7“1) QraM, .

3.5. The cyclic case and the final form of the isotropic part of the scheme

The cyclic case (w = 2) must still be dealt with. It is convenient to divide the analysis
into the following three parts.

i) First, it is clear that the use of the provisional scheme (3.4) in the cyclic case is
doubtful owing to the fact that M, is zero at the onset of each cycle branch, so that
the rate (3X + 2u) Ip is the only one able to balance the hydrostatic stress rate. In spite
of this disturbing situation, it is easy to obtain, in the case of large cycles, the required
compaction-extension effect already obtained above. This may be achived only with the
help of a new simple definition of o

al, = —ajum_[QM — Bl — D1 — Qrall

instead of Eq. (3.9). In this definition, a new physical parameter f; is introduced.

ii) The second part of the analysis is devoted to the definition of a better balance of
the hydrostatic rate introducing a non-vanishing term of constant sign at the onset of the
branch. A simple choice is that of the power § D and, consequently, one adds a o trS D
term in the scheme, with

(3.10) of = =g — 1)(1 - Qra).-

The resulting scheme is relevant for the case of large cycles: (3 allows us to obtain the
dilatation and 3} gives the required compaction effect at the onset of an extension (Fig. 7).
But the use of S D term gives rise to an irrelevant behaviour in the case of small cycles,
since a change of sign of tr S - D is possible.

iii) An alternative choice consists in the use of the invariant AS D which is of constant
sign but is unfortunately zero at the onset of a branch so that it must be divided by another
vanishing form. Consequently one considers

ol = leim
s Q/_\: '

a¥ given by Eq. (3.10).
The only inconvenience of the new o tr AS D term is that it requires a special alter-
native form: at the onset of the branch (tr AS D)/Qra must be replaced by (trS D)/Q;.
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Finally, it is necessary to define the +; coefficient of Eq. (3.5),
72 =1+ (w - Dmexp(—=12Qra)-
Consequently, in the case w = 2, the scheme suggested by Eq. (3.5) is

30 + 20 (—TUQnm)
20T Sy [ Z 0 lim
600 o EXp Qu

((QRA - B3(1 = Qra))M, + B4(1 - QRJ) th trAb D) }

Ias = oqlp +3(1 = 71 exp(—72Qra)) {O’UID +

where the physical parameters are not only pg, Ao, Qu, po, o and EU but also 71, ¥2, 3
and p4. Like 33 and 3, the interesting values of parameters 4, and v, are of the order of
a few units.

The cases w = 1 and w = 2 are included in the form

. 3 +2 - ~
Ias = o lp + 3(1 + 7|(w — ])exp(—-,zQRA)) {a(;l[) + —U—“"El,exp (M)
3wQ Qo

((Qn_\ = oo = 1)(1 = Qra)) ¥y + 4l = (1 = Q) S ASD) }

where the basic notation may be summed up by

Qiim = Qo (1— ﬂ) y Qra= Dty 3 ap = S, lz?spj"’

Po WQlim

Qh, = DL AL ¢, o =2u=2m (1 - %) L ap=A=X (1 —~ pﬂu) .

The deviatoric part of the scheme is given by Eqgs. (2.17), (2.19) and (2.20).
4. Usual axisymmetrical first loading and large cyclic loading

4.1. Axisymmetrical (o) = o3) first loading

After the hydrostatic loading from 0 to py, ten integrations are performed along recti-
linear stress paths; the tilting angle ¥(tgy = @:/(p — p1)) of these rectilinear paths with
respect to the hydrostatic axis are such as:

¥ = 30°, 50°, 60°,

then o; = cst, I, = cst, o3 = cst in compression,

finally oy = cst, I, = cst, ¢ = 70°, o3 = cst in extension.
This scheme appears to be relevant, at least qualitatively, owing to the result obtained
(Fig. 6), with the following parameters values:

Ho = 12.29MP8, /\() = 3;“), Qn = 0.35MPa, Po = 0. 55MP3 Yo = 0.1, E() = (0.58.

The values of the last two parameters are comparable with those of [12]. One can notice
the following points:

the dilatation is not bounded, but may be easily limited if required,
the weak dilatant tendency of path number 10 is due to a path close to the yield
surface: the path is indeed tilted 50.77° and the yield surface is tilded at 47.8°.
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FIG. 6. Axial stress S; versus axial deformation InJy (J3 = 1 + k3)
and relative volume variation In | /g versus In J3 (at right) for various rectilinear first loading paths
starting from 3 hydrostatic pressures (p; = —0.2 MPa, - 0.4 MPa and - 0.8 MPa).
Paths 1 to 6 are in compression (1 to 3 titled at 30, 50, and 60°; 4 biaxial; 5 deviatoric; 6 constant axial stress).
Paths 7 to 10 are in extension (7 titled at 70°; 8 deviatoric; 9 biaxial; 10 constant axial stress).

4.2. Large cyclic loading

The usual cyclic biaxial test is performed under controlled strain, both with the first
deviatoric loading in the direction of compression and tension (Figs. 7a and b). Using the
same values of the physical parameters, a cyclic path in the deviatoric plane (¥ = 7/2) is
also performed (Fig. 7c).
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FiG. 7. Cyclic biaxial test (starting with compression or extension) and constant pressure test: 33 = 10; [35 = 4.
Same notations as in Fig. 6.

5. Illustrations regarding the case of small, medium and large cyclic loading

The aim of this paragraph is to illustrate rather extensively the capabilities of the final
coupled scheme to describe quasi-cycles, whatever the amplitudes of the cycles may be, and
at least qualitatively in accordance with the deviatoric and volumic properties of sand-like
materials.

5.1. Small cycles under specified cyclic strain

The physical parameters g, Ay, Qo, P, 70 and Ey remain those previously used.
The biaxial compression is specified up to 5% and the cyclic evolution is performed
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in the interval [0.04, 0.05]. The illustrations are given with:

a)
b)

c)

The parameter J} gives the control of a “symmetrical” peak effect (Fig. 8), and the

63=4) 6_%:02, T1
=4, B=04, 7
Bi=4, p3=04, 7

5,
5

3

=10, 72=
=10, 7=
=0, m=0.

parameters y; and v; are able to modify the tilting of the cycles in a relevant way.
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FiG. 8. Strain-controlled small cycles. The parameters |ﬁ3;ﬁ5,fy|;'y2| are |4;0.2;10;5|; |4;0.4;10;5];
|4; 0.4;0;0| respectively. Same notations as in Figs. 6 and 7.
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5.2. Small, medium and large cycles under specified cyclic stress

The cyclic evolutions are now performed under stress control with the following am-
plitudes 0.7 MPa (small cycles), 1.2 Mpa (medium cycles) and 2.2 MPa (large cycles). The
set (71, 72 B4, B4) of parameters is 2, 5, 6, 0.4 (Fig. 9).
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F1G. 9. Stress-controlled small, medium and large cycles.
The set of parameters |33; 8; ;72| is [6;0.4;2; 5].
Same notations as in Figs. 6, 7 and 8.
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6. Concluding remarks

The clue of the analysis has been obtained through the definition of the functionals
,’ZSP, AhSp, M, and & (Sect. 3.4). Although the Coulomb yield effects and anisotropic ef-
fects have been neglected, the properties of the proposed scheme are interesting regarding
questions which are up to now unsolved (point iv of Sect. 1).

It remains to introduce a well founded definition of the preferred reference frames in-
cluding a consistent generalization of the whole pattern to the anisotropic case. A solution
to this problem is from now on outlined.

As soon as this problem will be overcome, it will be possible to go deeply into the
study of “Coulomb” effects and “hydrostatic” effects (points v and vi of Sect. 1).

Appendix

The pattern of pure hysteresis behaviour and its associated symbolic model are heur-
istic when some particular insight is needed for the study of fundamental microscopical pro-
cesses based on the dislocation concept.

Since a few years it is possible, with the aid of transmission electron microscopy,
to observe dislocation movements occurring with the deformation of small samples. For
the study of pure hysteresis, the interesting mechanisms are those related to the case of
stationary cycles after stabilization of the microstructural phenomena. Under those condi-
tions a notable analogy between gliding microstructural processes and the pure hysteresis
symbolic model has been recently established ([4, 13 and 14]).

The simplest case is represented by a simple dislocation moving between two parallel
walls: the process is analogous to the simplest symbolic model (one spring and one friction
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e \
G
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S o
i
)
i
]
I
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£ & Swepl area
e=s/G
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Fic. 10. A microstructural process analogous to the elastic-plastic process of the simplest symbolic model.
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FiG. 11. The Frank-Read process during a cycling loading: a) first loading O ABC, b) first unloading CDEF.

slider associated in series). Under small stress the dislocation will bend reversibly and
behaves like the spring. For a characteristic values Sy of the stress, the dislocation pinning
points will move and drag two segments along the walls: the behaviour is analogous to that
of the friction slider (Fig. 10). The diagram of the stress versus the area swept by the
dislocation is of elastic-perfectly plastic type.

When the stress decreases it is necessary for the stress to reach the opposite value
—Su, before the pinning points move in the opposite directions. This behaviour is thus
really of pure hysteresis type.

A more complex case is the one of a Frank-Read source acting between two parallel
walls and characterized by two thresholds, S; for which the pinning points move and
Sz > S for which the source emits a loop (Fig. 11). This case is equivalent to a model
with two couples.

During unloading a process of loop absorption may exist (Fig. 12) and has actually
been observed.

In a real crystalline material the deformation is the result of the activation of a great
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FI1G. 12. Process of loop absorption during unloading CDEF.

number of elementary mechanisms like the proceeding one. The activation thresholds of
these mechanisms are largely and continuously dispersed due to different parameters such
as type, characteristic values, orientations with respect to the “external stress”, intergra-
nular compatibility, etc.

On the basis of this analogy it is possible to give an evident physical interpretation of
the pure hysteresis properties; this is particularly the case of the stress-strain discontinuity
obtained by describing a small cycle inside a large cycle. This is also the case for the
properties to the right of an inversion point, for the fundamental cyclic loading properties
and for the absence of reversible domain of the real crystalline materials ([4, 13] and

[14]).
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